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Biconformal cosymplectic manifolds (**)

0 - Introduction

In the last twenty years many papers have been devoted to almost cosym-
plectic manifolds M(Q, 4, £, g¢). These are (2m + 1)-dimensional manifolds M en-
dowed with a pseudo-Riemannian metric g, a vector field & and a 2-form Q. If 5
denotes the 1-form associated to £ by the metric g (we write n = b(¥)), then
Q™ A+n+# 0 holds.

An interesting subclass of the almost cosymplectic manifolds are the manifol-
ds with a conformal cosymplectic structure: in terms of the cohomology operator
d” [8], defined by

0.1 d?a=da+ oA dw=0 for any « e A? (M)
they are distinguished by the additional relation
d¥p =0

for some 1-form w (see [3];, [12];, [16]; and [16]5). The best known examples of
conformal cosymplectic manifolds are the Kenmotsu manifolds (or K-manifolds
[11]).

In the present paper a biconformal cosymplectic manifold (abbr. B.C.) is de-
fined to be a conformal cosymplectic manifold satisfying

d¥n =10 d#:Q =0

(*) Indirizzo degli AA.: K. Buchner, Institut fir Geometrie TU Miinchen, Axrcistr.
21, Postfach 202400, D-8000 Miinchen 2. V. V. Goldberg, Department of Mathematics,
New Jersey Institute of Technology, Newark, N. J. 07102. R. Rosca, 59 Avenue Emile
Zola, ¥-Paris 15.

(**) MR classification: 53C15. — Ricevuto: 8-VII-1990.



42 K. BUCHNER, V. V. GOLDBERG and R. ROSCA [2]

where A e C*™ M is given by w = d log . (Remember: d(2)») must vanish because
of (0.1)).

In 2 we deal with some properties of Lie algebra defined by the B.C. cosym-
plectic structure. Since the horizontal distribution

Dyi={Z e XM: »(Z)=0}

is involutive, M is foliated by (2m)-dimensional symplectic hypersurfaces M), nor-
mal to & It is shown that log 2 is a Hamiltonian function for the symplectic form
Q=0 [Mk-

In 3 we consider general quasi-Sasakian manifold M(®, Q, 5, & g) [12], and
prove that M is endowed with a B.C. cosymplectic structure if and only if the
structure vector field £ is contact quasi-concurrent [3}, with horizontal and closed
associated vector field W € D,,. If V € D, is any horizontal vector field, one has the
formula

div &

L:b(V) =ob() +blg, VI+g(V, W)y  with o=

It is proved that any manifold M(®, Q, 4, £ g)is foliated by a totally geode-
sic 3-dimensional submanifold tangent to & W and ¢W, and that g(W, W) is an
isoparametric function [18]. It is also showed that compact manifolds
M(®, Q, u, & g) or space-forms M(®, Q, », & g) do not exist.

In 4 we outline some properties of the immersions x: M, — M, y: M;— M,
where M; is an invariant submanifold of M, and z: M, -— M, where M 4 is an anti-
invariant submanifold of dimension m.

1 - Preliminaries

Let (M, g) be a Riemannian or pseudo-Riemannian C “-manifold and let V be
the covariant differential operator defined by the metric tensor g. We assume in
the following that M is orientable and that the connection V is symmetric.

Let I(TM) = XM and b: TM — T* M be the set of sections of the tangent
bundle TM and the musical isomorphism [15] defined by g, respectively.

Following [15], we denote by

AWM, TM) =1 Hom@ITM, TM)

the set of vector valued ¢-forms, g < dim M, and write for the exterior covariant
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derivative operator with respect to V
d": AYM, TM)— A (M, TM).

(Notice that in general d” = d" od® #0.)

If p € M, then the vector valued 1-form dp € A' (M, TM) stands for the solde-
ring form of M. (dp is also called the «line element». Since V is symmetric, one has
d¥(dp) = 0 [6].)

The cohomology operator d* was defined in Introduction as

1.1 d°=d + e(w),

(cf. [8]) acting on A M, where e(w) denotes the exterior product by the closed
1-form w e AL M.
Clearly one has

(1.2) d°od®=0.
Any form % € AM such that
1.3 d*u =0

is said to d“-closed, and  is called the cohomology form (abbr. c.f.).
An exterior concurrent vector field is defined ([16],, [14]) as a vector field
X e XM for which the relation

(1.4) d"(VX)=V2X =z Adp e A>(M, TM)

holds for some = € A' M.

If X is a tangent vector field, then the 1-form =, which is called the concurren-
ce form, is expressed by == f b(X), where fe C* (M) is the conformal scalar
associated with X.

A pair (=, B), where « is a p-form and 8 is a (p — 1)-form, defines a p-cocycle if
and only if

(1.5) d8=0 d*a =QAB

where 2 is d*-closed. In order that (z, 8) is an exact p-cocycle, it is necessary and
sufficient that there exists a (p — 1)-cochain (J3, ;) (in the sense of the differen-
tial cohomology of Chevalley) such that

(16) a="‘dw§’J2+.Q/\§’J1 B=d¢11
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2 - Biconformal cosymplectic manifolds

Let M@, 4, £ g) be a 2m + 1)-dimensional Riemannian C “-manifold endo-
wed with an almost cosymplectic structure 1 X Sp(m; R) in the broad sense:

Let Qe A2M, n e A'* M and & = b~y € X M be the structure 2-form, the struc-
ture 1-form and the structure vector field of 1 x Sp(m; R) respectively.

The 2m)-distribution D), := {Z € X M: »(Z) = 0} annihilated by 7 is called the
horizontal distribution and any field Z € XM on M may be written as

(2.1) Z =27y +n(2)&

where Z, € D, is the horizontal component of Z.
If for any globally exact basic form w e Dif = {a € A'M: «(&) = 0}, say

2.2) w=d log &
the structure forms 7 and Q satisfy

2.3 d, =0 A Q=0

i

we say that the pairing (5, Q) defines a biconformal cosymplectic structure (abr.
B.C.-structure). By (2.2) and (2.8) it follows that » (resp. Q) is d“-closed
(resp.d®-closed), and w and 227 will be called the cokomology forms associated
with (5, Q). Clearly one has

d0m) =0

and we agree to call 2 € C” M the structure scalar associated with B.C.-structu-
re. It is also easily seen from (2.3) that D), defines a (2m)-foliation and that the re-
striction Q;, = Q|p, is a symplectic form. Referring to (1.6), we see that for some 1-
form ¢, the pairing (2, f), such that

a=—d" o+ 0 g=dx

defines an exact cocycle.
Let now Z;, € Dy be any horizontal vector field. By (2.3) one gets

(2.4) (&g, +wW(Z)) 7 =0
and

(2.5) d¥7 (i, Q) = £5, Q.
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Since by (1.2) one derives from (2.5)
d¥7 (L, 0) =0

one may say that any Z, € D), is an infinitesimal conformal transformation of 7
and that the Lie derivative £, 0 is d®*-closed, as is Q.
Since 7(%) = 1, it is also easily seen that one has

(2.6) L:0=—2)0

which proves that the structure vector #is an infinitesimal conformal transformal
of Q.

Furthermore, let Z € XM be any vector field of M, and let w: TM — T* M,
Z—1iz0 be the bundle isomorphism defined by Q. If Z is such that it
satisfies

@.7 & (uZ) = 0

we agree to say that Z is a d%"-closed vector field.
For any vector field Z satisfying (2.7), one finds after a short calculation and
by reference to (2.8) that

2.8) L70=—20(2)Q

i.e. Z is an infinitesimal conformal automorphism of Q.
In a similar manner, any vector field Z such that

2.9) dYy(Z) = dy(Z) + (Z)w =0

will be defined as contact d“-closed.
From the first equation (2.3) one quickly gets

‘EZTI' = _2U(Z)‘{;

i.e. Z is an infinitesimal conformal transformation of the structure 1-form 7.
Next taking the Lie derivative of Q with respect to Z, one has by (2.3)

(2.10) £20 = d(uZ) — 20(Z2) Q + 209 A (p2)
and taking into account of (2.9), one derives by exterior differentiation that
.10 d® (£, 0) = 0.

Hence the Lie derivative of £,0 is d®"-closed, as is Q.
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Let now L be the (1.1)-operator defined by

L a—a A ae MM

(see also [8]) and set
LIa= ag = aAQTe AT,

If Z, € D, is any horizontal vector field of M, one derives from above after some
calculation that

%7 (£5,4,) = 0.

Therefore one may say that the Lie derivative £, of any (2¢ + 1)-form L& = «,is
d®-closed. Denote now by M), the leaf of the horizontal foliation D), (that is the
hypersurface of M normal to the structure vector field £). Clearly M), is a sym-
plectic manifold having Q) = Q]Mh as its structure 2-form. Let

W=‘u."1’w

be the dual vector field of w with respect to ;. (In order to simplify, we denote
the elements induced by x: M, — M by the same letters.) Since by (2.2) one
has

iW'Qh =d 10g A

it follows that on M,,, W is a symplectic vector field [15] and log 2 is a Hamilto-
nian function on M.

Theorem 2.1. Let M@, 4, 2, £ g) be a (2m+ 1)-dimensional biconfor-
mal cosymplectic C*-manifold with structure tensor fields (@, 7, 2, &) and let
Dy ={Z € XM: 7(Z) =0} be the (2m)-foliation annihilated by the structure 1-
fO'rm n.

One has the following properties:

() The structure vector field & and any dg*-closed vector field Z € X M are
infinitesimal conformal transformations of Q.

() If Z, € Dy, and Z is any horizontal vector and any contact d*-closed
(w = d log ) vector field respectively, then the Lie derivatives £z, Q and £;Q are
d¥n-closed, as is the structure 2-form Q.

(i) IfLY: XM — 22+ M; Lia = a AQY, then the Lie derivatives of all the
(2q + 1)-forms L%« with respect to any horizontal vector field Z, are d#-closed,
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as is Q. Finally, if Q) = Q|p, (restriction of Q on D)) is the symplectic form, then
log 2 is a Hamiltonian function of Q.

3 - B.C. quasi-Sasakian manifolds

Let M(®, Q, v, £ g) be a (2m + 1)-dimensional quasi-Sasakian C “-manifold.
As is known, the structure tensor fields (@, Q, 5, £ satisfy

PP=—Id+,®¢ PE=0 &) =1
(3.1) n(2)=9Z, & 9@z, 9Z')=g(Z, Z') —n(Z)n(Z")
QZ, Z'")=g@Z, Z') =10 = b(®Z)
where Z, Z' e XM are any vector fields on M. By imposing different geometric
properties on the structure vector field &, one obtains different types of quasi-Sa-
sakian manifolds.
Referring to the concept of a contact quasi-concurrent vector field [3], we

shall assume in this paper that & is such a geometrical vector field. In this case,
following [3];, the covariant derivative VZ of ¢ satisfies

(3.2) VE=—=2dp+ QW+ Q&

where 2 € C* M is a conformal scalar and W € D,, is a horizontal vector field which
is called the associated vector field of &.
Consider on M a local field of @-orthonormal frames [9];, denoted by

Op=vect {e,, e =DPe,, eg=¢&la=1, ..., m; a* =a+m}
and let
Of = covect {o?[A =1, ..., 2m)}

be the corresponding coframe. Cartan’s structure equations written in index-
free form, are then

3.3) Ve=6®eeA1(M, ™)
3.4) do=—-0Aw
3.5) do=—-6A0+06

where 6 € A' M are the local connection forms in the tangent bundle 7M and
0 € A M are the curvature 2-forms on M. With respect to O, the soldering form
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dp and the structure 2-form Q are expressed by

(3.6) dp='®e,+o" Qe+ ®E

3.7 Q= %coa No .

Setting

(3.8) W =W-re, W=eC"M «c€{a, a*}

one derives from (38.2) with the help of (3.3), (3.6) and (3.8) that

3.9 0 =W~ 2e” .
Putting
(3.10) w=bW)=2W*eA'M

we shall assume in addition that VW is self-adjoint [15], that is
(3.11) dw=0.

Now by the structure equations (3.4) and by exterior differentiation of the struc-
ture 1-form n(n = °), one gets

(8.12) d“7 =10

that is 4 is d“-closed. Further, taking the exterior derivatives of (3.7), one gets
from (3.1), (3.4) and (3.9) that

(3.13) Q=0

which shows that © is d*"-closed. Hence, going back to the equation (2.3), we can
obtain from (3.12) and (3.13) that the quasi-Sasakian manifold M(9, Q, 7, £, ¢)
under consideration is endowed with a B.C.-cosymplectic structure. Omitting re-
ference to the generating point p € M, one has by definition, that for any
ZeXM

div Z =tr(VZ) = %wA (Ve,Z).
Thus by (3.2) one quickly gets

3.14) div £ = —2ma.

Hence for any quasi-Sasakian manifold M(®, Q, 5, £, g) with a structure vector &
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satisfying (3.2), the structure scalar i represents, up to the factor —2m, the di-
vergence of &
We notice that one has

(3.15) Vogé=—20Z =gV &, Z)=0
and for any horizontal vector fields Z;, Z; € D, the equation
(3.16) 92,2y, Z,)+9(Vg, Zy, Zy) = —209(Zy,, Zy)

holds. Following a known definition, it follows from (3.16) and (38.14) that the
structure vector field ¢ is a horizontal conformal vector field (or a Dj-conformal
vector field).

Let now v € A’ M be any semi-basic 1-form (i.e. v(¥) = 0), define V:=b~1(v)
and denote by o), the volume element of D,. Making use of (3.3) and (3.4), one fin-
ds by (3.2), (3.8) and (3.9) that

3.17) Lv=pv+b[E V]+9(V,W)y

where [, ] denotes the Lie bracket, b[&, V] is the dual form of the vector field
[, V1 and

div &

(3.18) o=

Further if *: A7T* M — A*™*1=¢T* }f denotes the star operator, one finds from
(3.17) by a straightforward calculation that

(3.19) Loky =% Lv+ 2m2—1 cx v+ gV, Way .
It should be noticed that the above formulae are «mutatis mutandis» similar to

those of T. Branson [2] for general conformal vector fields.
By (3.11), (3.12) and (3.13) one readily finds

£:0 =20 d(&) =0

which shows that £ defines an infinitesimal conformal transformation of Q and
that 5 is a relative integral invariant of £ [1]. Hence, by reference to [5], we agree
to say that ¢ defines an almost biconformal wector fields on
M@, @, 4, & 9.

Let us now go back to the equation (3.2) and let Z € &M be any vector field on
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M. Then the structure equations (3.1) are completed with the following structure
equation

(3.20) (VOYZ =V(9Z) ~ IVZ

=m(Z)2dp — 1(Z) n ® W + Qb (82) — g(W, 0Z) ) ® &

which holds for any B.C. quasi-Sasakian manifold. It should be noticed, that by
setting Z = ¢ in (3.20), one obtains (3.2) again.
Consider now the contact 9-Lie differential operator

Dy: Z— (L:D) 7.
As is known (see for example [7]), one has
(8.21) (£:D)Z = [¢, 9Z] - d[¢, Z].

Let us go back to the case under discussion and set Z = W in (3.21). First of all,
since VW is self-adjoint, one finds by (3.2) that

(3.22) V:W=8W ~g(W, W)E.
Next, by making use of equation (3.20) and (3.1), one gets
(3.23) VOW = oVW + 2b (W) ® &
and this implies
(3.24) V. 0W = oV, W.
But by (3.22) one has
(3.25) OV, W = 0.0W.
Finally, by means of (3.15), one gets
(L: D)W = 0.

Hencé one may say that the associated vector field W of £ is contact @-inva-
riant.
It also should be noticed that (8.2) and (8.23) imply

(3.26) LOW = 220W .

Hence, following a known definition [5], we may say that W admits an infinitesi-
mal transformation of &,
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Denote now by D = {& VV, oW} the 3-distribution defined by £ VV, and
&W. Since by (3.10) and (3.11) one may write

3.27) VW=m@W+Qw—-gW, W)n®E& w=b"1(W)

then if X’ and X" are any vector fields of D, it follows from (3.2), (3.23) and (3.27),
that one has

VeX'eD.

According to a well-known proposition (see for example [13]), this proves that D
defines an auto-parallel (or totally geodesic) foliation. Therefore, we may say
that any B.C. quasi-Sasakian manifold is foliated by totally geodesic 3-dimensio-
nal submanifolds tangent to £, W and ¢W.

Next by (3.27) one quickly gets at any point p e M

(3.28) tr(VW)=div W= —g(W, W)
(3.29) < dgW, W) = 2g(W, Wy,

Recall now the general formula
Av = — div(grad v) veC”M.
Then, by (2.2), (8.28) and (3.29), one derives
(3.30) Ag(W, W)= —2@m—1)22g(W, W)

which shows that g(W, W) is an eigenfunction of A4 and has —2(2m — 1) 2* as the
associated eigenvalue. Sinee this eigenvalue is negative, we conclude by referen-
ce to a known property (see for example [17]) that compact B.C. quasi-Sasakian
manifold do not exist. Further since by (3.29) one has

(3.31) grad gW, W) =22g(W, W)&= | grad g(W, W)IF = £%g(W, W)*

it follows by reference to a known definiton that g(W, W) is an isoparametric
function (see for example [18] or [9]y).

On the other hand, by (2.2), (2.3), (3.2) and (3.27), taking the second covariant
differential of & and W, one finds

(3.32) VEE = 20w —w) Adp + (5 Aw) ® (W-28)

3.33)  VEW =0 —g(W, W)n) Adp+ (n Aw) ® GW-g(W, W)2).



52 K. BUCHNER, V. V. GOLDBERG and R. ROSCA [12]

Consider now the vector valued 1-form

(3.34) F=tANW=w®t—y®We A (M, TM).

Operating on F' by a" and taking into account (3.82) and (3.33), one finds
A"F =VEEAw—VEW Ap =22 wAq) Adp.

Hence by reference to [14] one may say that F' is a 2-exterior concurrent vector
valued 1-form, having 222w A as a concurrence 2-form.

Since a problem of current interest is the curvature problem, we shall make
now the following consideration. Making use of equations (3.3) and (3.20), one fin-
ds the relations

(3.35) 07 = 6% 0 = 60s

which are characteristic for quasi-Sasakian manifolds. Now with the help of the
structure equations (3.5) one derives from (3.26)

(3 36) 0% + )\2 (I)a /\ Cl)b + )\(iuf (J)a /\ cub) /\ n= Q%: + )\2 (.()a* /\ (.L)bi< + )\(iWcua* /\ Cl)b* ) /\ 7
' bt 220 A + 2w o Ae® ) An =00+ 12 0® Ao + Ay o’ A w¥) A 7.
Since the characteristic equation for space-forms M(K) are

01%=KwA/\wB

it follows from (3.27) that non-trivial quasi-Sasakian manifolds of constant curva-
ture do not exist.

Let now E be the curvature tensor field on M(®, Q, n, & g). Then (R(Z, Z')
eI’ End AM. With the help of (3.20) and (3.27) one finds afther some calcula-
tions

3.37) R(Z, ZYX +0R(Z, Z')0X
=@X)YR(Z, Z)+g(X, R(Z, ZYOE+32(@Z' NOZ) DX + 022" NZ) X
+29(X, SW)((Z") 0Z — 1(Z) 2Z") Ng(X, W) = 2mX)Z' Z) E+ (—n(D) 9(X, Z")

+9(Z) gX, ZNOPE+2W) + N—1(2) 9(@X, Z') + n(Z") g(@X, Z)) DW .

The following theorem combines all results obtained in this section.
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Theorem 3.1. Let M(®, Q, 5, & ¢) be a @m + 1)-dimensional quasi-Sa-
sakian manifold and let D), = {Z € XM; (Z) = 0} be the horizontal (2m)-distri-
bution annikilated by the structure 1-form . Then the necessary and sufficient
condition in order that M be endowed with o B.C.-structure, 1s the structure vec-
tor field & be contact quasi-concurrent with horizontal and closed associated vec-
tor field W € D,. Any such manifold M(D, Q, v, &, g)is foliated by a totally geo-
desic 3-dimensional submanifold tangent to £, W, and ®W. One has also the fol-
lowing properties:

@ £ is a Dj-conformal wector fleld and div E= —2m), where
Ad log 2= —b" (W) is the structure scalar of the B.C.-structure.

() g(W, W) is an eigenfunction of A and it is an isoparametric fun-
ction [18].

(iii) If v is any semi-basic 1-form and V = b~ v is its dual vector field, one
has the following formulae

v =0 +blE, V1+g(V, W)y Loxp =% Lov+ 2m2‘1 cx v+ gV, W)ay

)

di .
where ¢ = and o, is the volume element of D,

(iv) W is a contact P-invariant vector field, and B.C. quasi-Sasakian ma-
nifolds of constant curvature do not exist.

4 - Submanifolds of B.C. quasi-Sasakian manifolds

We shall discuss in this section various striking properties of some submani-
folds of the manifold M(®, Q, %, & ¢) under discussion.

First of all consider the immersion x: M), — M, where M), is the hypersurface
normal to the structure vector field £ (see 2). Because of (3.2), the second funda-
mental quadratic form associated with z is

@.1) II=— (dp V) =g

(we denote elements induced by « by the same letters), and the above equation
proves that M), is an umbilical hypersurface of M. Since on M, one has

VE=—)dp
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it follows at once from (2.2) that
4.2) dv(Ve) = Vir= —awAdp.

So, referring to (1.4), one may say that £ is a normal exterior recurrent vector
field.

Let then @F be the normal curvature 2-forms associated with x. One derives at
once from (4.2) that

4.3) 0 = — 2w A\ o*

which shows that all forms 63 are conformal to the induced value of the cohomolo-
gy form w.

Further by (8.36) it is easily seen that if M, is a space-form of curvature K,
then necessarily K + 2% =0 that is M, is an extrinsic hypersphere.

Moreover, if (1) denoted the length of the second fundamental quadratic form
of M, then on M, (— »*), (1) is constant, and since the mean curvature vector of
M, (—2?) (.e. & is nowhere zero, it follows that the product submanifold
M, (= 22) x M, (— 2%) is an U-submanifold (see [4]) in M x M. It should be noti-
ced that by virtue of (4.2), one has on M, (— »2)

VZE=0

and this shows that the normal connection V' associated with x: M, (— %)
— M(D, Q, », & g)is flat. Let now X € XM, be any exterior concurrent vector
field on M;. Then it follows from (1.4) that

4.4) VX =fb(X) Adp

holds for some C* M.
On the other hand, on M;, the formula (3.87) moves to

4.5) R(Z, ZhYX+oR(Z, Z')0X
=2(b(@X)A & dp)Z, Z)+ 32 (b X)ANdpZ, Z").

Then if X satisfies (4.4), one derives from (4.5) that f= 2%, and in this case one
also has

V20X = 2b(0X) Adp

that is the property of exterior concurrency for X is invariant when applying &
to X.
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Let us now M, be an invariant submanifold of M (@, Q, 1, & @), thatis £ is
tangent to M, for any tangent vector field Z to M;. Assume that M is of codimen-
sion 2 and is defined by

4.6) o =0 W =0
r=m+1-1 ¥ =r+m,

Hence the soldering form dp; of M, is

4.7 dp;= o' @e+ o Qe+ ®¢
1=1, ..., m—1 1*=1i+m.

(We denote the other elements induced by y: M;— M by the same letters.) Conse-
quently the mean curvature vector valued 2(m — l)-form 9¢ e AZ™=D (M, TM,)is

4.8)  H=2-D"To'ALAGA LAOTIAGTA L ™A @ e
FE(=D" T AL AT AT A L AGTA L ANo™ P Ap ®eps

Fo!' A AGTIA YA LA ™D ®&.
Applying the operator d' to ¢, one has
4.9) dvf}C:(Z(’m—l)—i-l)oy@H

where o; and H are the volume element of M, and the mean curvature vector field
associated with y: M;— M, respectively. With the help of (3.35) one gets
dV9C= 0= H = 0, which expresses that any M, is minimal in M @, Q, 3, & 9.
(See [11] for K-manifolds and [19], for Sasakian manifolds.)

Finally consider the immersion z: M, — M, where M 4 18 an anti-invariant
submanifold of dimension m of M [4]. Then by definition M, is normal to £ and if Z
is any tangent vector field to My, then @Z is a normal vector field to M 4 Ifwe as-
sume that M, is defined by

w0 =0 7=0
then the equations (3.36) become
(4.11) 6%+ 220’ A o = 0% 0% = Ob. .

From above we derive that if M, is of constant ecurvature K and the normal con-
nection V2 is flat, then necessarily K = — % and M, is of hyperbolic type.
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Theorem 4.1. Let M(®, Q, », £ ¢) be any B.C. quasi-Sasakien mani-
fold. We consider the following immersions: x: M,— M, y: M;— M, and
2. My— M where M), M; and M, are the symplectic hypersurface normal to &,
an tnvariant submanifold and an anti-invariant submanifold of dimension m,
respectively.

One has the following properties:

i) My, is an umbilical hypersurface, and if M), is a space-form, it is neces-
sarily of hyperbolic type, M(— ). In this case M(— »*). is an extrinsic hyper-
sphere and the product M(— %) x M(— %) is an U-submanifold of M X M. Fur-
ther the conformal associated scalar with any exterior concurrent vector field X
on M, is 22, and the property of exterior concurrency for X is invariant when ap-
plying @ to X.

(i) Any invariant submanifold M; of M is minimal.

(i) Any anti-invariant submanifold M 4 is of constant curvature and a flat
normal conmection is of hyperbolic type M(—>2).
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Abstract

Let M be Riemannian (2m + 1)-dimensional C *-manifold endowed with a structure 2-
form Q, a structure 1-form 4 and o structure vector field £ dual to ;. As a generalization of
conformal cosymplectic manifolds, M@, 7, £, g)is defined in the present paper as a «bi-
conformal cosymplectic manifold» if both structure forms Q and 4 are «cohomologically
closed» (in the sense of F'. Guedira and A. Lichnerowitz). With such a structure denoted by
B.C. Sp(2m + 1, R) is associated a closed 1-form w and its dual vector W. Different pro-
perties of the d*-cohomology and the Lie algebra on M involving », w, Q, W and £ are di-
scussed. If M), is the hypersurface normal to &, the following salient properties are establi-
shed: () If M is a conformal cosymplectic manifold, then M), is a symplectic manifold. (b)
If M is a biconformal cosymplectic manifold, then M, is a conformal symplectic
manifold.
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As an application, we get the necessary and sufficient condition for a 2m + 1)-dimen-
sional quasi-Sasakian manifold M(®, Q, », £, g) to be endowed with a B.C.-structure.
Some striking properties of invariant and anti-invariant submanifolds of a B.C.-quasi-
Sasakion manifold are discussed.



