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UGo GIANAZZA (%)

Potential estimate for the obstacle problem

relative to the sum of squares of vector fields (**)

1 - Introduction

Recently M. Biroli [1] has studied the properties of local solution of equations
of the type

€)] Lu=f feL” ()

where L is the sum of squares of vector fields, i.e.

m

@) L=- 2 X#X;
i=1

X; satisfying a uniform Hérmander condition (that is, X; and commutators up to a
fixed order K span the tangent space) and X being the formal adjoint
of X,.

He has proved the local Hélder continuity by a potential estimate which very
much recalls analogous results given for elliptic and degenerate elliptic equations
(see, for example [8], [2], [5]).

In the following we will consider an obstacle problem relative to the sum of
squares of vector fields as defined above and we will study the local behaviour of
local solutions.

The method we will follow is essentially the same already used in [1]. Its main
feature is that a Poincaré inequality has been proved on balls but not on anuli and

(*) Indirizzo: Dipartimento di Matematica, Politecnico, via Bonardi 9, I[-20133
Milano.
(**) MR classification: 35J85. — Ricevuto: 5-111-1991.
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therefore the same technical tools have to be used as in [3], where an obstacle
problem for a degenerate elliptic operator was considered.

2 - Notations and preliminaries

Let us consider the following C* (RY) functions a; (x), b; (), ¢;(x), ¢o(x) with
1,j=1...m; I =1...N.
We define the vector fields

S 3
3 X;= 2 ay(x)=—
I=1 axl

and we suppose that they satisfy a uniform Hérmander condition, as already ex-
plained in 1.

We can introduce a natural intrinsic distance associated to the vector fields
by

d(x, y) = inf{b; y: [0, b]— RV admissible path with y(0) ==, y(b) =y}

where an admissible path is a Lipschitz curve such that
Y= 2 &OX:0) 2 a@F<1

(see, also, [10], [7], [9D.
We then denote

4) B(r, x) = {yld@, y) <7r}.

The main feature of these balls is that they have different dimensions along the
directions defined by the commutators of the vector fields.

The following Poincaré inequality has been proved for intrinsic balls.

® Jlf-spasscor S § X(Pd

B(r, x) =1 B(@r, %)

for every function f € C* (B(2r, x)) where C is a constant which depends only on
N and f, is the average of f on B(r, x).
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Given an open set Q, we introduce

m

Eu, v, Q= 2 [X;(w)X;w)de + [uvda
i=1 4 2
which gives rise to the norm [&(u, v, Q)]¥?, as it is easily shown.

By H'(Q, &) (H!(Q, &) we understand the closure of C* ), (C¢ () for that
norm.

An easy extension of inequality (5) has then been proved in [1] for H'(Q, &)
(Hj (@, &) function.

Let us now consider the operator

m m

(6) = — ZX’*X+ZbX+ 2 Clj[X“X]-f-CO

where b; (), c;(x), co(x) are the functions introduced at the beginning of this
paragraph, and the associated bilinear form on H'(Q, &) X HE (@, &)

ag (U, v)= '§1 in(u)Xi(v)dx+.§l [0;X;(w)vda
i=1g i=1 g

Mz

+ .

%

JeylXs, Xl vde + [ couvde.
14 5

s,
]

The existence of the Green function for the Dirichlet problem relative to L in ®¥
has been proved in [10] and the following estimates are given

2
IB(r [B( )|

2=
7y X7 .. X; G| =4
( l Jy oA (y)] S IB( 7, )I
where G (y) is the Green function relative to L in RY with singularity at « and
y € 3B(r, z), r<R, R > 0 suitable, |B(r, w)| being the volume of the ball accord-
ing to Lebesgue measure.

G®(y) is such as

agy (u, G%) = u(x) Yu e Cy (RY).

As a(u, v; B(r, x)) is coercive on H} (B(r, ), &), it has been possible on [1] to
define the Green function relative to L in B(r, x) with singularity at .
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The previous estimates are easily replied and in particular we have

2 2

(8 Ay <G (1) < Ay e
) 4 B(r, )(?/) 3 |B(’I‘, 93)|

|B(r, @)
for y € 3B(qr, x), q € (0, gol, gy <1 suitable and A3, A4 are constants which do
not depend on x. Working as in [5] we also have

R, 9
@ ~ S ds
©) Gh@y, o= | B o] °
where by = we mean the usual equivalence relation and » = & —y|. Finally we
have

(10 Gi®, o€ L' (BR,, )

1
N+K-1’
We also consider the so-called reqularized Green-function relative to L in RY
G¥(y), which converges to G*(y) in suitable spaces (see, also, [1] and [2]).
The previously mentioned coercitivity of a(u, v; B(r, x)) on H} (B, ), O
allows to define the potential ¢ of B(sr, x) with respect to B(r, @), r < R,, as the
solution of the problem

where ¢ < with obvious meanings for K and N.

1) alg, p—v; Blr, 2))<0
Vv € HE (B(r, x); &) v=1 a.e. on B(sr, x)
o e H (B(r, x); &) o=1 a.e. on B(sr, x).

We observe that Lo is a measure on B(r, x), which belongs to space
H™Y(B(r, x), & =(H{ B, x), £)' and whose support is contained in
3B(sr, ).

If we consider the duality pairing between H '(B(r, %), & and
H}(B(r, x), £ by the previous notations we have

(12) (Lg, ¢) = alp, ¢; Blr, )

and this number is defined to be the capacity of B(sr, x) with respect to L and
B(r, ), which we denote by cap;, (B(sr), B()) or simply by cap (B(sr)) if there is
no possibility of mistake.
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Similarly, for any set E ¢ B(r, x), we can define its capacity with respect to L
and B(r, ) in just the same way.

The usual definitions about capacity are still valid: in particular if a property
depending on Z € S ¢ B(r, «) holds for every € S except a subset N of capacity
zero, we say that this property holds quasi everywhere (q.e.) in S.

Moreover a function u: B(r, ) — [— o, + «]is said to be quasi continuous if
for every ¢ > 0 there exists an open set A ¢ B(r, «) with cap (4, B(r, x)) <esuch
that the restriction of u to B(r, x) — A is continuous on B(r, z)— A.

Along the same lines of Proposition 1.27 of [5] we can prove that given
u € H} (B(r, x), &) there exists % in H} (B(r, x), & withu =% a.e. and %’ quasi
continuous.

This is called a quasi continuous representative. The substantial unicity of the
quasi continuous representative is given by the following

Lemma 1. If %, and iy belong to HE (B(r, x), £), are quasi continuous and
agree almost everywhere, they agree quasi everywhere.

The proof is quite simple. As %,, %y € H} (B(r, %), £ and are quasi continu-
ous, it is obvious that %, — %, quasi continuous, %4, — %, € Hj (B(r, x), £). There-
fore, we can reason as in [5] or in [4] and we immediately get to the
point.

For arbitrary functions v: B(r, x)—»>[—o, + ] and arbitrary sets
F c B(r, x), by inf (and sup) we denote the essential infimum (and supremum)
with respect to the capacity previously defined.

If we consider functions v € H*(B(r, x), £ and B(sr, T) c B(r, x) the condi-
tionv = 0 a.e. in B(sr, ) and ¥ = 0 g.e. in B(sr, ) are equivalent (where by 7 we
understand the quasi continuous representive of v). Then the essential sup and inf
on a given B(sr, %) are defined unambiguously and this will be important in the
following.

Let us now get to our obstacle problem. Consider g e H' (B(r, x), £ and ¥'a
function in B(r, x) defined up to set of zero capacity, such that the convex
K= {ve H'(B(r, ), &), v—g e H}(B(r, x), &, v=¥ q.e.} is not empty.

By standard projection arguments, there exists a unique solution of the fol-
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lowing Dirichlet problem
(13) ueHY (Q, ) wu=¥ qe u—geHIQ, &
Ao, u—v; Q<0
YVoe HY(Q, 5 v=¥ qe v—geHyQ, &.

In the following, however, we will be interested only in local weak solutions of the
obstacle variational inequality, that is in functions u € H'(Q, &) such that

(14) ueH (@, O wu=¥ qe. inQ
ao(u, u—v; Q<0

VoeHY(Q, 8 wv=¥ qe inQ wu-veH{@Q, ?).

Following [9] and [2], given an arbitrary ¢ > 0 and an arbitrary o > 0, we consider
the one sided level sets of our obstacle ¥

(15)  E(, o)=E(xy, ¥; ¢, o) = {®weBlpfc*, ), = sup V¥—¢}

Be/c*m, xp)

where m = 1 is a fixed parameter, ¢* > 1 is a constant, whose meaning will be-
come clear in the proof of Lemma 3, and their relative capacities

Cap(E(E7 P); B(C*P7 -'170)) .
cap (Ble, @y); Ble*p, 2))

(16) 8l) =8(e, p) =

It is clear that 0 < 8(e, p) <1 Ve, 0> 0, and also that é(e, p)is nondecreasing in
e for every fixed ;.

We define the Wiener modulus for arbitrary 0 <r<R and ¢>0 as
. £ do
am w,(r, R) =inf{w>0: w exp [é(w, p)? =1}.

As (0w, p)is nondecreasing in w for fixed « > 0, what we have introduced makes
sense and we have —I% < w,(r, R)<1. Furthermore o, (r, R)is nondecreasing in

7 and nonincreasing in B and o.
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3 - Main theorem and examples

Let us now define the seminorm V(») = V(u, x,, r) for every r > 0 such that
B(r, %) c B2q™ 7, 1y) cQ by setting

(18) Vi) =(ose wi+ 2 [ X W[ GBeg1r, 2y dw

t=1 B(r, )

where ¢ € (0, 1/5m) is a parameter, which is fixed once for all.
Relying on the previously defined é(¢, ¢) and w, (r, R), the main result is then
the following estimate of V(r).

Theorem 1. Let u be a weak local solution of (14) in H (B(R,, %), &. We
have then

(19) V) < C,V(R) w,(r, R)®+ Cyow,(r, R)+ C3R"
where o, B e (0, 1), C; >0, Cy> 0 depend on the coefficients in L(a;, by, ¢, Co)

and Cs on sup |u]. If ¢g =0, we have C3= 0.
B(R, x)

We consider now some special cases.

Let us first recall that for 0 <r<R, ¢>0 and o> 0 verify
R
a=c¢ exp J 8, p)%‘o—
if and only if
R dp
wo-(% R)= exp (- fé\(ey P)?) awa(”‘, R)=«e.

(See, for example, [3] or [9]).

Making direct use of the definition or by a straightforward application of the
previous result, it is now possible to give the expression of the Wiener modulus in
some simple cases.

(a) Constant obstacle. Let ¥ = constant q.e. on B(R, ;) for some R, the
r

7 for every 0 <r=< R,

constant possibly being — . Then we have o, (r, R) =
a>0.
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() Continuous obstacle. If ¥ is continuous at w, and if it also happens that

for some B osc ¥ >0, then, choosing ¢ = B osc ¥, 0<r=<R, we get
B(R, ) T B®, )

w,(r, B) = —}% sw, (r, R) = B(%s% ) .
3 H0

Furthermore we find

osc u<Cl=Y+ osc ¢+R=J/2
B(, ) R B(R, %)

and Holder continuity of ¥ at x, implies Holder continuity for every local solution
u at the same point x;.

(¢) Cylindrical obstacle. By cylindrical obstacle we mean a function ¥,
whose level sets E(e, o) for every o > 0 have constant relative capacities, that is
8(e, o) = ¢(p). Then we easily find

B de
(20) w,(r, R) = exp(*rfé‘(a)—P‘—)-

Moreover if ¢(c) = n > 0, we have w,(rr, RB) = (%)" and (20) implies Holder conti-
nuity of our solution .

(d) Thin obstacle. We now define F = Fyp= {x € R¥: ¥(x) > —» q.e.} and
for every o >0

BF =B, @) nF if cap (B, @) NF, Blc*p, x,)) >0
BF = B(s, ) it cap (B, %) N F, Blc¥p, ) =0.

We also introduce the quantity

B cap(Bf, B(c*e, %)) do
W(r, R) = Wg(r, R)=exp (_Tf cap (Blp, xy), Blc*s, %)) o

for arbitrary 0 <r<R.
It is interesting that W(r, R) depends on ¥ only via Fy.
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As in [9] we can prove the following estimate of the Wiener modulus

osc ¥}

1
G FnB(R, x)

(21) % <ow,(r, R)<min{l, max[Wr(r, R),

for arbitrary 0 <r<R.

In this case the same relationships between (Hélder) continuity of ¥ at x,
and (Holder) continuity of u at the same point as discussed on [3] are still
valid.

4 - Introductory lemmas

In the proof of our Wiener estimate, we need an inequality of Caccioppoli
type. In our setting it is not difficult to extend the analogous proved in [1].

Lemma 2. For arbitrary g.e. z € Q and Ry > 0 such that B(R,, z) c Q and
for arbitrary constant d = sup ¥, we have for u, local bounded solution of (14)
in B[Ry, ), B, 2

m

(22) > [ IXi(u—d))EGRde+ sup |(u—d)*[?

=1 B(gr, z) Blgr, %)

C,
€ (u—d)* Pda + Cyr®
IB("', :1’/'0)] B(r, :co)—{?(qr, ) ] l 2

where 0 < g < qy with gy e (0, 1), 0 <r< Ry, R, suitable indipendent on x,,
s =1, C; and Cy constants dependent on q(B(II?aX ) [u?, d) and « depends on N
0s To

and K, order of the Hormander condition.
It is interesting to observe that Cs =0 only if ¢y = 0 in the operator L.

We can also prove the following refinement of the Poincaré inequality.

Lemma 3. Let ve H'(B(R, %,),%) and Nw)={x; x € BR, ), v(x)=0}.
We then have

K|B(R, )| m
23 vjPde < o X, ()P dx.
(@3) B(R,fxo) i cap (N(v); B(c*E, %)) B*R, «) igl‘ )
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Proof. Let us prove Lemma 2. The demonstration is essentially the same as
given in [1], the only slight difference being in the test function v.

Precisely we put v = u — (u— d)* G7 *((GZ)™') where G? is the regularized
Green function relative to L in RY with singularity in z and ¢ € C¢ () and such

= 2
that o(f) =1 for |t| <2, o®) =0 for |t| > Cx, |0’ )] = —=——.
2 le e It 40 T—D02
We choose 2 and C such that
(267 = 71\-} > B@gr, 2) and (2]G" = :C.l)—} cB(1—q)r, 2)

and then we take the supremum for z € B(gr, x,).
Let us consider Lemma 3. Let v e H*(B(R, x,), & and

v= 1 [ wvdx.

IB(R, %)| B, =)

Then it is known from (5) that

(24) [ lw—9fdz<CR? | .§1]Xi(v)|2dx.

B(R, x) B@R, ) 1=

We now define N(v) = {x; x € B(R, x,), v(x) =0} and let us suppose v # 0. (If
v =0 the result is evident).

Let us choose as test function n(x) = o((G)™!), where ¢ is as specified above.
We will clearly have 0 <7 < 1. We choose X and C such that n = 1 in B(R, ).
Accordingly, recalling the estimates previously given for the Green function, we
have y € H} (B(c*R, ,)), where c* takes into account the different dimensions
of the spheres which limit G.

Actually G € Cy° (B(c*R, w,)), as it is easy to show, but H{ is enough for our
purposes.

Let us show that |X;(y)| <K,/R Vi. In fact we have

1

X;(n) = X: (eGP = ¢
0 = LG =+ o

X (G)-
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Therefore |X;(n)|=|o'| ——
obtain

(G“ 7 |X;(G™)|. Recalling the definition of ¢, we then
!Xi (G2

X, ()| = (K
l 1(77)' ( 0 G.:;O

)X (GP)
( G“ : | | =
When ¢— 0, as we have uniform convergence out of the singularity in «, and re-

calling the estimates for the Green function and its derivatives, we get

Xl < 2L

The following funetion ¢ = (¥~ v)/v is in Hj (B(c*R, %), £) and ¢ =1 on
N(v). We have then, thanks to the bilinearity of a(u, v) on Hj(Q, &),

m

cap V@), Be*R, &) <C[ 2 [X:@)f do

<L g }j[X(v)FdaHR£ [ o—7a2de]

V™ B(c*R, ) 1=1 B(R, «y)

Ky

< = { Z IX; w)|?da .
B(c*R, x,) t=1
Therefore
(25) < K > X )P de.

cap(N(v) B(C*R xo)) B(C*Iér z) i=1
From (24) and (25) we obtain

J PPde<2[ [ PPde+ [ |v—-7dal
BR, ) B(R, x;)

B(R, %)

< 2[[v|B(c*R, xy)|+CR? | Z |X; ()| d]

Be*R, z) i=

K, |B(R, )| C
<2 + X, @)
[Cap (N(), B(c*R, w)) Rz]B(C*Rf w2 1’ W) de.

Working along the lines of [6] we can prove that
(26) cap (B(R, ), B(c*R, x))=|B(R, x,)|/R?

where by = we mean the usual equivalence relation as in [3]. Finally, working as
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in Proposition 2 of [2]

K|B(R 900)] m
P de < o X, @)2dx.
B(R,fxo) [ ] cap (N(’U)y B(C*R: Lo )) B(c*R, xy) igl ! ( )]

Let us now prove our main result, Theorem 1.

We choose as test function v=wu—(u—d)*G:¢, p<sr/2, where G}
= G, »,, is the regularized Green function of G, » which we will denote in
the following simply by G*, and ¢ is the potential of B(sr, z) with respect to

B(tr, z) and d= sup .
B(tr, 2)

Let us recall that

1 [ ¢dx=1.

Lg, GI) = g1
(Lg, Gf) |Bo, 2| 5¢;

We then have

m m

27 '21 J X )X, ((w — d)*)¢G?) dee + gl J b0, X; (w)(u — d)* ¢G7 d

i=1 i
Therefore

n 11 .
X ((— d)*)2eG? dwe + = —ad)* Pdx
21 )y @ DOFG G 5 e ], [

=-2 § | Xi(u— )X (@) u—d)*Grde

i=1 B(tr, 2)
+[% 2 Xiw—-d)*)Xi(9)2u—d)* G dw
i=1 B(ir,2)

+2 3 | XX G- d*Fde
i=1 B(r, 2)

+13 f hx@w-dERGd 5 [ oélw—-d)* PG
2 i=1 B(ir,z) 2 Bltr, 2)
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+1s |l X)@lw- 0 RG]+ L [ coslu—d)* PG e
2 =1 g,z 2 g, 2 ‘

m

—22 [ Xi(—d)F) X —d)* Gide
t=1 B(tr, 2)

+—%(L¢, (- d* 2GE)+ K, [ GFde.

B(tr, 2)

As o=0 we obtain

©8) 23 [ K- )G du + |- d)F 2

i=1 B(sr, 2)

< sup [(w—d)*[F- 13 ] Xi(u—-dHX;u—-d)*G*de+K;, [ G*de.

B(r, 2) i=1 B(tr,2) B(tr, z)

Recalling that G* € L***(B(tr, 2)) and the estimates on the measures of intrinsic
balls [11], we can adjust the last term in the right hand side. Moreover, putting
for short B** = B(tr, z) — B(sr, 2), we have

m

Y Xi(w—- )X —d)E G dw

i=1 Btr, 2)
m

=2 | Xi((w—d)*)X;(¢)u— d)* G*da

i=1 B¥x

% 2 f 1X; (u— D)*)|FG*da + 4 _21 BL 1X; (@) |(w— )* 2 G*dew

—}; ; ] IXi(—d®)P6 da

m

+n sup |[u—d)* sup G*X [ |X;(@)]de.

B(tr, 2) 3B(s, 2) i=1 B@r, 2)

We have also

m

2 [ IX@Pdr <K (L, $)pu, o

i=1 B(r, 2)

<KLy, G9)1/ inf G*<K,1/ inf G

3B(sr, 2)
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Therefore at the end we get

29 % [ 1X((w— @) G*dx + |[(w(z) — D* |

i=1 B(sr, z)

<1 +Ksp) sup |[(w(z) — d)* |2
B(tr, 2)

L3 [ X —d)P6 dw + Ky

N i=1Br, )~ Blsr, 2)
Let us now take the supremum for z € B(gr, %,) and let us choose ¢t = 1/m —gq,

s=2q, g€ (0, 1/5me*). If we neglect the first term on the left hand side, we
obtain

sup |(w—d)*P<(1+Ksn) sup l(u — d)* |2

B(gr, ) B(r, xg)

K6 2 m ‘
+28 sup () > X;(w—d)™)Pde + Ko 7®
B, I;{,)(B( 87, )" i=1 B, xo)—jB«zn =) il | '

where d> sup .
B(r/e*m, xg)
Once again, recalling the estimates proved for the measures of intrinsic balls

and for the Green function, we get

sup [w—ad)*P<(1+Ksn) sup (e — d)* |2

B(gr, xy) B(r, xg)

K,
= [ X PGy, ay e+ K.

T =1 B, @) - Blgr, m)

Now from our Caccioppoli inequality proved in Lemma 2 we have

sup |(u~d)*[>> Ky 5 X~ &) Ghler, oy dee

B(r, xp) i=1 B(gr, =)

where Ky=<1 can be taken arbitrarily small. Therefore we obtain

m

K2 [ 1Xi(w—d)*)P Gl opde+ sup |(u—d)*

i=1 Blgr, x) B(gr, %)

<@2+Ksn) sup |(u—d)*?
B(r, x4)

Ky, = !
+=2=23 i | X ((u — DF)PGRr, oy s + K7™

N oi=1 B(r, wp)~B(gr, %)



[15] POTENTIAL ESTIMATE FOR THE OBSTACLE PROBLEM ... 235

Coming to the usual <hole filling» argument, we get

m

B0) Ks+Kon) 2 [ IX:((u—d*)PGRyy opde+n sup |(w—d)*[?

=1 Blgr, ) B(gr, xp)

<92+ Ksn) sup |[(w—d)* P+ K Z I 1Xiw = DGRy, oy da + K7

B(r, xy) 1=1B(r, x,)

We now estimate the second term on the right hand side

m

C1Y) 2 J X = )P Ghtar, oy de = Zn J X (@ — )P Gllagiy, o de

=1B(r, z,) i=1B(gr, 24)

m

+ 2 [ IX@—-a))? (GBlr, ) — GBlogtr, ) dec.

i=1 B, )

We take into account that the function F = GBlog-tr, 2) — GBlor, ¢, is harmonic with
respect to operator L and we have

2

Bglfo)p - aBl(?gco F= Ko |B(r, xg)] *

Therefore we have

m

(32) Kz+Kon) 2 [ |Xi(w—D)*)PCRy, ohde+n sup Ju—d)* 2

i=1 Blgr, ) Blgr, %)

<72+ Ks7) sup |(w — d)* |2+ Kg Z I X —a)y*)f GBlog1r, z) A

B(r, 2,) B(r, w)

m

—Ku I X (w= )P de + nKyre

T
BT
!B("’, 900)] i=1 Ba, x)

Now as in [3] let us choose d e( mf %, sup u) such that
e, 1) Ee, 1)

cap ({x: x € B(r, %), (w(®) —d)t = 0}, Blc*r, xy))

=1/4 cap(E(s, 7), Blc*r, xy)).
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We have then d =d +¢> sup ¢. We also note that
B(r/c*m, xy)

sup [(@w—ad)" P+ sup [u—ad) P

B(r, wg) B(r, )

~( ose u)‘——Z sup [(w—d)"| sup |(w—d)|

B(r, xg) B(r, zg)
whereas

sup [u—ad)* [+ sup |[(u—d) |7
B(gr, «y) B(gr, )

=( osc u¥—2 sup |(u—d)| sup [(w—d)*|.

Blgr, wp) B(gr, ) Blgr, =)
If we apply (32) separately to (u — d)* and (w — d)~ and then we add the two in-

equalities, we get

(33) (Ks+ Ko7) E I X @) Gy, oy de + (., 0sc )u)z

1 B(gr, xy) Blgr, @

<52+ K; r))( ose u) + Ky E X @GRy, o da

i=1 B@, m)

Ku f le (u)[2 dx + Y/‘Klg r* 4+ 'qug 82 .

IB(T %o)| =1 By xy)

We now recall Lemma 3. Accordingly we have

KlB(T’ xO)] &
- X, )Pde< — v|Edw
cap (N(w), B(r, xy)) i=1B(1-,fxo) | ) B(r/c’;[, ) H

and also, recalling estimate (26),

Ky? K
- | 1X;mpPde < ”______151_22__ . o ffde
IB(r, 20)| =1 Be, w0) |B(r/c*, %) i=1 Buyc*, ap)

where

_ cap (N(v), B(r, x,))
cap (B(r/c*, xy), Blr, x))

Therefore, applying it to our inequality and taking into account the definition of
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S(R) we have

(Ks+ Kgn) 2 | 1X @G, 10)dfv+n( osc wu)

1 B(gr, ;) Blgr, )

<92+ K; N, ose u)2 + Ky Z X P Gy, o de

i=1 B(r, )

~I—3——-————o(7/c) J (- P+w—ad) Prde + K +nKs e .
I (7, ol Blr/c*, xy)

The last integral on the right can be estimated thanks to Lemma 2. We
have

(Kg+ Kq7) 2 . I X Gy, 1y A + (1 + Ky 8(r/c*))X gsc w)?
qr, ) 7, X))

<52+ K; r)( ose u)z +Ks 2 [ X PGy, o Qe + Kppv® + nKys e

=1 B(r, x)

Without any loss of generality, due to the many simplifications we did, we can as-
sume Kj;3=bKy. Furthermore, if we add to both sides the term
6(Ks /Kg)(B(OSC )u)z we get

qr, o

(Ks+ Kg7) Z I X @) Gy, oy dee

B(gr, =)

+[Ks + Ky /6(n + 5Ky 8(r/c*))] 6/ Ky - gse | u)®

< [Kg + (Ko /6) (2 + K5 1)1 6/K, (B((v)-sg ) w?

+K8 2 f le (/U/)Iz Gggzq—l,,.’ ) dx + K17 7+ 7]K15 52
=1 B, )

We now put n = Kyé(r/c*) and we get

(34) (Kg+ K§3(r/c*)) E I 1X )P GRlar, oy dw

1 B(gr, )

+(Kg+ Kg3(r/c*))6/K, (B(((I)rscr ) w)?
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2+ KK,
< [Ks+ K§o(r/c*)=—2=216/Ky ( osc w)

n
+K8 E I iX'L (’LL)’Z Gg;%zq—l 7 9«'0) dx + K17 7"1 -+ 7]K15 82 .

i=1 B, mp)

Recalling that Ky<1 can be fixed arbitrarily small, let us suppose that
2 + K; Ky < 3 so that inequality (34) becomes

m

2| IXOP GRly, o de + 6/Ks( 0sc )u)2

i=1 Blgr, %) qr, Tp

K+ (Kg /2) 8(7‘/6*) m
= [2 X; ) GHogty, o d
K+ K§é(r[e*) i=1 B(r,-[co) 1X: @)l GBagrr, a0

+6/K9( 0sc ’LL)Z] + Klg’)"z -+ K19 82 ,
B(r, @)

with obvious meanings for Kig and Kyy. As in [3] we can suppose K§ /Ky < 1 and
therefore we get

2 f ]Xz (’M,)]ZGE&T’ %) de + 6/K9 (B(OSC ) u)z

i=1 Blgr, x,) ar, @

1 n
= [ 2 X; () e “Ip 1 dx
1+ (K5 /8Ks)é(r/c*) i=1 B(r,fmo) | I* GBleg-11,

+6/Ky( 0sc u)?]+ Kyg7* + Kige®.
B(r, )

We now define

. m

Viy=3 | 1Xi@PGrayr, opdw+6/Ky( 0sc u)®

1=1 B(r, 2g) . B(r, x)
and we observe that V(r) is increasing in 7.
If we reason as in [3], [1] and [9] we get at the end
R
V(’Y') = K20 exXp (_ ‘31:[ a(p) dp/p) V(R) + KglRa + K22 82 .

Choosing ¢ = ow,(r, R) we finally obtain

V(’)") = K20 W, (7’, R)ﬂ V(R) + K22 G, (’l", R) + KglRa .
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Abstract

Amn obstacle problem relative to a sum of squares of vector fields satisfying the Hor-
mander condition is considered. A study of local behaviour of local solutions is carried
out by giving a potential estimate as usually done in analogous elliptic problems.






