K. BUCHNER, V. V. GOLDBERG and R. ROSCA (*)

Biconformal cosymplectic manifolds (**)

0 - Introduction

In the last twenty years many papers have been devoted to almost cosymplectic manifolds $M(\Omega, \eta, \xi, g)$. These are (2m+1)-dimensional manifolds M endowed with a pseudo-Riemannian metric g, a vector field ξ and a 2-form Ω . If η denotes the 1-form associated to ξ by the metric g (we write $\eta = b(\xi)$), then $\Omega^m \wedge \eta \neq 0$ holds.

An interesting subclass of the almost cosymplectic manifolds are the manifolds with a *conformal cosymplectic structure*: in terms of the cohomology operator d^{ω} [8], defined by

(0.1)
$$d^{\omega}\alpha = d\alpha + \omega \wedge \alpha \qquad d\omega = 0 \qquad \text{for any } \alpha \in \Lambda^{p}(M)$$

they are distinguished by the additional relation

$$d^w \eta = 0$$

for some 1-form w (see $[3]_1$, $[12]_1$, $[16]_1$ and $[16]_2$). The best known examples of conformal cosymplectic manifolds are the *Kenmotsu manifolds* (or *K-manifolds* [11]).

In the present paper a biconformal cosymplectic manifold (abbr. B.C.) is defined to be a conformal cosymplectic manifold satisfying

$$\mathrm{d}^w \eta = 0$$
 $\mathrm{d}^{2\lambda\eta} \Omega = 0$

^(*) Indirizzo degli AA.: K. Buchner, Institut für Geometrie TU München, Arcistr. 21, Postfach 202400, D-8000 München 2. V. V. Goldberg, Department of Mathematics, New Jersey Institute of Technology, Newark, N. J. 07102. R. Rosca, 59 Avenue Emile Zola, F-Paris 15.

^(**) MR classification: 53C15. – Ricevuto: 8-VII-1990.

where $\lambda \in C^{\infty}M$ is given by $w = d \log \lambda$. (Remember: $d(2\lambda \eta)$ must vanish because of (0.1)).

In 2 we deal with some properties of Lie algebra defined by the B.C. cosymplectic structure. Since the *horizontal distribution*

$$D_h := \{ Z \in \mathcal{X}M \colon \, \eta(Z) = 0 \}$$

is involutive, M is foliated by (2m)-dimensional symplectic hypersurfaces M_h normal to ξ . It is shown that $\log \lambda$ is a Hamiltonian function for the symplectic form $\Omega_h = \Omega|_{M_h}$.

In 3 we consider general quasi-Sasakian manifold $M(\Phi, \Omega, \eta, \xi, g)$ [12]₂ and prove that M is endowed with a B.C. cosymplectic structure if and only if the structure vector field ξ is contact quasi-concurrent [3]₂ with horizontal and closed associated vector field $W \in D_h$. If $V \in D_h$ is any horizontal vector field, one has the formula

$$\mathcal{L}_\xi b(V) = \rho b(V) + b[\xi,\ V] + g(V,\ W) \, \eta \qquad \text{with} \ \ \rho = \frac{\text{div } \xi}{m} \, .$$

It is proved that any manifold $M(\Phi, \Omega, \eta, \xi, g)$ is foliated by a totally geodesic 3-dimensional submanifold tangent to ξ , W and ΦW , and that g(W, W) is an isoparametric function [18]. It is also showed that compact manifolds $M(\Phi, \Omega, \eta, \xi, g)$ or space-forms $M(\Phi, \Omega, \eta, \xi, g)$ do not exist.

In 4 we outline some properties of the immersions $x: M_h \to M$, $y: M_I \to M$, where M_I is an invariant submanifold of M, and $z: M_A \to M$, where M_A is an anti-invariant submanifold of dimension m.

1 - Preliminaries

Let (M, g) be a Riemannian or pseudo-Riemannian C^{∞} -manifold and let ∇ be the covariant differential operator defined by the metric tensor g. We assume in the following that M is orientable and that the connection ∇ is symmetric.

Let $\Gamma(TM) = \mathcal{X}M$ and b: $TM \to T^*M$ be the set of sections of the tangent bundle TM and the *musical isomorphism* [15] defined by g, respectively.

Following [15], we denote by

$$A^{q}(M, TM) = \Gamma \operatorname{Hom}(\Lambda^{q} TM, TM)$$

the set of vector valued q-forms, $q < \dim M$, and write for the exterior covariant

derivative operator with respect to ∇

$$d^{\nabla}$$
: $A^{q}(M, TM) \rightarrow A^{q+1}(M, TM)$.

(Notice that in general $d^{\nabla^2} = d^{\nabla} \circ d^{\nabla} \neq 0$.)

If $p \in M$, then the vector valued 1-form $dp \in A^1(M, TM)$ stands for the soldering form of M. (dp is also called the «line element». Since ∇ is symmetric, one has $d^{\nabla}(dp) = 0$ [6].)

The cohomology operator do was defined in Introduction as

$$(1.1) d^{\omega} = d + e(\omega),$$

(cf. [8]) acting on ΛM , where $e(\omega)$ denotes the exterior product by the closed 1-form $\omega \in \Lambda^1 M$.

Clearly one has

$$(1.2) d^{\omega} \circ d^{\omega} = 0.$$

Any form $u \in \Lambda M$ such that

$$d^{\omega}u = 0$$

is said to d^{ω} -closed, and ω is called the cohomology form (abbr. c.f.).

An exterior concurrent vector field is defined ([16]₂, [14]) as a vector field $X \in \mathcal{X}M$ for which the relation

(1.4)
$$d^{\nabla}(\nabla X) = \nabla^2 X = \pi \wedge dp \in A^2(M, TM)$$

holds for some $\pi \in \Lambda^1 M$.

If X is a tangent vector field, then the 1-form π , which is called the *concurrence form*, is expressed by $\pi = f b(X)$, where $f \in C^{\infty}(M)$ is the *conformal scalar* associated with X.

A pair (α, β) , where α is a p-form and β is a (p-1)-form, defines a p-cocycle if and only if

$$(1.5) d\beta = 0 d^{\omega}\alpha = \Omega \wedge \beta$$

where Ω is d^{ω} -closed. In order that (α, β) is an exact p-cocycle, it is necessary and sufficient that there exists a (p-1)-cochain (ψ_2, ψ_1) (in the sense of the differential cohomology of Chevalley) such that

(1.6)
$$\alpha = -\mathrm{d}^{\omega}\psi_2 + \Omega \wedge \psi_1 \qquad \beta = \mathrm{d}\psi_1.$$

2 - Biconformal cosymplectic manifolds

Let $M(\Omega, \eta, \xi, g)$ be a (2m+1)-dimensional Riemannian C^{∞} -manifold endowed with an almost cosymplectic structure $1 \times \operatorname{Sp}(m; \mathbf{R})$ in the broad sense: Let $\Omega \in \Lambda^2 M$, $\eta \in \Lambda^1 M$ and $\xi = b^{-1} \eta \in \mathfrak{X} M$ be the structure 2-form, the structure 1-form and the structure vector field of $1 \times \operatorname{Sp}(m; \mathbf{R})$ respectively.

The (2m)-distribution $D_h := \{Z \in \mathcal{X}M: \eta(Z) = 0\}$ annihilated by η is called the horizontal distribution and any field $Z \in \mathcal{X}M$ on M may be written as

$$(2.1) Z = Z_h + \gamma(Z)\xi$$

where $Z_h \in D_h$ is the horizontal component of Z.

If for any globally exact basic form $w \in D_h^* = \{\alpha \in \Lambda^1 M : \alpha(\xi) = 0\}$, say

$$(2.2) w = d \log \lambda$$

the structure forms η and Ω satisfy

$$(2.3) d^w \eta = 0 d^{2\lambda \eta} \Omega = 0$$

we say that the pairing (η, Ω) defines a biconformal cosymplectic structure (abr. B.C.-structure). By (2.2) and (2.3) it follows that η (resp. Ω) is d^w -closed (resp. $d^{2\lambda\eta}$ -closed), and w and $2\lambda\eta$ will be called the cohomology forms associated with (η, Ω) . Clearly one has

$$d(\lambda n) = 0$$

and we agree to call $\lambda \in C^{\infty}M$ the *structure scalar* associated with B.C.-structure. It is also easily seen from (2.3) that D_h defines a (2*m*)-foliation and that the restriction $\Omega_h = \Omega|_{D_h}$ is a *symplectic form*. Referring to (1.6), we see that for some 1-form φ , the pairing (α, β) , such that

$$\alpha = -\mathrm{d}^{2\lambda\eta}\,\varphi + \lambda\Omega \qquad \beta = \mathrm{d}\lambda$$

defines an exact cocycle.

Let now $Z_h \in D_H$ be any horizontal vector field. By (2.3) one gets

$$(2.4) \qquad (\mathcal{L}_{Z_h} + w(Z_h))_{\gamma} = 0$$

and

(2.5)
$$\mathrm{d}^{2\lambda\eta}(i_{Z_h}\Omega) = \pounds_{Z_h}\Omega.$$

Since by (1.2) one derives from (2.5)

$$d^{2\lambda\eta}(\mathcal{L}_{Z_k}\Omega)=0$$

one may say that any $Z_h \in D_h$ is an *infinitesimal conformal transformation* of η and that the Lie derivative $\mathcal{L}_{Z_h}\Omega$ is $\mathrm{d}^{2\lambda\eta}$ -closed, as is Ω .

Since $\eta(\xi) = 1$, it is also easily seen that one has

$$\mathcal{L}_{\pi}\Omega = -2\lambda\Omega$$

which proves that the structure vector ξ is an infinitesimal conformal transformal of Ω .

Furthermore, let $Z \in \mathcal{X}M$ be any vector field of M, and let $\mu: TM \to T^*M$; $Z \to i_Z \Omega$ be the bundle isomorphism defined by Ω . If Z is such that it satisfies

$$d^{2\lambda\eta}(\mu Z) = 0$$

we agree to say that Z is a $d_{\Omega}^{2\lambda\eta}$ -closed vector field.

For any vector field Z satisfying (2.7), one finds after a short calculation and by reference to (2.3) that

$$\mathcal{L}_{Z}\Omega = -2\lambda \eta(Z)\Omega$$

i.e. Z is an infinitesimal conformal automorphism of Ω . In a similar manner, any vector field Z such that

(2.9)
$$d^w \eta(Z) = d\eta(Z) + \eta(Z) w = 0$$

will be defined as contact d^w -closed.

From the first equation (2.3) one quickly gets

$$\mathcal{L}_Z \eta = -w(Z) \eta$$

i.e. Z is an infinitesimal conformal transformation of the structure 1-form η . Next taking the Lie derivative of Ω with respect to Z, one has by (2.3)

(2.10)
$$\mathcal{L}_{Z}\Omega = d(\mu Z) - 2\lambda \eta(Z)\Omega + 2\lambda \eta \wedge (\mu Z)$$

and taking into account of (2.9), one derives by exterior differentiation that

(2.11)
$$\mathrm{d}^{2\lambda\eta}(\mathcal{L}_Z\Omega) = 0.$$

Hence the Lie derivative of $\mathcal{L}_Z \Omega$ is $d^{2\lambda \eta}$ -closed, as is Ω .

Let now L be the (1.1)-operator defined by

L:
$$\alpha \to \alpha \land \Omega$$
 $\alpha \in \Lambda^1 M$

(see also [8]) and set

$$L^{q} \alpha = \alpha_{q} = \alpha \wedge \Omega^{q} \in \Lambda^{2q+1} M.$$

If $Z_h \in D_h$ is any horizontal vector field of M, one derives from above after some calculation that

$$\mathrm{d}^{2\lambda \eta}(\mathfrak{L}_{Z_h}\alpha_q) = 0$$
.

Therefore one may say that the Lie derivative \mathcal{L}_{Z_h} of any (2q+1)-form $L^q \alpha = \alpha_q$ is $\mathrm{d}^{2\lambda\eta}$ -closed. Denote now by M_h the *leaf* of the horizontal foliation D_h (that is the hypersurface of M normal to the structure vector field ξ). Clearly M_h is a symplectic manifold having $\Omega_h = \Omega|_{M_h}$ as its structure 2-form. Let

$$W = \mu^{-1} w$$

be the dual vector field of w with respect to Ω_h . (In order to simplify, we denote the elements induced by x: $M_h \to M$ by the same letters.) Since by (2.2) one has

$$i_W \Omega_h = \mathrm{d} \log \lambda$$

it follows that on M_h , W is a symplectic vector field [15] and $\log \lambda$ is a Hamiltonian function on M_h .

Theorem 2.1. Let $M(\Omega, \eta, \lambda, \xi, g)$ be a (2m+1)-dimensional biconformal cosymplectic C^{∞} -manifold with structure tensor fields $(\Omega, \eta, \lambda, \xi)$ and let $D_h = \{Z \in XM: \eta(Z) = 0\}$ be the (2m)-foliation annihilated by the structure 1-form η .

One has the following properties:

- (i) The structure vector field ξ and any $d_{\Omega}^{2\lambda r}$ -closed vector field $Z \in \mathcal{X}M$ are infinitesimal conformal transformations of Ω .
- (ii) If $Z_h \in D_h$ and Z is any horizontal vector and any contact d^w -closed $(w = d \log \lambda)$ vector field respectively, then the Lie derivatives $\mathcal{L}_{Z_h}\Omega$ and $\mathcal{L}_Z\Omega$ are $d^{2\lambda_{7}}$ -closed, as is the structure 2-form Ω .
- (iii) If $L^q: \lambda^1 M \to \lambda^{2q+1} M$; $L^q \alpha = \alpha \wedge \Omega^q$, then the Lie derivatives of all the (2q+1)-forms $L^q \alpha$ with respect to any horizontal vector field Z_h are $d^{2\lambda_\eta}$ -closed,

as is Ω . Finally, if $\Omega_h = \Omega|_{D_h}$ (restriction of Ω on D_h) is the symplectic form, then $\log \lambda$ is a Hamiltonian function of Ω_h .

3 - B.C. quasi-Sasakian manifolds

Let $M(\Phi, \Omega, \eta, \xi, g)$ be a (2m+1)-dimensional quasi-Sasakian C^{∞} -manifold. As is known, the structure tensor fields $(\Phi, \Omega, \eta, \xi)$ satisfy

(3.1)
$$\Phi^{2} = -\operatorname{Id} + \eta \otimes \xi \qquad \Phi \xi = 0 \qquad \eta(\xi) = 1$$

$$\eta(Z) = g(Z, \xi) \qquad g(\Phi Z, \Phi Z') = g(Z, Z') - \eta(Z) \eta(Z')$$

$$\Omega(Z, Z') = g(\Phi Z, Z') \Rightarrow i_{Z} \Omega = b(\Phi Z)$$

where Z, $Z' \in \mathcal{X}M$ are any vector fields on M. By imposing different geometric properties on the structure vector field ξ , one obtains different types of quasi-Sasakian manifolds.

Referring to the concept of a contact quasi-concurrent vector field [3]₂ we shall assume in this paper that ξ is such a geometrical vector field. In this case, following [3]₂, the covariant derivative $\nabla \xi$ of ξ satisfies

(3.2)
$$\nabla \xi = -\lambda \, \mathrm{d}p + \eta \otimes W + \lambda \eta \otimes \xi$$

where $\lambda \in C^{\infty}M$ is a conformal scalar and $W \in D_h$ is a horizontal vector field which is called the *associated vector field* of ξ .

Consider on M a local field of Φ -orthonormal frames $[9]_1$, denoted by

$$\mathcal{O}_{\Phi} = \text{vect} \{ e_a, e_{a^*} = \Phi e_a, e_0 = \xi | a = 1, ..., m; a^* = a + m \}$$

and let

$$\mathcal{O}_{\Phi}^* = \operatorname{covect} \left\{ \omega^A \left| A = 1, \ldots, 2m \right. \right\}$$

be the corresponding coframe. Cartan's structure equations written in indexfree form, are then

(3.3)
$$\nabla e = \theta \otimes e \in A^1(M, TM)$$

$$(3.4) d\omega = -\theta \wedge \omega$$

$$(3.5) d\theta = -\theta \wedge \theta + \Theta$$

where $\theta \in \Lambda^1 M$ are the local connection forms in the tangent bundle TM and $\theta \in \Lambda^2 M$ are the curvature 2-forms on M. With respect to \mathcal{O}_{Φ}^* , the soldering form

dp and the structure 2-form Ω are expressed by

(3.6)
$$dp = \omega^a \otimes e_a + \omega^{a*} \otimes e_{a*} + \eta \otimes \xi$$

(3.7)
$$\Omega = \sum_{a} \omega^{a} \wedge \omega^{a^{*}}.$$

Setting

$$(3.8) W = W^{\alpha} e_{\alpha} W^{\alpha} \in C^{\infty} M \alpha \in \{a, a^*\}$$

one derives from (3.2) with the help of (3.3), (3.6) and (3.8) that

(3.9)
$$\theta = W^{\alpha} \gamma - \lambda \omega^{\alpha}.$$

Putting

(3.10)
$$w = b(W) = \sum_{\alpha} W^{\alpha} \omega^{\alpha} \in \Lambda^{1} M$$

we shall assume in addition that ∇W is self-adjoint [15], that is

Now by the structure equations (3.4) and by exterior differentiation of the structure 1-form $\eta(\eta = \omega^0)$, one gets

$$(3.12) d^w \eta = 0$$

that is η is d^w -closed. Further, taking the exterior derivatives of (3.7), one gets from (3.1), (3.4) and (3.9) that

$$(3.13) d^{2\lambda\eta}\Omega = 0$$

which shows that Ω is $d^{2\lambda \eta}$ -closed. Hence, going back to the equation (2.3), we can obtain from (3.12) and (3.13) that the quasi-Sasakian manifold $M(\Phi, \Omega, \eta, \xi, g)$ under consideration is endowed with a B.C.-cosymplectic structure. Omitting reference to the generating point $p \in M$, one has by definition, that for any $Z \in \mathcal{X}M$

div
$$Z = \operatorname{tr}(\nabla Z) = \sum_{A} \omega^{A}(\nabla_{e_{A}} Z)$$
.

Thus by (3.2) one quickly gets

Hence for any quasi-Sasakian manifold $M(\Phi, \Omega, \eta, \xi, g)$ with a structure vector ξ

satisfying (3.2), the structure scalar λ represents, up to the factor -2m, the divergence of ξ .

We notice that one has

(3.15)
$$\nabla_{\Phi Z} \xi = -\lambda \Phi Z \Rightarrow g(\nabla_{\Phi Z} \xi, Z) = 0$$

and for any horizontal vector fields Z_h , $Z'_h \in D_h$ the equation

(3.16)
$$g(\nabla_{Z_h} Z'_h, Z_h) + g(\nabla_{Z_h} Z'_h, Z'_h) = -2\lambda g(Z_h, Z'_h)$$

holds. Following a known definition, it follows from (3.16) and (3.14) that the structure vector field ξ is a horizontal conformal vector field (or a D_h -conformal vector field).

Let now $v \in \Lambda^1 M$ be any *semi-basic* 1-form (i.e. $v(\xi) = 0$), define $V := b^{-1}(v)$ and denote by σ_h the volume element of D_h . Making use of (3.3) and (3.4), one finds by (3.2), (3.8) and (3.9) that

(3.17)
$$\mathcal{L}_{\xi}v = \rho v + b\left[\xi, V\right] + g(V, W)\eta$$

where [,] denotes the Lie bracket, $b[\xi, V]$ is the dual form of the vector field $[\xi, V]$ and

$$\rho = \frac{\operatorname{div}\,\xi}{m} \,.$$

Further if *: $\Lambda^q T^*M \to \Lambda^{2m+1-q} T^*M$ denotes the *star operator*, one finds from (3.17) by a straightforward calculation that

(3.19)
$$\mathcal{L}_{\xi} * v = * \mathcal{L}_{\xi} v + \frac{2m-1}{2} \rho * v + g(V, W) \sigma_{h}.$$

It should be noticed that the above formulae are «mutatis mutandis» similar to those of T. Branson [2] for general conformal vector fields.

By (3.11), (3.12) and (3.13) one readily finds

$$\mathcal{L}_{\varepsilon}\Omega = 2\lambda\Omega$$
 $d\left(\mathcal{L}_{\varepsilon}\eta\right) = 0$

which shows that ξ defines an infinitesimal conformal transformation of Ω and that η is a relative integral invariant of ξ [1]. Hence, by reference to [5], we agree to say that ξ defines an almost biconformal vector fields on $M(\Phi, \Omega, \eta, \xi, g)$.

Let us now go back to the equation (3.2) and let $Z \in \mathcal{X}M$ be any vector field on

M. Then the structure equations (3.1) are completed with the following structure equation

$$(3.20) \qquad (\nabla \Phi) Z = \nabla (\Phi Z) - \Phi \nabla Z$$

$$= \lambda \eta(Z) \Phi \, \mathrm{d}p - \eta(Z) \, \eta \otimes \Phi W + (\lambda b \, (\Phi Z) - g(W, \Phi Z) \, \eta) \otimes \xi$$

which holds for any B.C. quasi-Sasakian manifold. It should be noticed, that by setting $Z = \xi$ in (3.20), one obtains (3.2) again.

Consider now the contact Φ -Lie differential operator

$$\mathcal{O}_{\Phi} \colon Z \to (\mathcal{L}_{\varepsilon} \Phi) Z$$
.

As is known (see for example [7]), one has

$$(\mathfrak{L}_{\xi}\Phi)Z = [\xi, \Phi Z] - \Phi[\xi, Z].$$

Let us go back to the case under discussion and set Z = W in (3.21). First of all, since ∇W is self-adjoint, one finds by (3.2) that

$$(3.22) \nabla_{\varepsilon} W = \xi \lambda W - g(W, W) \xi.$$

Next, by making use of equation (3.20) and (3.1), one gets

$$\nabla \Phi W = \Phi \nabla W + \lambda b \left(\Phi W \right) \otimes \xi$$

and this implies

$$\nabla_{\mathfrak{x}} \Phi W = \Phi \nabla_{\mathfrak{x}} W.$$

But by (3.22) one has

Finally, by means of (3.15), one gets

$$(\mathcal{L}_{\varepsilon}\Phi)W=0.$$

Hence one may say that the associated vector field W of ξ is $contact \Phi$ -invariant.

It also should be noticed that (3.2) and (3.23) imply

$$\mathfrak{L}\Phi W = 2\lambda \Phi W.$$

Hence, following a known definition [5], we may say that ΦW admits an infinitesimal transformation of ξ .

Denote now by $D = \{\xi, \nabla V, \Phi W\}$ the 3-distribution defined by $\xi, \nabla V$, and ΦW . Since by (3.10) and (3.11) one may write

$$(3.27) \nabla W = \lambda_{\eta} \otimes W + (\lambda w - g(W, W)_{\eta}) \otimes \xi w = b^{-1}(W)$$

then if X' and X'' are any vector fields of D, it follows from (3.2), (3.23) and (3.27), that one has

$$\nabla_{X''}X'\in D$$
.

According to a well-known proposition (see for example [13]), this proves that D defines an *auto-parallel* (or *totally geodesic*) foliation. Therefore, we may say that any B.C. quasi-Sasakian manifold is foliated by totally geodesic 3-dimensional submanifolds tangent to ξ , W and ΦW .

Next by (3.27) one quickly gets at any point $p \in M$

$$(3.28) tr(\nabla W) = \text{div } W = -g(W, W)$$

(3.29)
$$\frac{1}{2} dg(W, W) = \lambda g(W, W) \eta.$$

Recall now the general formula

$$\Delta v = -\operatorname{div}(\operatorname{grad} v) \qquad v \in C^{\infty} M.$$

Then, by (2.2), (3.28) and (3.29), one derives

(3.30)
$$\Delta g(W, W) = -2(2m-1)\lambda^2 g(W, W)$$

which shows that g(W, W) is an eigenfunction of Δ and has $-2(2m-1)\lambda^2$ as the associated eigenvalue. Since this eigenvalue is negative, we conclude by reference to a known property (see for example [17]) that compact B.C. quasi-Sasakian manifold do not exist. Further since by (3.29) one has

(3.31)
$$\operatorname{grad} g(W, W) = 2\lambda g(W, W) \xi \Rightarrow \| \operatorname{grad} g(W, W) \|^2 = 4\lambda^2 g(W, W)^2$$

it follows by reference to a known definiton that g(W, W) is an *isoparametric* function (see for example [18] or [9]₂).

On the other hand, by (2.2), (2.3), (3.2) and (3.27), taking the second covariant differential of ξ and W, one finds

(3.32)
$$\nabla^2 \xi = \lambda(\lambda \eta - w) \wedge dp + (\eta \wedge w) \otimes (W \cdot \lambda \xi)$$

$$(3.33) \qquad \nabla^2 W = \lambda (\lambda w - g(W, W) \eta) \wedge \mathrm{d}p + (\eta \wedge w) \otimes (\lambda W \cdot g(W, W) \xi).$$

Consider now the vector valued 1-form

$$(3.34) F = \xi \wedge W = w \otimes \xi - \eta \otimes W \in A^1(M, TM).$$

Operating on F by d^{∇^2} and taking into account (3.32) and (3.33), one finds

$$\mathrm{d}^{\nabla^2} F = \nabla^2 \xi \wedge w - \nabla^2 W \wedge \eta = 2\lambda^2 (w \wedge \eta) \wedge \mathrm{d} p.$$

Hence by reference to [14] one may say that F is a 2-exterior concurrent vector valued 1-form, having $2\lambda^2 w \wedge \eta$ as a concurrence 2-form.

Since a problem of current interest is the curvature problem, we shall make now the following consideration. Making use of equations (3.3) and (3.20), one finds the relations

$$\theta_h^a = \theta_{h^*}^{a^*} \qquad \theta_{h^*}^a = \theta_{a^*}^b$$

which are characteristic for quasi-Sasakian manifolds. Now with the help of the structure equations (3.5) one derives from (3.26)

$$(3.36) \qquad \frac{\Theta_b^a + \lambda^2 \omega^a \wedge \omega^b + \lambda (i_W \omega^a \wedge \omega^b) \wedge \eta = \Theta_{b^*}^{a^*} + \lambda^2 \omega^{a^*} \wedge \omega^{b^*} + \lambda (i_W \omega^{a^*} \wedge \omega^{b^*}) \wedge \eta}{\Theta_{b^*}^a + \lambda^2 \omega^a \wedge \omega^{b^*} + \lambda (i_W \omega^a \wedge \omega^{b^*}) \wedge \eta = \Theta_{a^*}^b + \lambda^2 \omega^b \wedge \omega^{a^*} + \lambda (i_W \omega^b \wedge \omega^*) \wedge \eta}.$$

Since the characteristic equation for space-forms M(K) are

$$\Theta_R^A = K\omega^A \wedge \omega^B$$

it follows from (3.27) that non-trivial quasi-Sasakian manifolds of constant curvature do not exist.

Let now R be the curvature tensor field on $M(\Phi, \Omega, \eta, \xi, g)$. Then $(R(Z, Z') \in \Gamma \text{ End } \Lambda M)$. With the help of (3.20) and (3.27) one finds afther some calculations

$$(3.37) \qquad R(Z, Z')X + \Phi R(Z, Z')\Phi X$$

$$= (\eta(X)R(Z, Z') + g(X, R(Z, Z')\xi)\xi + \lambda^2(\Phi Z' \wedge \Phi Z)\Phi X + \lambda^2(Z' \wedge Z)X$$

$$+ \lambda g(X, \Phi W)(\eta(Z')\Phi Z - \eta(Z)\Phi Z')\lambda(g(X, W) - \lambda \eta(X))(Z'Z)\xi + (-\eta(Z)g(X, Z')$$

$$+ \eta(Z')g(X, Z)(\lambda^2\xi + \lambda W) + \lambda(-\eta(Z)g(\Phi X, Z') + \eta(Z')g(\Phi X, Z))\Phi W.$$

The following theorem combines all results obtained in this section.

Theorem 3.1. Let $M(\Phi, \Omega, \eta, \xi, g)$ be a (2m+1)-dimensional quasi-Sasakian manifold and let $D_h = \{Z \in \mathcal{X}M; \eta(Z) = 0\}$ be the horizontal (2m)-distribution annihilated by the structure 1-form η . Then the necessary and sufficient condition in order that M be endowed with a B.C.-structure, is the structure vector field ξ be contact quasi-concurrent with horizontal and closed associated vector field $W \in D_h$. Any such manifold $M(\Phi, \Omega, \eta, \xi, g)$ is foliated by a totally geodesic 3-dimensional submanifold tangent to ξ , W, and ΦW . One has also the following properties:

- (i) ξ is a D_h -conformal vector field and div $\xi = -2m\lambda$, where $\lambda(d \log \lambda = -b^{-1}(W))$ is the structure scalar of the B.C.-structure.
- (ii) g(W, W) is an eigenfunction of Δ and it is an isoparametric function [18].
- (iii) If v is any semi-basic 1-form and $V = b^{-1}v$ is its dual vector field, one has the following formulae

$$\mathcal{L}_{\xi}v = \wp v + \flat\left[\xi,\ V\right] + g(V,\ W)\, \eta \qquad \qquad \mathcal{L}_{\xi}*v = *\,\mathcal{L}_{\xi}v + \frac{2m-1}{2}\,\,\wp*v + g(V,\ W)\,\sigma_h$$

where $\varphi = \frac{\operatorname{div} \xi}{m}$ and σ_h is the volume element of D_h .

(iv) W is a contact Φ -invariant vector field, and B.C. quasi-Sasakian manifolds of constant curvature do not exist.

4 - Submanifolds of B.C. quasi-Sasakian manifolds

We shall discuss in this section various striking properties of some submanifolds of the manifold $M(\Phi, \Omega, \eta, \xi, g)$ under discussion.

First of all consider the immersion x: $M_h \to M$, where M_h is the hypersurface normal to the structure vector field ξ (see 2). Because of (3.2), the second fundamental quadratic form associated with x is

(4.1)
$$II = -\langle dp \nabla \xi \rangle = \lambda g$$

(we denote elements induced by x by the same letters), and the above equation proves that M_h is an *umbilical* hypersurface of M. Since on M_h one has

$$\nabla \xi = -\lambda \,\mathrm{d} p$$

it follows at once from (2.2) that

(4.2)
$$d^{\nabla}(\nabla \xi) = \nabla^2 \xi = -\lambda w \wedge dp.$$

So, referring to (1.4), one may say that ξ is a normal exterior recurrent vector field.

Let then θ_0^z be the normal curvature 2-forms associated with x. One derives at once from (4.2) that

$$(4.3) \Theta_0^{\alpha} = -\lambda w \wedge \omega^{\alpha}$$

which shows that all forms Θ_0^z are conformal to the induced value of the cohomology form w.

Further by (3.36) it is easily seen that if M_h is a space-form of curvature K, then necessarily $K + \lambda^2 = 0$ that is M_h is an extrinsic hypersphere.

Moreover, if $\langle l \rangle$ denoted the length of the second fundamental quadratic form of M_h , then on $M_h(-\lambda^2)$, $\langle l \rangle$ is constant, and since the mean curvature vector of $M_h(-\lambda^2)$ (i.e. ξ) is nowhere zero, it follows that the product submanifold $M_h(-\lambda^2) \times M_h(-\lambda^2)$ is an \mathcal{U} -submanifold (see [4]) in $M \times M$. It should be noticed that by virtue of (4.2), one has on $M_h(-\lambda^2)$

$$\nabla^2 \xi = 0$$

and this shows that the normal connection ∇^{\perp} associated with x: $M_h(-\lambda^2) \to M(\Phi, \Omega, \eta, \xi, g)$ is flat. Let now $X \in \mathcal{X}M_h$ be any exterior concurrent vector field on M_h . Then it follows from (1.4) that

$$(4.4) \nabla^2 X = f b(X) \wedge dp$$

holds for some $C^{\infty}M$.

On the other hand, on M_h , the formula (3.37) moves to

$$(4.5) R(Z, Z')X + \Phi R(Z, Z')\Phi X$$

$$= \lambda^2(b(\Phi X) \wedge \Phi dp)(Z, Z') + \lambda^2(b(X) \wedge dp(Z, Z').$$

Then if X satisfies (4.4), one derives from (4.5) that $f = \lambda^2$, and in this case one also has

$$\nabla^2 \Phi X = \lambda^2 \, \mathsf{b} \, (\Phi X) \wedge \mathrm{d} p$$

that is the property of exterior concurrency for X is invariant when applying Φ to X.

Let us now M_I be an *invariant submanifold* of $M(\Phi, \Omega, \eta, \xi, g)$, that is ξ is tangent to M_I for any tangent vector field Z to M_I . Assume that M_I is of codimension 2 and is defined by

(4.6)
$$\omega^{r} = 0 \qquad \omega^{r^*} = 0$$

$$r = m + 1 - l \qquad r^* = r + m$$

Hence the soldering form dp_I of M_I is

(4.7)
$$\mathrm{d}p_I = \omega^i \otimes e_i + \omega^{i^*} \otimes e_{i^*} + \eta \otimes \xi$$

$$i = 1, \ldots, m - l \qquad i^* = i + m.$$

(We denote the other elements induced by $y: M_I \to M$ by the same letters.) Consequently the mean curvature vector valued 2(m-l)-form $\mathcal{H} \in A^{2(m-l)}(M_I, TM_I)$ is

$$(4.8) \qquad \mathcal{H} = \Sigma (-1)^{i-1} \omega^{1} \wedge \ldots \wedge \hat{\omega}^{i} \wedge \ldots \wedge \omega^{m-l} \wedge \omega^{1*} \wedge \ldots \omega^{(m-l)*} \wedge \eta \otimes e_{I}$$

$$+ \Sigma (-1)^{i*-1} \omega^{1} \wedge \ldots \wedge \omega^{m-l} \wedge \omega^{1*} \wedge \ldots \wedge \hat{\omega}^{i*} \wedge \ldots \wedge \omega^{(m-l)*} \wedge \eta \otimes e_{I*}$$

$$+ \omega^{1} \wedge \ldots \wedge \omega^{m-l} \wedge \omega^{1*} \wedge \ldots \wedge \omega^{(m-l)*} \otimes \varepsilon.$$

Applying the operator d^{∇} to \mathcal{H} , one has

$$(4.9) d^{\nabla} \mathcal{H} = (2(m-l)+1) \sigma_I \otimes H$$

where σ_I and H are the volume element of M_I and the mean curvature vector field associated with $y\colon M_I\to M$, respectively. With the help of (3.35) one gets $\mathrm{d}^\nabla\mathcal{H}=0\Rightarrow H=0$, which expresses that any M_I is minimal in $M(\Phi,\ \Omega,\ \eta,\ \xi,\ g)$. (See [11] for K-manifolds and [19]₂ for Sasakian manifolds.)

Finally consider the immersion $z\colon M_A\to M$, where M_A is an *anti-invariant* submanifold of dimension m of M [4]. Then by definition M_A is normal to ξ and if Z is any tangent vector field to M_A , then ΦZ is a normal vector field to M_A . If we assume that M_A is defined by

$$\omega^{a^*} = 0$$
 $\eta = 0$

then the equations (3.36) become

$$(4.11) \hspace{1cm} \theta^a_b + \lambda^2 \, \omega^a \wedge \omega^b = \theta^{a^*}_{b^*} \hspace{1cm} \theta^a_{b^*} = \theta^b_{a^*} \, .$$

From above we derive that if M_A is of constant curvature K and the normal connection ∇^2 is flat, then necessarily $K = -\lambda^2$ and M_A is of hyperbolic type.

Theorem 4.1. Let $M(\Phi, \Omega, \gamma, \xi, g)$ be any B.C. quasi-Sasakian manifold. We consider the following immersions: $x: M_h \to M$, $y: M_I \to M$, and $z: M_A \to M$ where M_h , M_I and M_A are the symplectic hypersurface normal to ξ , an invariant submanifold and an anti-invariant submanifold of dimension m, respectively.

One has the following properties:

- (i) M_h is an umbilical hypersurface, and if M_h is a space-form, it is necessarily of hyperbolic type, $M(-\lambda^2)$. In this case $M(-\lambda^2)$, is an extrinsic hypersphere and the product $M(-\lambda^2) \times M(-\lambda^2)$ is an \mathbb{U} -submanifold of $M \times M$. Further the conformal associated scalar with any exterior concurrent vector field X on M_h is λ^2 , and the property of exterior concurrency for X is invariant when applying Φ to X.
 - (ii) Any invariant submanifold M_I of M is minimal.
- (iii) Any anti-invariant submanifold M_A is of constant curvature and a flat normal connection is of hyperbolic type $M(-\lambda^2)$.

References

- [1] R. ABRAHAM and J. E. MARSDEN, Foundations of Mechanics, W. A. Benjamin, New York, 1967. Revised 2nd ed. Benjamin/Cummings, Reading, Mass., 1978, xii+806.
- [2] T. Branson, Conformally covariant equations on differential forms, Comm. Partial Differential Equation 7 (4) (1982), 393-431.
- [3] K. BUCHNER and R.ROSCA: [•]₁ Variétés para-cokähleriennes à champ concirculaire horinzontal, C.R. Acad. Sci. Paris Math. Sér. A-B, 285 (1977), A723-A726; [•]₂ Sasakian manifolds having the contact quasi-concurrent property, Rend. Circ. Mat. Palermo (2) 32 (1983), 388-397.
- [4] B. Y. CHEN, Geometry of submanifolds, M. Dekker, Inc., New York, 1973, vii+298.
- [5] Y. Choquet-Bruhat, Géométrie Différentielle et systèmes extérieurs, Monographies universitaires de Math. 28, Dunod, Paris 1968, xvii+238.
- [6] J. DIEUDONNÉ, *Treatise on Analysis*, Vol. 4. Academic Press, New York-London 1974, xv+444.
- [7] H. Endo, Invariant submanifolds in a contact Riemannian manifold, Tensor (N.S.) 42 (1983), 86-89.
- [8] S. I. GOLDBERG, Curvature and homology, Academic Press, New York-London, 1962 (1970 printing), xvii+315.
- [9] V. V. GOLDBERG and R. ROSCA: [•] Biconformal vector fields on manifolds endo-

- wed with a certain differential conformal structure, Houston J. Math. 14 (1988), 81-95; [•]₂ Foliate conformal Kählerian manifolds, Preprint, 1989.
- [10] F. GUEDIRA and A. LICHNEROWICZ, Géométrie des algèbres de Lie locales de Kirilov, J. Math. Pures Appl. 63 (1984). 407-484.
- [11] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J. 24 (1972), 93-103.
- [12] Z. Olszak: [•]₁ On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), 239-250; [•]₂ Curvatura properties of quasi-Sasakian manifolds, Tensor (N.S.) 38 (1982), 19-27.
- [13] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Wiley-Interscience, New York-London, 1963, xi+329.
- [14] M. Petrovich, R. Rosca and L. Verstraelen, On exterior concurrent vector fields on Riemannian manifolds (I). Some general results. Soochow J. Math. 15 (1989), 179-187.
- [15] W. A. Poor, Differential geometric structures, McGraw-Hill Book Co., New York, 1981, xiii+338.
- [16] R. Rosca: [•]₁ Conformal cosymplectic manifolds endowed with a pseudo-Sasakian structure, Libertas Math. (Univ. of Arlington, Texas) 4 (1984), 81-84; [•]₂
 Exterior concurrent vector fields on a conformal cosymplectic manifold endowed with a Sasakian structure, Libertas Math. (Univ. of Arlington, Texas) 6 (1986), 167-174.
- [17] W. Warner, Foundations of differentiable manifolds and Lie groups, Springer-Verlag, New York, 1983, ix+272.
- [18] A. West, Isoparametric sections, in Geometry and Topology of submanifolds, Proceedings of the meeting in Luming, World Scientific, 1987, 222-230.
- [19] K. Yano and M. Kon: [•]₁ Anti-Invariant Submanifolds, Marcel Dekker, Inc., New York, 1976, vii+183; [•]₂ C.R-submanifolds of Kählerian and Sasakian manifolds, Progress in Math. 30, Birkhäuser Verlag, Boston, 1983, x+208.

Abstract

Let M be Riemannian (2m+1)-dimensional C^* -manifold endowed with a structure 2-form Ω , a structure 1-form η and a structure vector field ξ dual to η . As a generalization of conformal cosymplectic manifolds, $M(\Omega, \eta, \xi, g)$ is defined in the present paper as a «biconformal cosymplectic manifold» if both structure forms Ω and η are «cohomologically closed» (in the sense of F. Guedira and A. Lichnerowitz). With such a structure denoted by B.C. Sp(2m+1, R) is associated a closed 1-form w and its dual vector W. Different properties of the d^* -cohomology and the Lie algebra on M involving η , u, Ω , W and ξ are discussed. If M_h is the hypersurface normal to ξ , the following salient properties are established: (a) If M is a conformal cosymplectic manifold, then M_h is a conformal symplectic manifold.

As an application, we get the necessary and sufficient condition for a (2m+1)-dimensional quasi-Sasakian manifold $M(\Phi, \Omega, \eta, \xi, g)$ to be endowed with a B.C.-structure. Some striking properties of invariant and anti-invariant submanifolds of a B.C.-quasi-Sasakian manifold are discussed.
