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ALBERTO CAVICCHIOLI (%)

Mobius transformations and surface groups (*¥%)

1 - Fuchsian groups

For the theory of Fuchsian groups we refer to [2], [3], [4], [6]. Now we recall
some definitions and notations to make the reading clear. Given the complex
plane C, we set C = C U {»} (the 2-sphere). By 4, 34 we denote the open unit
disc and the unit circle in C respectively.

The hyperbolic plane is the pair (4, &), where is the metric on 4 derived
from the differential

ds = 2|de] z€A.

1|z
The lines of the hyperbolic plane are the half circles or (euclidean) half lines or-
thogonal to 94. Furthermore the hyperbolic angle is just the euclidean
angle.

Given two distinct points z;, 2» € 4, let 23, 24 be the limit points on 84 of the
unique hyperbolic line through 2; and 2,. If the points follow in the order
21, 22, 23, %4, then the distance 8(z;, 2;) is given by the formula

8(z1,2,) =logl2y, 23, %1, 22]

where [24, 23, 21, %2] represents the cross-ratio of these points.

(*) Indirizzo: Istituto di Matematica, Universita della Basilicata, Via N. Sauro 85, I-
85100 Potenza.
(**) Work performed under the aupicies of the G.N.S.A.G.A. of the C.N.R. and finan-
cially supported by the M.p.1. of Italy.
MR classification: 20H10; 32J15. — Ricevuto: 17-I-1990.
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Let G be a group of homeomorphisms of 4 onto itself. We say that G acts
discontinuously on A if, for every compact set K c 4, ¥(K) n K is empty except
for a finite number of ¥ e G.

Two configurations C, C’ in A (points, curves, regions, etc.) are said to be
congruent with respect to G if there exists an element ¥ e G such that
w(C)=C'. A fundamental region of G is a closed simply connected subset
F ¢ A such that 4 is the union of the images ¥(F), ¥ € G, and any point common
to ¥, (F) and ¥, (F) (where ¥y, ¥, e G, ¥ # ¥,) lies on the boundary of both.
All the congruent sets ¥(F), ¥ € G, give a tessellation II; of A. Any curve com-
mon to two distinct sets ¥, (F) and ¥, (F) is said to be a side of I . The vertices
of IT; are the end-points of sides of IT;. Finally the quotient space 4/G is defined
as the set of orbits Gz = {¥(2)/¥ € G} of points z € 4.

A linear fractional transformation is a map f C— C of the form

_az+b
&)= cz+d

where a, b, ¢, de C and ad—bc#0. The number ad—bc is called the
determinant of f, written det(f). Obviously det(f) can always be assumed
equal to 1 if the numerator and denominator of the fraction are divided by
+V/ad — be. The map f is said to be a complex Mobius transformation if b=¢
and d = @, where % is the conjugate of z € C. In the last case, f carries A and 94
into itself respectively. The group of all complex Mobius transformations is de-
noted by .

A Fuchsian group is a subgroup G of .# which acts discontinuously on 4.

Let now X, be the closed connected orientable surface of genus g (g = 2). It is
well-known that %, can be obtained as the quotient space 4/Gy, G, being a
Fuchsian group, named the surface group (see [1], p. 58; [3], p. 200). The group
G, is isomorphic to the fundamental group of Z,. Furthermore G, induces on 4 a
tessellation IT, whose congruent tiles are regular 4g-gonal regions with interior
angles equal to =/2g.

In the present paper, we describe a simple geometric construction of the
surface group G, presented in terms of 29 complex Méobius transformations as
generators and of one relation among them. The relation is directly computed
by using the equations of the given generators. Our construction allows us to
write the equation of any transformation of the group G,. Furthermore we give
a recurrence formula to obtain all the vertices of the tessellation II;. It seems
that these facts have, as yet, not been listed in the literature.
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2 - Geometric construetions

Given two points X, Y e C the symbol XY represents the euclidean distance
between X and Y. In an euclidean triangle XYZ of C, we denote by X Y7 the
angle at Y. If X is a point of the unit circle 84, we denote by X* its antipodal
point. Obviously X** =X,

Let now a, b be two real numbers such that ¢ <0, b > 0 and a®>+ b2 < 1. We
consider the following distinet points of A

A=a+ib A'=-a+ib B=a—ib B'=-—a-—ib.

The unique complex Mobius transformation T, carrying A, B, linto A’, B’, 1
respectively, has the equation

_ar+p
T(Z)——-—--—‘BHOc zeAd
«, B € R (real numbers) at—@=1
a?+b%+1 —2a

o =

= ﬁ: .
V(a2 + b2+ 1)? — 4a? V(a®+ b2+ 1) — 4a?

Let & be the euclidean circle in C with center C; = —p e R (c>1) and
radius \e?— 1, i.e. the equation of &, is

Zrpez+oz+1=0.

For a fixed integer g(g=2), let &, be the euclidean circle in C with
center :

Cz = — ¢ cos (/29) — ¢t sin (z/2g)
and radius V/®—1, i.e. the equation of &, is
2z + o e_(’:/2g)iz +o e(z/zy)i:z‘ +1=0.

Obviously &5, 6, are orthogonal to the unit circle 34 (2z = 1). Now we assume
that the point B belongs to the intersection &;n &,. As a direct consequence,
we can express g,a, b as functions of g.

If @ is the origin of C, let @B be the straight half line in C beginning at @
and passing through B. We denote by H the intersection point between ‘(@B and
- the straight line with ends C; and C,. The triangles C, @H, C,BH, C; @H and
C;BH have a right angle at H. We compare the triangles C; @H and C,BH
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which have the side CyH in common. Then we have

@ C H ="V¢*—1 cos(z/4g)

in the triangle C;BH and

@ C1H = sin(z/4g)

in the triangle C; @H. Equating (1) and (2) and using the formula
cos (/29) = cos? (x/4g) — sin® (z/4g), we can determine p uniquely as a function

of the fixed integer ¢, i.e.

cos (=/49)

\/ cos (=/2¢) .

By simple geometric arguments, the following relations are also true:

3 o=

¢, OH = C, OH = HC,B = HC, B = =/4g
(/) C, 0C,=x/2g C1BCy=r—=/2g
HC, 0 =HC, @ =x/2— /4y

OH =pcos(n/4g) HB ="\~ 1sin(z/49)
N ‘OB = OH — HB = \/cos (z/29)
sin (=/4g)

\/ cos (z/2g) '

C.B = CyB =radius of 6,(63)=

This implies that

4) a=— OB cos(x/49) = — \/cos (x/2g) cos (=/4g)
6)) b= OF sin(z/4g) = + \/cos (z/2g) sin (x/4g).

If K is the intersection point between ¢, and the real axes, i.e.

cos (x/4g) — sin (z/4g)
= = iy 4 T
K \/cos (n/4g) + sin (x/4g) Veotg (e/4g + /4

it follows that T(K) = — K. Moreover T carries each point z = y +ic € G into its



[5] MOBIUS TRANSFORMATIONS AND FURFACE GROUPS 11

symmetric 2’ = — y +1c € &{ with respect to the imaginary axes, &/ being the
circle of equation 2Z —pz —¢z+1=0 (see fig. 1).

Imaginary A
" axes

Fig. 1.

Using (4) and (5), we also have

a?+b2+1 _ 1+ cos (v/2g)

a/ B= =
—2a 2V cos (/29) cos (x/4g) ?

since 1+ cos(x/2g) = 2 cos?(x/4g). Thus we can write the equation of T as
follows

R+ 1

T@) = 2+p

zed.

Let now P, be the regular 4g-gonal region in 4 whose internal angles are
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equal to =/2¢g and whose vertices are the following

®  By=—\/cos (=/2g) cos( (%4; D ) —iVeos (/290 sin (2k4; Do

keZ, —29<k=<2g.

Obviously B_;=A, By=B, By,_; =B and By, = A’. The 29 complex Mdbius
transformations (also named translations) of A, each of them carrying one face
of P, into its opposite face along lines joining the mid-points of pairs of opposite
sides, are

(7) Th = R—h:/2g TR}L::/Zg (h= 1; 27 EER) 2g)

where Ry (z) = e® 2 is the rotation around the origin @ by the oriented angle ©.
Here we adopt the convention that UV means «apply first V, then U». Thus we
have

oz + e(—ILz/ 29) i

pre _ e
/29y 4 zed det(T},) =0—1.

® TIL (z) =

The surface group G, is the subgroup of ./ generated by 7, T, ..., Tg
The regular 4g-gonal region P, is a fundamental region of G,. The set of all the
images S(P,), S € G,, gives a regular tessellation IT, of type (49, 4g) in 4 (also
compare [1], p.52). There are exactly 4g tiles S(P,), S € G, at each vertex of
II,. The area of P, is 4(g — 1)=. The quotient space 4/G, = P,/G, is the closed
connected orientable surface ¥, of genus g, which is triangulated by a complex
with one vertex, 2¢g edges and one face. Furthermore G, is the fundamental
group of Z,. The relations of G, are obtained by running around each vertex of
P,. By simmetry we have exactly one relation which is studied in the next
section.

The transformation 7}, (=1, 2, ..., 2¢9) has two fixed points:
£y = e 20 g = — oM 2  guch that & , € 84 (j =1, 2) and & ), = & ;. Thus
the equation of T, may be written as follows

z’_EIh Z_Elh
1 =Kh 3
zl“EZ,h ( ) z—52,h
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where

h=/20)1 ¢
, P_e“/g)l‘:l,h
2’ =T K(h) = TP
p—€ e 152,h

is the multiplier of T} (see [2], p. 15). The value of K(h) determines the charac-
ter of the transformation, i.e. T) is a hyperbolic transformation since
K(h) = (o = 1)/(o+1) is real (see [2], p. 18). Note that the transformation T7
(T}, repeated n times) has equation

2 =& o—1.,2—&,
=& etl’ 2-&,
whence
. [(1 + p)n + (P . 1)71‘] 2+ (1 + p)n e(—h::/Zg)i _ (P _ 1)n e(—h,—:/2g)i
Th (z) = :

[+ o) elh=/29)i _ (o — 1) e(h,—./zg)i] 2+ 1+ p)n + (-1

Obviously 1i7rln Ty =identity since li7an K"(h) =0.

The isometric circle I, (see [2], p. 23) of T}, (i.e. the complete locus of points
in the neighbourhood of which lengths and areas are unaltered in magnitude) is
given by the following equation

(h=/2g) i
e e

Ih:i 2 2+ 5 !=1
F-1 -1

and therefore
I 22+ e /iy 4 e he/20iz 11 = ¢,

Thus I;, is the circle with center —ce™?)! and radius (2 — 1. The isometric
circle I, of the inverse transformation T;! is given by

(h=/29) i
. | € _ e _
Ih' P2_1 2 02~1I—1

h

whence
I 22— pel™ig— el h/2iz 4 1 =0,

Thus I; has center o e"*/21 and radius ¢® — 1. The equation of the straight line
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through the centers of the isometric circles is
(9) e(hr:/Zg)iz . e(—lL,-:/Zg)iz =(.

Let L be the straight line orthogonal to the line (9) and containing the mid-point
between the centers of I, and Ij. Then the equation of L is
e=/20iy + oh5/2)i7 = 0, Let J;, and J, be the inversions (see [2], p. 10) in I,
and L respectively, i.e.

—p e(—hﬁ/Zg)iE -1

JIh (2) = JL (2) = — e(-—h:/g)igl

z _I__oe(hz/2g)i

Then the transformation 7}, is just the composition J;,J,, i.e. it is equivalent to
an inversion in I, followed by a reflection in L.

3 - The relation

The relation of the group G, is the following
10) T\ Tt o Toyo 1 Tog T Ty . Tt 1 Toy =1

where [ is the identity of A. Here we directly compute (10) by using the equa-
tions of the generators Ty, T2, ..., Ty, of G, (see (7), (8)). Substituting in the
left side of (10)

Ty=F puyog T Ryrpoy T™'=R.TR,

we obtain

R_x/ggTR:/ggR_gz/zng TR—RZ-/Zg ...R 29—1 RzTR:RZQ—l R 29 TR2g
__.._zg = % = 2" 57:

= R—::/Zg (TRr:'—z/Zg )4gR:/2g .
The fixed points of the linear fractional transformation

— ol/29)i
_ _ Tee ¥zt
S@) = (TR z)@) = — Wiy, e

= 1 e s = \/20s (x/2g) /91
\ cos (z/2g)
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Thus the multiplier Kg of S is given by
Ko = [ .

o= Vers G2 _
= = e

e-ne 1 /g

\/ cos (=/2g)

whence S is an elliptic transformation (see [2], p. 19). The transformation S*
(S repeated 4g times) has equation

2 — z—
N2

so that S% =17 (identity) since K¥ = ¢* = 1. This proves the formula (10).
The isometric circle I of S is given by

) _e(—=/2g)iz +P
s (= + 1) et-/20)1

=1

whence
Ig: 22— pe "2y pe&/2iz 11 =0,

Thus 5 is the circle with center o™’ and radius ¢? — 1. Let now J, and J; be
the inversions in I and I (straight line of equation e("72iz + ¢&/20i7 = () re-
spectively, i.e.

o e2miz _ 1

Ji () = J,(2) = 721

Z—p /201

Then the elliptic transformation S is equivalent to an inversion in I followed by
a reflection in [, i.e. S=J,Jf.

4 - The composition law

In order to obtain the equation of an arbitrary transformation of the group
Gy, we shall now consider the successive performance of the complex Mobius
transformations Ty, T, ..., Ty,. First we introduce some notations to simplify
the writing of the formulae. We use the symbol [a;; as] to represent the most
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general transformation

., mz+as
alm e la; P —lag [P0
22+ a
which carries 34 and 4 onto itself respectively. Thus, for each h =1, 2, ..., 29,
we set

Th=1[ o e(hz/Zg)i 1
Let now C7 (f = n) be the set of all the simple combinations of #» elements taken

C, n
t to t. We use the notation 2, to represent a sum taken over all the sim-
15 Q25 -y Gt
ple combinations (q;, ¢z, ..., q;) € Cf#, where ¢, <@ <..<gq,. Then we
have

(6% + e m/201) 5 4 or/2)i o o(~Tan/2)

Ty 0, =T),Ty,(2) = - . .
1572 nT e (o alu=/29)1 4 0 /201y 5 4 oW =ho)=/20)i 4 o2

whence

Thl,h2 — [92 + e((he—hl)n/zy)i; P(e(h;n/zg)i + e(hgz/?g)i)]_

Going on like this, we easily obtain

C,2p

C,2p
Tty = P+ 872, 0PN 1 9 5 ety
)T 1y qop

C,2p C,2p
92p~1( > e(hrn/Zg)i) +p2;v—3( > e((hrhﬁhz)z/?y)i)
T

8,7t

C,2p
+...+o( > e((hql_hqz‘*‘~-+hq2,,_,)r/29)1)]'

q1y -2 Qop—1

This also yields the formula for the odd case since Tj, . 4.,

= Ty, ooy iy Thigpe

5 - The tessellation II,

In this section we give a recurrence formula to obtain all the vertices of the
regular tessellation 17, induced on A by the group G,. Let us consider the ver-
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tices By, _; and By, of Py, i

Byg_1 ="V cos (z/2g) cos (z/4g) — i \/cos (=/29) sin (x/4g)
Byg =V cos (z/2g) cos (x/4g) + i \/cos (z/29) sin (x/4g).

Obviously By, and B, belong to the circle 6{ whose equation is (see
fig. 1

22—z —pz+1=0,

If « is the real part of z and iy is its imaginary part, then &/ is also represented
by the equation

(11) w2+ y? =21 +1=0.

Let now X, Y be the points in which the circle ¢] intersects the unit circle 54
(;z=1), i.e.

x = Yeos(/2) +1 tg (=/4g) y = Veos&/29) te (x/4g).
cos (z/4g) cos (z/4g)

Now we ecalculate the value of the cross-ratio

BZg_X BZQ—I_Y
Bzg“Y B2g—l_X

[X, Y; BZg: BZg—1]=

We have

[X, Y: B2ga BZg—l]

\/ /29)
03 (/2g) cos (x/dg) — Y0 &/2%9) Y2 124 [V eos (</29) sin (x/4g) — t (=/4g)

0s (z/49)
V ©/29)
[V cos (z/2g) cos (-r/4g) co? ( /i ;q P+ [V cos (=/29) sin (x/4g) + tg (=/4g)P

_ cos(x/4g) ~\/cos (x/2g) _e—1

cos (z/4g) + Veos (=/2g) °T1

since cos (z/29) + 1 =2 cos?(x/4g) and p satisfies (3).




18 A. CAVICCHIOLI [12]

Let now X, be the point of the circle &; such that
a()(k ’ BZg) = ka(B2g-1; Bzg)

where ¢(A, B) denotes the hyperbolic distance between the points A, B e 4.
Since the Mobius transformations of the surface group G, preserve the hyper-
bolic distance, an arbitrary vertex of II, n ¢{ must be a point X, for a suitable
integer k. Then we have

8(Xk7 BZg)zlog[X: Y} Xk; B2g] =k8(B29—lr BZg)

=k10g[X, Y) BZg’ ng_1]=10g[X, Ya BZg; B2g—l]k

whence X, Y, Xi, Byl =[X, Y, By, By 11 = (1)
I

Xk—.X_(p—l)k BZg_X‘
X~ Y ‘o+1’ By—Y

By an algebraic calculation and making use of some trigonometric formulae, we
can obtain the point X, = a; +1 y,, expressed in terms of o and k. The real part
x;, of X}, is given by the following formula

— 1yk+1 2k +1
a2 5y m (o= 1**14(o+1) _
p[(P_1)2k+l+(p+1)2k+1]+2(P+1)k+1(P__1)k+1

Since X, belongs to &7, the pair (x;, y;) satisfies (11). Thus we find easily
that

Vi~ 11+ DP* 1 = (o - 1P+

= p[(p_1)2k+1+(p+1)2k+1]+2(P+1)k+1(P__l)k+l )

(13) Y

Putting o = (o — 1)/(p + 1), it follows that p=1+0)/(1—0),p—1= (20')/(1 —a),
e+1=2/1—-0)and V2 —1=(2V5)/(1 — o). Substituting these relations in (14)
and (15), we obtain

1_ 1+ 2k +1
12y 2, = 1= +e*7%)
A+a)A+ 2Ty +45,+1

2-\/;_(1_0_2k+1)

13)’ =
13) Ye A +o)A+ZH)+455+!
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_ cos (z/4g9) — "/ cos (z/29) .
cos (x/4g) + 'V cos (/2g)

Now we give a recurrence formula to obtain all the centers of the circles or-
thogonal to 94 and containing sides of II,.

Let & be a circle which is orthogonal to the unit circle 34. The equation of
G has the form

(14

(15) 22—C2—Cz+1=0

where C is a complex number. This circle has center C and radius \/|CJ? - 1.
Since we shall be interested only in real circles, we shall require that [C[2> 1.
Let now &; be the circle obtained from & when the complex Mébius transfor-
mation T}, (see (8)) is applied.

Substituting in (15) the relations

_pz'+ e(—hz/Zg)i .__P‘é'l_*_ e(hz/2g)i

2=T7 @)= z=

e(hn/2g) i 2! e(—h,-:/2g) i z’

-e -P

the equation of & is

(92 + 6.0 e—ha/20)1 o Co olhe/29)1 . D'z~ @p =201 'C‘Pz + Ce(h:/Zg)i)z:

~ QoM O+ Ty + 2 + CoeM/20i 4 Cpelt/20if 1 = ¢,
The center of & is given by the following recurrence formula

2o eh=/2g)i . C e-hefai 4 sz

16 ] = .
(16) Ci 1+C o eCh=291 4. o o els/291 4 pz

In particular, let now 6 be a circle which contains a side of the fundamen-
tal region P, of G, (ke Z, —29 <k <2g). The equation of &, is

z'é _Pe(“kr:/Zg)iz __Pe(k:/Zg)i‘é +1= O.

Obviously & has center C;, = pe®/*)1 and radius \/p? — 1. Using (16), the cen-
ter Cj ; of G ,=T,(6}) is given by the following formula

3 olkr/2g)1 (—h=/2g) 1 (—(k +2h) =/2g) i
e +2p¢€ +ee
(16)' Cii="~ — - .
’ 1 +P2 e(—(h+k)7.‘/zg)l+‘02 e(—(h+k)7r/2g)l+92
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so that the equation &  is
(6 + P el - R D2y 2o+ RT/20) 4 1) 515
_ (2 0 elh=/201 4 93 eka/20)i | 0 e((~k+2h) :/2g)i) 2!
—(p e/ 4 3 b2 g o o=t M2y 50 4 ]
4P @Dy 2 (O RIT/2i 2

Relations (12)', (13)’, (14), (16), (16)’ allow us to study by recurrence the dis-
tribution of all vertices of the regular tessellation II,.
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Riassunto

Si descrive una semplice costruzione geometrica dei classici gruppi delle superfict.
Come conseguenza, si determina Uequazione di una qualsiasi trasformazione di questi
gruppt. Infine, st ottengono formule ricorrenti per rappresentare, mediante computer, le
pavimentazioni regolari indotte dai suddetti gruppi.
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