Riv. Mat. Univ. Parma (4) 17 (1991), 29-39

E. ABBENA and S. GARBIERO (¥)

Einstein metrics on some special manifolds (**)

1 - Introduction

A well known problem in Riemannian geometry is to find Einstein metrics
on a particular manifold. Many Authors studied this subject from different poin-
ts of view (see [1] and the extensive bibliography enclosed therein).

The main purpose of this paper is to give the explicit construction of Ein-
stein metries by means of the deformation of a given Riemannian metric along a
unit Killing vector field. More precisely, in 2, if (M, ¢) is a Riemannian manifold
admitting a globally defined unit Killing vector field Z, the connection and the
curvature forms of the deformed metric

Gu=g+un®ny u e R~ {0} u>—1

(: 1-form dual to &) are related to the corresponding forms of g. This is done ap-
plying the Cartan’s theory of moving frame since the calculations can be perfor-
med in a compact way.

In 3 looking for conditions such that g, is an Einstein metric, the following is
proved

Main Theorem. Let (M, g) be a non Einstein Riemannian manifold of
dimension m+ 1 and let & be a unit Killing vector field with dual 1-form n. The
Riemannian metric g, = g+ un ® n (u > —1) is Einstein if and only if the follo-
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wing condition holds

Ric(g) = % {A+ WV ens1lF o
e Y

- 2uw°‘,n+1(ey)w7'm+1(eﬂ)} o* ® o+ 2”Ve«em+1”2wm+1 ® ™!

where
Scal (g) - (m + 1) ; Hvez Cm+1 “2
u = ,
(’)’)’L + 2) ; “Veal €m+1 ”2
€1, .y Ems1 =08 and (', ..., o™ =) are respectively a local orthonormal

frame for g and the dual coframe.

Of course, the existence of a globally defined unit Killing vector field impo-
ses some topological restrictions on the manifold M; for example, its Euler-Poin-
caré characteristic must be zero. Nevertheless, as it is shown in 4, the Main
Theorem can be applied to a broad class of manifolds, precisely the so called K-
contact spaces (see [2] for the examples).

A typical and important instance of this situation is given by the tangent
sphere bundle 7, S™ of the standard m-dimensional sphere S™, where we reco-
ver the Einstein metric found by Kobayashi [3], who considered T;S™ as an S 1
bundle over the Grassmann manifold SO(m + 1)/SO(m — 1) X SO(2) (see also [4]
for an alternative description).

The Authors wish to thanks Prof. D. Perrone and Prof. F. Tricerri for useful
discussions during the preparation of this paper.

2 - Deformation of a metric tensor along a vector field

Let (M, g) be a Riemannian manifold which admits a globally defined unit
vector field & Let 5 be the corresponding dual 1-form given by

@.1 7(X) = g(X, &)
for any vector field X on M. The covariant tensor field
2.2) Ju=9+un®n

is still a Riemannian metric on M for any real constant u > —1. We may think of
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9. as the metric obtained from g after a deformation in the direction of the vee-
tor field £ and, to avoid the trivial case, we shall always assume u # 0.

By means of the Cartan’s structural equations, it is relatively easy to find
the relations between the Riemannian connections of g and g,. Let

{e1, ..., en+1=¢&} be a local orthonormal frame for the metric g and let
{o', ..., @™*1=1} be the associated coframe. If t2=1+u,

{ei=e1, ..., en=6n, €41 = -1*5}
(23) ’ ’ ’ £°

{w'1=w1, ey CL)/m:wm’ a),m+1=t7]}

are respectively an orthonormal frame and the relative coframe for the met-
ric g, .
We adopt the following convention about the indices

a, B, y=1,2, ..., m A B, C=1,2, ..., m+1.
The Riemannian metrics g and g, are (locally) given by

2.4) g=§wA®wA Gu=2"Ru*+ 1 +u)e™ 1@ uw™+!.

Moreover, the connection 1-forms of V, Riemannian connection of g, are de-
fined by

(25) (z)AB(X) =g(VXeB, eA) = Cz)A(VXeB)
for any vector field X om M, and they satisfy the Cartan’s structural equations

2.6) do? = ~%wAB/\wB s +wfy=0.

Similar formulas hold for the connection 1-forms of V', Riemannian connection of
9x- We have the following

Theorem 2.1. The relations between the connection 1-forms of V and V'
are given by
e _ & t2 - 1 o B m+1
g =t _2“{‘0 m+1(eﬁ)_w m+1(€)} @
2.7

to o tz_l «
0 1 =l 1 — _25"' %{w m+1(ep)+wpm+1(ea)}wﬁ

where t2=1-+u.
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Proof. The differentials dw'z can be computed directly from (2.3) and
(2.6). Comparing such expressions with the structural equations of V’, the follo-
wing conditions must hold

1

(0% = )0 + (@1 = o)™ =0
2.8 :

Z(wrm+ la — twm-}- la) wF=0.
Because of Cartan’s Lemma, we have
(29)1 wmﬁ . w“ﬁ — %:Fzﬁrw/y +Faﬁm+ 1 wrm—{v-l

1. « 1
(29)2 o' 1~ 't—w m+1 = ;F m+ 17‘01)’ + Fam+1m+l W™
(29)3 cu'm+la — tw7n+1a = §F7)Z+la§w'ﬁ
for some functions F4g. such that
FaBC — FaCB ) F1n+1a{3 — Fm+ lﬁa FaﬁC —_ FﬁaC .

It follows immediately that F%, =0 and from (2.9) we get

t?—1 " 1
—wam+1=§(F m+1ﬁ+Fm+1a(,3)a)ﬁ+tFam+1m+1wm+ .

(2.10) r

Applying the 1-forms (2.10) to the vector field e,,.;, we find

o t2__ 3
F mAlm+1 = t2 C')m+1(em+1)-
In a similar way, we have
Figar= Lo L (o1 (e) b (e)
Bm+1 T T{w m+1(eﬂ ® m+l(ea }
t2—1

Fm+l%3= {wam+1(e,e)+wﬁm+1(ea)}.

2t

Inserting such expressions into the equations (2.9), we finally obtain the
theorem.

Now let us assume that £ be a Killing vector field, that is its local one-par-
ameter group of transformations consists of local isometries. It is well known
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that such condition is equivalent to L;g = 0, where L; denotes the Lie derivative
with respect to & Then, & is a Killing vector field if and only if

(2.11) 9(Vx& V) +gX, Vyd =0

for all vector fields X and Y on M. This is equivalent to

(2.12) o mer(ep) + oy 1(eq) =0

and, in this case, the relations (1.7) can be simplified into

2.13) 0'% = 0%+ (2 — 1) 04 1(e5) ™! @' g1 =t g

The curvature tensor field R and the curvature 2-forms Q45 of V are respect-
ively defined as follows

2.149) Ryy=Vix,n—I[Vx, Vyl 2045 (X, Y) = — o® (Rxyep)

for all vector fields X and Y on M. Such 2-forms are skew-symmetric with re-
spect to the indices A and B and satisfy the structural equations

(2.15) .QAB = deB + 2 &)Ac A cuCB .
C

Similar equations also hold for the curvature 2-forms Q45 of the connection V’.
We have the

Theorem 2.2. The relations between the curvature 2-forms of V. and V' are
given by
Q%= Q%+ (2 — D{d[w* (Ve,€m41)]
+ ;[C"Y (Veg emn+1) wly - (Vey €n+1) wyﬂ ]} Aw™t1
2.16
@19 4= Do (V) D n AT+ s Aoy )

Q,am+1 = tQam.{_l + t(tz_ 1)%:(0“ (Veyenl+1)wm+l/\wﬁm+1

where t2=1+u.

Proof. It is enough to compute the structural equations (2.15) using the
relations (2.13).
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The Ricei tensor and the scalar curvature of the metric g are respectively de-
fined by

2.17) Ric() =2 2, Q%(ec, ep)ow® ®w®
A,B,C

(2.18) Seal(g) = % Ric(g)eq, ea).

Similar expressions hold for the Ricei tensor Ric (g, ) and for the scalar curvatu-
re Scal(g, ) of the metric g,. In order to find the relations between the Riceci
curvature of the two metrics, we first state the following

Lemma 2.3. Let (M, g) be a Riemannian manifold which admits a unit
Killing wvector field & Then

2.19) Ric ()¢, & =S|IV, &f
where {e, ..., e,11=E} is a local orthonormal frame for the metric g.

Proof. From (2.15), (2.17) and the fact that & is a unit Killing vector field,
we get

R‘ic(g)(em-f-ly em+1) = 2§Qa7n+l(ea; em+1)

=2§[dw“m+1+§wuﬂ/\wﬂm+l](ew em+1)
=——§a‘,m“m+l([ea, em+1])_%wap(em+1)wﬁm+l(ea)
=o' lle,, em+1])—a%9(\7em“eu &) @1 (€g)
=—§w“m+1([e“, em+1])“§{g(ve,em+l: eg)
+9(len+1, e.l, e)} wam+1(ep)=c%{wzm+l(eﬁ)}2

= E‘z:g(ve,em-f-l: Ve,em+1) .
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We are now able to prove the

Theorem 2.4. In the hypothesis of the previous Lemma, we have

(2.20) Ric(gy) = Ric(@) + 24 3 sy (e,) s () 0" ® o
8,y
+u X Ric(@)e,, ens1 ) ® ™ 1+ 0™ ! ® o)
+u@+2) 2| Ve, eme i Fo™ @ ™!

(2.21) Scal (g,) = Scal (9) — 4 2 || Ve €1 [P

Proof. The formula (2.20) follows from the definition of Ric(g,), (2.16) and
the previous Lemma. The (2.21) follows immediately from the definition of
Scal (g,,) and (2.20).

3 - Einstein metrics

The main purpose of this paragraph is to find the necessary and sufficient
conditions such that the deformed metric g, becomes an Einstein metric,
ie.

Secal(g,,)

3.1 Ric(g,) = E,9. E, = —1

To avoid trivial cases, we assume that the given metric g is non Einstein. Then
we have the following

Theorem 3.1. Let (M, g) be a non Einstein Riemannion manifold of di-
mension m+ 1 and let & be a unit Killing vector field with dual 1-form . The
Riemannian metric ¢, = g + un ® n (u> —1) is Einstein if and only if the follo-
wing condition holds

(3.2) Rie(g) = % {A+w)| Ve ems1lPés
Uy Y

_zuwam+1(ey)wrm+1(eﬁ)}w“ ® o + ;]lve,em+lllzwm+l® W™
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where
Scal(9) — (m+1) 2, Ve, €1 lP
(3.3) U= -
(m + 2) 2 “Vea Cm+1 ”2
{er, oy ens1=¢&} and {o', ..., o™=y} are respectively a local orthonor-

mal frame for g and the dual coframe.

Proof. Because of (2.20) and (3.1), the metric g, is Einstein if and only if

(3.4) Ric(g,) =u{2 3 o™ (e,) 0 pailey) o ® of

a8,y

— 2 Ric(@)e,, ns1)@* @™ 14"+ Q® )

—(u+ 2)§”Ve,em+1”2wm+1 ®"~’m+1} +E,9, -

Then we compute E, by means of (3.1) and (2.21) and we get

(35) Eu - ('u + 1); “Ve,em+1“2 .

Inserting such expression into (2.4) and recalling that u # 0, we obtain the (3.2).
On the other hand, a direct computation of Scal(g) from (3.4) and (3.5) gives
(3.3).

Remarks. (i) It follows from (3.8) that a necessary condition for finding
such Einstein metrics is that

Seal (g) > - ; ”Vea em+1“2 .

(i) If we drop the request that g, be positive definite, the same construction
permits to find Lorentian metrics which may be of some interest for physical ap-
plications. Of course, in the present situation, the above remark does not

apply.

4 - Applications

The theorem of the previous paragraph can be applied to some special clas-
ses of Riemannian manifolds. Here we consider, in particular, the case of K-con-
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tact manifolds. We first recall some definitions (see [2] for more details and
examples).

A contact metric manifold (M, g, ¢, 4, & is a Riemannian manifold (M, g)
of odd dimension 2n + 1 endowed with three tensor fields ¢, 7, & of type (1, 1),
0, 1), (1, 0) respectively, which satisfy the following conditions

(4.1) F=—I+7®¢ @ =1

4.2) X, ¢Y)=g(X, ) — n(X)n(Y) 9X, ¢¥)=dy(X, )

for all vector fields X, ¥ on M (I is the Kronecker tensor of type (1.1)). Note
that the above relations imply that

(4.3) 27(X) =g(X, 9 =1

for each vector field X on M.
A contact metric manifold M is said K-contact if, in addition, ¢ is a Killing
vector field, which is equivalent to

4.4) V&= —¢X

for each vector field X on M. On the other hand, a contact metric manifold M is
called Sasakian if

(4.5) (Vx9)(X) = g(X, V)E-n(NX

for all vector fields X, ¥ on M. It follows immediately that every K-contact ma-
nifold is Sasakian.
Let us consider a K-contact manifold M. It is known that there exist local or-

thonormal frames {e;, ..., e+, =&} adapted to the contact structure, i.e.
éle;) =ej4n i1=1 2, ..., n.
If {o', ..., o™*1=1} is the corresponding coframe, we have
"= —ylog i=1,2, ..., n W=y,

The condition (3.4) is equivalent to

o1 = —w od =12, ..., n
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which imply
IVe €201l =1
and, because of Lemma 2.3,
Ric(g)egn+1, €2n+1) =2n.

Hence Theorem 3.1 can be reformulated as follows

Theorem 4.1. Let (M, g, ¢, 0, & be a K-contact Riemannian manifold
of dimension 2n+1. The Riemannian metric g, =¢g+un®yn (u>-—1) 1is
Einstein if and only if

2n
Ric(@) =2[(n+ Du+n] 2 o*® o*+2ne™ 1 @ o> *?
a=1

where

_ Scal(g) —2n2n +1)
B dn(n+1)

Remark. Since two homothetic metrics have the same Ricci tensor, we
find here a result due to Tanno (see [5]), who calls »-Einstein the manifolds
which satisfy the hypotheses of the previous theorem.

A concrete application of Theorem 4.1 is given by 7,8™, the unit tangent
bundle of the m-dimensional sphere S™, endowed with the standard Sasakian
structure (g, ¢, », £. Here g = (1/4)gg, where gg denotes the metric induced
on T,8™ by the Sasaki metric of TS™. It can be shown that

2m—2

Ric(g) = 2(2m —3) 21 R +2m—1)n®y

Scal(g) = 2(m — 1)(dm —5).

It follows from the above theorem that the metric g, = g + un ® n is Einstein
when % = (m—2)/m.

The result is in accordance with Theorem 7.1 of [4] and this metric coincides
with the one found, in a completely different way, by Kobayashi (see [3]).
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Sunto

Sono costruite metriche di Einstein su varietd Riemanniane che ammettono un cam-
po di Killing globale e unitario. Tali metriche sono ottenute deformando la metrica ori-
ginaria in direzione di tale campo. Sono, inoltre, considerate alcune applicazioni alle
varieta K-contatto.
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