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Exponential stability
of linear impulsive differential equations (**)

1 - Introduction

In relation to numerous applications in science and technology recently the
theory of impulsive differential -equations develops intensively (Lakshmikan-
tham and Liu (1989); Lakshmikantham, Bainov and Simeonov (1989); Leela
(1977); Milev and Bainov (to appear); Samoilenko and Perestyuk (1987); Simeo-
nov and Bainov (1988)). In the present paper the notion of exponential stability
for linear impulsive differential equations at fixed moments is made preci-
se.

2 - Preliminaries

Let fy<t;<...<t;<..., limi;=o as i— « be a given sequence of real
numbers. Consider the linear impulsive differential equation (LIDE) at fixed
moments

@® % =AM« t#t; x(t; + 0) = B;x(t;) G=1,2,..)
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where the n X n coefficient matrix A(?) is piecewise continuous in the interval
[ty, + ) with points of discontinuity of the first kind at t=1¢, (i=1,2,...) and
the impulse matrices B; (i = 1,2, ...) are constant. The underlying vector space
is R” or C".

The solutions x(f) defined in the interval [, + 0, -+) are continuously diffe-
rentiable for ¢ # t; with points of discontinuity of the first kind at t =¢;, i > k.
Let us note that x(;):= «(t; — 0) ¢ = 1,2, ...). The fundamental matrix X(¢, s) of
LIDE (1) for ¢=s, te[t,+0, t,+1], selt;_,+0, t;], m=j—1, admits the
representation

@ X, 9=UB U ({t,+0)B,Ul,).. U+ 0) B;Ut) U™ (s)

where U(?) is the fundamental matrix of the equation % = A(t) x. The funda-

mental matrix is invertible if and only if the impulse matrices B; (j < i < m) are
nonsingular.

Def. 1. LIDE (1) is said to be: (a) stable if for any ¢ >0 and for any s=t,
there exists &> 0 such that for each solution x for which |x(s)| < 4 the inequality
|2(®)] < e holds for t = s; (b) uniformly stable if for any ¢ > 0 there exists ¢> 0
such for any s=t, and for each solution x for which |x(s)| < ¢ the inequality
lx@®)| < ¢ is valid for t=s.

Def. 2. LIDE (1) is said to be: (a) asymptotically stable if it is stable and,
moreover, for any s =t there exists y = n(s) > 0 and for any « > 0 there exists
T>0 such that for each solution @ for which |a(s)| <4 the inequality |x(¢)| <«
holds for ¢ = s + T; (b) uniformly asymptotically stable if it is uniformly stable
and, moreover, there exists » > 0 and for any « > 0 there exists 7> 0 such that
for each solution # and for any s = ¢, for which |x(s)| < 4 the inequality |x(t)| < e
is valid for t=s+T.

Remark 1. All solutions of LIDE (1) are stable (uniformly stable, equia-
symptotically stable or uniformly asymptotically stable) if and only if its zero
solution enjoys the same property.
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3 - Main results

Denote by L, (k =0, 1,2, ...) the linear space of solution x(t) of LIDE (1) defi-
ned in the interval [, +0, +%). Let ¢;:=col(4],...,4]) where

0 for i#j
1 for i=j

is Kronecker’s symbol and col(...) stands for a colummn vector.

The solutions x; (f) = X(¢, ¢, +0)e; (= 1,2, ..., n) are linearly independent as
elements of the vector space L,. We shall note that their restrictions to the in-
terval [f;,;+0, +) as elements of the linear space L, are linearly depen-
dent if the impulse matrix By ., is singular. In this case both merging of sol-
utions at the point ., + 0 and noncontinuability to the left of some solutions of
Ly, are observed.

Each solution x(t) with initial value 2(f, + 0) = col (3¢, ..., A,,) is a linear com-
bination of the solutions ;) (j=1,2,...,%)

3 () =X, t+0)a,+0) =120 +...+2,2,00),

ie., Ly (k=0,1,2,...) are n-dimensional linear spaces.

The classical Def. 1 and Def. 2 are valid for ordinary differential equations as
well. For LIDE (1) the study of exponential stability is appropriate with the aim
to take into account the specific character, of this class of ordinary differential
equations.

Def. 3. LIDE (1) is sai to be: (2) exponentially stable if for any nonnegative
integer k there exist positive constants «; and N such that for each solution
x € L;, the following inequality should hold

@ |(6)] < Nye ™t |w(t, + 0)| for t=t,+0;

(b) uniformly exponentially stable if there exist positive constants « and N
such that for any nonnegative integer k& and for each solution x € L, the follo-
wing inequality should be valid

(5) le()| < Ne ¢~ 9 |z(s)| for t=s=1,+0;

(e) weakly exponentially stable (weakly uniformly exponentially stable)
with respect to the space of solutions L, if inequality (4) (inequality (5)) is valid
only for the solutions x € L, where k is a fixed number.
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Remark 2. For LIDE (1) Def. 1 is equivalent to the following Def. 4 (Milev
and Bainov (to appear) Propositions 1 and 2).

Def. 4. LIDE (1) is said to be: (a) stable if for any nonnegative integer k
there exists a positive constant N, such that for each solution x € L;, the follo-
wing inequality should hold

(b) uniformly stable if there exists a positive constant N such that for any
nonnegative integer k¥ and for each solution x € L, the following inequality
should hold

M le(t)| < Nx(s)] for t=s=1,+0.

Remark 3. A straighforward verification yields that for LIDE (1) exponen-
tial stability and uniform exponential stability implies uniform stability.

Proposition 1. IfLIDE (1) is exponentially stable, then il is asympitotical-
ly stable.

Proof. Let seft,+0, {,.,]. By the inequality of Gronwall-Bellman

UG+ 0) U™l (s)| < exp tfs |A6)] do.

Choose n=Nilexp(—a.s— [ |A®)|dF).
23

Let ¢ be an arbitrary positive number. Choose

T_—ocgllne>0 for 0<e<1
1 for e=1.

Then for each solution x € L and for any t=s+ T we have
[2@®)] < Nye ! |a(t, + 0)] = Nye =4~ e | Ut + 0) U (s) 2(s)]

(axs +tf |A@)|do)
k

<Ne ne™ 4l <e,

Hence LIDE (1) is equiasymptotically stable.
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Remark 4. The inverse assertion is not true. We shall construct an
example of LIDE which is equiasymptotically stable but is not exponentially
stable.

Example 1. Let t, =%k (k=1,2,...). Consider LIDE

k—

klx(k—O) k=1,2.).

) %fti—:o t£k ok +0) =

The solution x(¢) can be written down in the form

_Is
x(t) = 1] x(s).

Note that [k + 0] =k and [k — 0] = k — 1. A straightforward verification sho-
ws that LIDE (8) is equiasymptotically stable but not exponentially stable
since

lim sup llnloc(t)| =0.

t— +o i

Proposition 2. Def. (2b) is equivalent to Def. (3b).

Proof. Let LIDE (1) be uniformly asymptotically stable. For any solution
x # 0 and for any fixed s of the definition domain of x there exists a positive con-
stant ¢ such that c|a(s)| = /2. Since cx is a solution too, then by Def. (2b) for
any t=T we have

clat+8)| <e=c2epHas)]  ie.  |xlt+ )| <2ep7!|as)].

Fix ¢ so that 2ep7! < e™'. Thus there exists a positive constant T such that
for any solution « and for any s of the definition domain of & for ¢ = T the follo-
wing inequality hold

9) oot + 8)| < e a(s)] .
Hence there exists a positive constant 7 such that for any nonnegative inte-

ger k and for any solution x € L, for s = ¢, + 0 and ¢ = T inequality (9) is valid.
Let t=T and let te[mT, (m+1)T], where m is a positive integer. Since
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t . .
77 =T, then in view of (9)

Im(% +8)| < e Ha(s))

.........................................

m 1

[a:(m—-— +s)| < e lw(T—=t+3)|

ie. et + )| < e |a(s)] < e~ WD+ a(s)).
Set « = % >0 and obtain that for t=T
ot + )| < e-e™*|x(s).

Let t € [0, T]. Since LIDE (1) is uniformly stable, then by Def. (4b) there exists
a positive constant N such that

|2t + )| < Nl|a(s)] < NeTe = |a(s)| .

Hence there exist positive constants o = % and N = max (e, Ne*T) such that

for any nonnegative integer k and for any solution x € L, the following inequali-
ty is valid

la(t + 8)| < Ne™|x(s)| for t=0 and s=t,+0

ie. LIDE (1) is uniformly exponentially stable.

The inverse assertion follows from inequality (5). Choose n= %,

T=-a"'Ine>0for 0<e<1lor T=1 for ¢e=1 and obtain that
lx(t)] < Ne ¢~ 9 x(s)| < Ne™*Iy<e
Proposition 3. Let LIDE (1) be exponentially stable. There exists a positi-

ve constant o and for any positive integer k there exist positive constants Ny
such that for any solution x e L, the following inequality should hold

le@®)| < Npe™ |a(t, + 0)| for t=1t,+0.

Proof. Since LIDE (1) is exponentially stable, then by (4) for any positive
integer k and for any solution x € L, we have y[x] < —a,, where y[x] stands for
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Lyapunov’s characteristic exponent
_ 1
x[x] = lim sup n In |2(t)] .
ts @

Since L, is a finite dimensional linear space and for any solution x € L;, the re-
presentation (3) is valid, then

x]< max ylal= -8B, < — o <0.
X[] lstn/:[ ]] ‘Bk %k

Denote by #; (k=0,1,2,...) a solution of L, with the maximal characteristic
exponent, i.e. ¥[¥.]= — B,. The restriction of the solution %, () to the interval
[t,+1+0, +) is an element of the space L;,,, hence —B. < — 1.

If we suppose that there exist m+1 different exponents -8, < -8,
<...< —p <0, then the restrictions of the solutions &, &, , ..., ¥, to the in-
terval [f; + 0, +«) are elements of the n-dimensional linear space L, and they
should be linearly independent since they have different characteristic exponen-
ts. Hence among the exponents 8, (k =0, 1,2, ...) there are at most n different
and let k=r(§}%)§,... {=B}=—45

For an arbitrary solution x € L; the representation (3) is valid and since
 max x[x;1< —B, then for any < € (0, 1) there exists a positive constant N, such
<j<n

that |u;(t)] < Nje ™9 Hence
le@®)] < nlaelt, + 0)| NFe 1= = Ny e~ |x(t, + 0)]

where N, =nNj and « = B~ ¢).

We shall show that there exist LIDE which are exponentially stable but not
uniformly asymptotically stable.

Example 2. Let t,=¢* (k=0,1,2,...) and consider LIDE(10)

(10) %—f = ({Int} — %):c tEt a+0) =e®al,) k=12 ...
where {y} =y — [y] is the fractional part of the number y. We shall note that
{k+0}=0 and {k—0}=1. For t=s the solution is written down in the

form

w(t) = a(s) exp {t{Int} — s{lns} — —g—(t- 8}
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and a straightforward verification yields that LIDE (10) is esponentially stable
but not uniformly asymptotically stable.

Proposition 4. If LIDE (1) is weakly exponentially stable (weakly unifor-
mly exponentially stable) with respect to the space Ly, then LIDE (1) is weakly
exponentially stable (weakly uniformly exponentially stable) with the some
exponent with respect to the spaces L;, 0<1i<k, as well.

Proof. By the inequality of Gronwall-Bellman for any +;,w e [f,_;+0, ]
the following inequality holds

74
|UG) U ()| < exp [ 1A@®)|d6 = ay, .

k-1

Let LIDE (1) be weakly exponentially stable with respect to the space L;.
For any solution x € L ., its restriction to the interval [¢, + 0, +) belongs to
the space L; and by Def. (3c) for any t=1,+0 we have

lo(®)] < Npe ! |x(t, + 0)| = Nye ™ B Ut,) U™ (-1 + 0) 2(t— , + 0)]
< N, |Bi|ape™! |a(t, +, + 0)] .
Iftelty_;+0, ], then
@] = [UQ U™ (-1 + 0 &ty -1 + 0)] < @ [0ty —1 + 0)]
< g ehe™ mt, _; + 0)].

Choosing oy, = a;, and Nj,_; = max (N, | B | a;,, a;e*%) we obtain that LIDE (1)
is weakly exponentially stable with respect to the space L;_; as well

Now let LIDE (1) be weakly uniformly exponentially stable with respeet to
the space L;. For any solution xeL;_; its restriction to the interval
[t +0, +) belongs to L, and for t=s=t,+0 inequality (5) is valid.
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If t,_+0<s<{ <t then

le(®)] <N e~ %)|x(t, + 0)] = N e*¢=9 e=&=9 B, U(t,) U1 (s) 2(s)]
< N|By, | ay %~ %-0 et =9 ()] .
Ift,_,+0ss<si<{, then
le@®)| = U@ U~1(s) 2(s)] < ay e %) 7= |5(s5)] .
Hence choosing
N =max (N, a,e*® %1 N|B,|a;e % %-1)

we obtain that LIDE (1) is weakly uniformly exponentially stable with respect to
the space L,_, as well.

Proposition 5. Let LIDE (1) be weakly exponentially stable (weakly uni-
Jormly exponentially stable) with respect to the space Ly _, and let the impulse
matrie By, be nonsingular. Then LIDE (1) is weakly exponentially stable (weakly
uniformly exponentially stable) with the same exponent with respect to the spa-
ce Ly, as well.

Proof. Since the impulse matrix B), is nonsingular, then each solution of L;
is a restriction of a solution of L, _,. Hence if LIDE(1) is weakly uniformly expo-
nentially stable with respect to L;_;, then it is weakly uniformly exponentially
stable with respect to L; as well.

Now let LIDE (1) be weakly exponentially stable with respeet to L;_,. Then
for t=1,+0 we have

Iw(t)l <Nk_1e‘“’=-‘t]m(tk_1 + 0)] = Nk_le—a"'lt!U(tk_l) U—l (tk)B]:l x(tk + 0)]

}k JA0)| ds
<Ny |Bit|e® e~ =1t a(ty + 0)] = Nye 1! a(t, + 0)

[
where N, =N,_(|B;|-exp( [ |A(6)|d6).
[

Hence LIDE (1) is weakly exponentially stable with respect to the space L, as
well.

Proposition 6. Let the impulse matrices B; (1=0,1,2,...) of LIDE (1) be
nonsingular. If LIDE (1) is weakly exponentially stable (weakly uniformly expo-
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nentially stable) with respect to a fixed space Ly, then LIDE (1) is exponentially
stable (uniformly exponentially stable).

Proof. Proposition 6 is a corollary of Proposition 4 and Proposition 5.

Remark 5. If the impulse matrix By, is singular, then it is possible for LI-
DE (1) to be weakly uniformly exponentially stable with respect to L;. We shall
illustrate this by the following example.

Esample 3. Let ;=1 (¢=0,1,2,...) and consider LIDE (11)

an %;9 = Ax t#t, w(t;+ 0) = B a(t;) G=1,2,..)
where
10 ) 0 0 1 0 .
A= 2= B, = .. B.= =2,
(O ) x (xz) 1 (0 1) ; (O 1) for i=2

A straightforward verification yields that LIDE (11) is weakly uniformly expo-
nentially stable with respect to the space L, since the impulse at the moment ¢,
crumples the «inconvenient» solutions. LIDE (11) is not weakly stable with re-
spect to any of the spaces L, (k=1) since on the intervals [t + 0, +)
(k=1,2,...), the problem coincides with the classical one and the matrix A has
an eigenvalue greater than zero.

Remark 6. If in Example 3 we define the impulse matrices by the
equality

0 0

B. =
i (0 1

) for i=10j+1 and B;=(. ‘1)) for i#10j+1, j=0,1,2, ...

then LIDE (11) becomes uniformly exponentially stable.
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tial equations at fixed moments is made precise.






