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GIOVANNI CIMATTI (*)

Note on the theory

of temperature dependent resistors (**)

1 - Introduction

A thermistor is a particular electrical resistor whose resistivity o varies of
many order of magnitude with the temperature « [7]. The constitutive relation
o =go(u) can have in practice very different properties. A typical example is
given in Figure 1. The corresponding current/voltage characteristic ¢ = i(v) at
constant temperatures is shown in Figure 2 as obtained by direct measure-
ments. When the thermistor is in series with an ordinary resistor R and a fixed
external voltage V, the straight line Ri=V —v expressing Ohm’s law, inter-
sects, for certain values of the parameters, the curve ¢ = i(v) in three different
points and the three corresponding states of equilibrium can be found experi-
mentally. Goal of this paper is to check analytically, with examples, this possibi-
lity of multiple solutions and more generally to integrate the problem. The
equations are well-known and over one hundred years old (see e.g. [3] and [6]),
however for the sake of completeness they are briefly recalled below.

Let J be the current density and ¢ the electric potential. Assuming Ohm’s
law we have

(1.1) J=—-5Vg
where o is the temperature dependent electrical conductivity. Let ¢ be the total
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flow of energy (both thermal and electrical) and w the temperature, then
(1.2) g=—xVu+ol

where x is the (constant) thermal conduectivity. By the conservation of charge
and energy we have

1.3) V-J=0 V-g=0.
Inserting (1.1) and (1.2) in (1.3) we obtain

(1.4 V-(cVp)=0

(1.5) =V (V) = V-(pa Vo).
© It follows from (1.4) and (1.5)

(1.6) —V- (Vi) = o| V2
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where the term in the right hand side represents the Joule heating. The nonli-
near system (1.4) and (1.6) has been recently reconsidered. A. C. Fowler, I.
Frigaard and S. D. Howison consider in [4] the parabolic version of the pro-
blem. The steady-state case is studied in [2] using a transformation which per-
mits a considerable simplification, but is valid only for special boundary
conditions.

In this paper we consider the one-dimensional version of (1.4) and (1.5)
ie.

1.7 _ (ewe)' =0
(1.8) =t = (po(u) ¢')' .

We show that the complete integration of (1.7), (1.8) with various boundary
conditions, can be reduced to the search of the solutions of a traseendental equa-
tion under very general hypotheses on the conductivity law, which is allowed to
be discontinuous. Three types of boundary conditions are considered: convection
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for the temperature and fixed voltage in 2, fixed temperature and potential de-
pending on a external limiting resistor in 3, and Dirichlet conditions on both
temperature and potential in 4. However, the method of integration, which is
elementary in nature, applies to various other situations. For example it is pos-
sible to consider the boundary conditions of 2 for the temperature and those of 3
for the potential. Two examples of multiplicity of solutions are given in 2 and 3.
Moreover an analytic expression for the current/voltage characteristic is deri-
ved in 4. Although the numerical output of this formula has not been compared
with the experimental evidence, the qualitative features are remarkably simi-
lar. Various conditions of non-existence and uniqueness are given. The results
are complete in the case of Dirichlet boundary conditions. Qur functional setting
will be very simple. We denote by CS[—L, L] (CI(RY)) the class of functions
which are continuous in [—L, L], (R!) except for a finite number of points of di-
scontinuity of the first kind. In these points the functions take on the value of
the limit from the right. C$[—L, L] will be the set of functions which are conti-
nuous in [—L, L] and whose derivative belongs to C3[—L, L].

2 - Problem Pb;. Thermal convection

The boundary conditions studied in this section are

2.1 o—=L)=0 oll)y=V V>0
2.2) w' (=L)=0
@.3) w' (L) = K(ug — w(l))

where K is a positive constant and wuy the given external temperature. Let o()
be the electrical resistivity i.e. o(u) = 1/o(u). Since there are cases of practical
interest in which the graph of o(u) is very steep, we assume ¢(u) € C$(R)! and on
physical grounds

@.4) o) >0.

To keep into account the possible discontinuities of o(u), we give to problem
(1.4), (1.5), 2.1), (2.2) and (2.3) the following integral formulation.

To find o(u) € C¢[—L, L] satisfying (2.1) and
L

(2.5) [ ow)e'v' dx =0
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for all ve CE[—-L, L], v(~L)=v(L) =0, and w(x) € Ci[—L, L] such that

2.6) limL_ wu' (@=0 lim+ u' (@) = K(u(l) —ug)
L L
2.7 [ w de=— [ go(u)e' w' da
-L -L

for all we C{[-L, L], w(—L)=w(L) = 0.

By the lemma of Du-Boys-Reymond [1] from (2.5) and (2.7) it follows
immediately

2.8) s(u)¢' = C,

2.9 2 +oo(u)o’ = Csy.

By (2.1) and (2.8) we have C,> 0. Moreover, from (2.8) and (2.9), we get
(2.10) ' +oC) = Cy

hence u' € C°[—L, L] and (2.2) (2.3) make sense. From (2.2) and (2.10) we ob-
tain Cp =0. Moreover by the one dimensional maximum principle, we have
V>¢>0 in (-L, L); thus ' (x)<0 in (=L, L). It follows from (2.3)
w(x) Z u(L) > ug. For this reason we need only to assume o(u) € C2[ug, ).
Setting x =L in (2.10) we obtain

_ KoL)~ up)

2.11) Cy %

Put v=w in (2.5) with we C3[-L, L], w(—L) = w(L) =0. We get

L L
f a(u) @’dew = - f goo'(u) p'w'dﬂc.
~L -L

Substituting in (2.7) and recalling (2.8) we obtain

L L
(2.12) fxw'w de=C? [ s(w)wde.
L

Using now an old trick of the calculus of variations, we define

o(@) = Of s(u() dt.
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Substituting in (2.12) and making an integration by parts, now possible, we
infer

L
(2.13) feu'+CEg)w' de=0.
)

Thus we have, apart from a finite number of points,
(2.14) -t = CEo(u).

Define

u

Flu)= [ o(t)dt.

Ug

From (2.14) it follows
(2.15) san'? = 2C2 [F(u(—L)) — F(w)].

By (2.8) we get in [—L, L]

(2.16) u' = —\/g o(w) o' VFu(~L)) — F(u)

and by (2.11)

v L) — )

= VF@(—L)) — Fu) .

(2.17) U’ =

Put w(l) = « and u(—L) =3, 8> «. From (2.16) and (2.17) we arrive, by separa-
tion of variables, to the following system in the unknowns « and g

2
@.18) F(p)~F@) = 4
3 du a— Ug
(2.19) [ —2% —— =2KL\/2x :
= \F(B) - Fw) 4
Define
V2 2KL\/2

A=—2':; B=-——""‘;‘-‘— D=u£p(t)dt
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with D possibly equal to +. Discussing the system (2.18), (2.19) we arrive to
the following

Theorem 2.1. Problem Pb, has a solution only if

(2.20) A<D.

If (2.20) holds, the search of the solutions of Pb; is reduced to solving the
equation

@2.21) H(p) = Bug
in [8, «), where B=F"1(4) and

= RF-1 ! du
(2.22) H@B)=BF'FP-A- [ ——-

F@g -4 \/F(8) — F(w)

In particular if
(2.23) o) = 0o >0

then Pb; has at least one solution. Moreover, when in addition to (2.23), we ha-
ve o(t) € Clug, ») and

(2.24) o' >0

the solution of Pby is unique.

Proof. The necessity of condition (2.20) follows immediately from (2.18). If
(2.20) holds, we can solve (2.18) with respect to « when g = ﬁ Then substituting
in (2.19) we obtain (2.21). However, (2.20) is not sufficient to guarantee the exi-
stence of a solution for arbitrary uz as the choice o(t) = (1 + ¢2)! shows. When
condition (2.23) holds we have

HE<Bup  lim H@=+o

because in this case the integral in the right hand side of (2.22) remains boun-
ded. Therefore (2.21) has at least one solution for every uz . Finally, when (2.24)
holds we have H'(B) >0 and therefore uniqueness.
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We note that in the elementary calculations involved in the proof of Theorem
2.1 is useful to make the substitution

1 - VFp-Fw

in the integral entering into the definition of H(g). As an application of equation
(2.21) we treat the important case of the metallic conduction.

Example 2.1. By the Wiedemann-Franz law we have o(t) = at, a > 0. As-
sumption (2.4) is not satisfied, but the theory equally applies if we assume
ug >0, since u(x) =ug.

Thus in this case the singularity of s(f) in ¢ = 0 is irrelevant. Equation (2.21)
can be solved and we find

g= 14
\ax sin (2£L)

where £ is the unique solution in the interval (0, =/4L) of the equation

K %
cotg (QL&) = YTH where y = uET\/&;‘

Problem Pb, can then be integrated explicitely and the solution is given by

260 sin [&(x + L)]

-V
sin (2£L)
|4

m cos[&x+1)].

u(x) =

In general one cannot expect uniqueness for problem Pb, . This can be seen with
the following

Example 2.2. Assume p(f)=M if t<0 and o(f)=N if {>0 with
M > (3/2)N. Put for simplicity V2x=1, 2L =1, V=1 and K =1. Let us take
as relevant parameter uz € R!. The function H(B) can be written down explicite-
ly and is plotted in Figure 8. We find that there is only one solution if ug < 3/M
or ug >2/N and three solutions if 8/M < ugy <2/N.
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3 - Problem Pb,. The thermistor in a current limiting cireunit

The device is supposed in this section to be connected in series with a fixed
resistor R and a difference of potential V. We shall therefore deal with the follo-
wing boundary conditions
3.1 o(=L)=0 o(L)=v
(3.2) w—=L)y=wll)=%u

where % is a given constant and v, the voltage applied to the thermistor, is an
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unknown of the problem. By Ohm’s law we have
3.3) Ri+v=V

where i = o@)o’ (L). The one-dimensional maximum principle implies % = u.
Therefore we assume po(f) € C3[u, ) and

3.4 e®) >0 in [u, «).

An integral formulation can easily be given in order to consider the possible di-
seontinuities of ¢(f). Let w(0) =3 and define

t
(3.5) F(f) = J o) de.

Proceeding along lines similar to those of 2 we obtain the following system of
equations in the unknowns 8 and v

i P du 2 V-vL
F@O=2 o=t
& i VFE-Fw v E

Eliminating v we arrive to a single equation in g:

3.6) H@ = Vi

where
B

(3.7 H@:j—-£&—~+%%m@.
u \/F(B)—F(w

A simple discussion of equation (3.6) leads to the following

Theorem 3.1. If (8.4) holds, problem Pb, has at least one solution for
every V. In addition when o(t) € C'[w, ©), ¢’ is bounded and o' <0, the sol-
ution is unique.

Proof. We have H(u) = 0. Moreover if

w©

Jeydt=+e

the second term in the right hand side of equation (3.7) diverges to +. On the
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other hand when
Je®dt <+

it is the first term in the right hand side of (3.7) which tends to +. Hence the-
re is at least one solution of equation (8.6) for every V > 0 and therefore of Pb,.
Under the assumptions of the second part of the theorem we can compute
H'(B). We find H'(8)>0. This implies the uniqueness of the solution.

The case of the metallic conduction can be treated in a way similar to
Example 2.1. Therefore we give only the following example of non-uniqueness
which is directly related to the situation of multiple solutions described in the
introduction.

Example 3.1. Assume for simplicity %z = —1 and 4L = R. Moreover, to
mimic roughly the temperature/resistivity characteristic given in Figure 1 we
choose o(t) =m if —1<¢<0 and o(t) = M when u>0 with m <M. With a
straightforward caleulation we firid H (B) which is plotted in Figure 4. Hence we

-1

Fig. 4.
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conclude that problem Pb, has exactly one solution if 0V <V -or
V>\m+2/\/m and three solutions when V<V <+Vm +2/\m with

Vo= Viml(l+ 2= (5 - = PP,

We refer to the forthcoming paper [5] for a similar situation.

4 - Problem Pb;. Dirichlet boundary conditions

In this section we add to equations (1.3) and (1.4) the boundary condi-
tions

4.1 o(=L)=0 ol)=v
4.2) w(—L) =% =u(l)

where v and % are now both given constants. We assume again o(f) € C2[u, «)
and p¢(t) > 0. The possible discontinuities of the resistivity can be dealt with an
integral formulation of the problem as in 2. Integrating we arrive at

4.3) s(u)o’ = C;
(4.4) s’ = 2C2 [Fu(~L)) — F(w)]
where F@) -—-_ftp(E) de.

Let g =u(0). By separation of variables in (4.4) we arrive, taking into ac-
count (4.3), to the equations

2

=Y
4.5) Fp) =<

(4.6)

C,= \/Z 1 fp N
2 Li \[F()— Fu)
By simple inspection of (4.5) we obtain

Theorem 4.1. Let

! =_f°p(t) dt.
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If | = «, then problem Pb; has for every v =0 only one solution. When [ < o,
problem Pb; has no solution if 1<v®/8x and exactly one solution if
[>? / 8.

Given the physical meaning of the constant C;, we obtain the following cur-
rent/tension relation inserting in (4.6) the value of 8 given by (4.5)

F1 (02 /8)
1 du
- J

x —
2 L i ,1)2
\/é; —Fw)

We want now to show with an example that the shape of the empiric cur-
rent/voltage graph given in Figure 2 and discussed in the introduction can be
predicted by (4.7).

4.7) i(v) =

Example 4.1. To retain only the essential constants assume 8x=1,
L=1/4 and %= —1. Moreover let us take as in Example 3.1 p()m if
—1<t<0and () =M for 0 <t with 0 <m < M. After a direct calculation we
find

@/m)v when 0 <v<Vm

4.8) 1(v) =
@/myv—@Q/m-2/M\/v:-m if Vm<w.

Final remark. Using the result of the above example we can discuss
from a different point of view the three solutions situation of Example 3.1 corre-
sponding to the case of the thermistor in series with an external resistor B and
fixed applied voltage V. In fact the load straight line ¢ = (1/R)(V —v) has, for
suitable values of the parameters, three points of intersection with the curve
1 =1(v) given by (4.8). We note that solutions similar to those considered in this
paper are presented in [8].
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Abstract

The equations of the steady state thermistor problem in one space dimension are in-
tegrated explicity with various boundary conditions. We obtain various results of exi-
stence, nonexistence, uniqueness and non-uniqueness of solution.
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