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S. DONNINI and G. GIGANTE (%)

Classification of left invariant CR structures
on GL* (8, R) (*%)

1 - Introduction

The aim of this paper is to classify the CR structures on GL (3, R) which
are invariant by left traslation. By an invariant CR structure on a real Lie
group we mean a CR structure such that all left multiplications are CR trans-
formations of the group. In the frame of Lie algebras, the problem becomes the
following: let & be the complexification of the real Lie algebra &, then we ask
for the complex subalgebras ¢ of & such that

gnzqg= {0} gD g has codimension 1 in &

where 7 is the complex conjugation of & with respect to &,.
Such a subalgebra defines CR structure on & that is a subspace I~ of codi-
mension 1 in &, and an endomorphism J: J — J such that

JE=—id
X, Y1-JX, JYleg it X, YeT
J(X, Y1-UUX, JYD =X, Y]+[X, JY].
The relationship between J and ¢ is given by
g={X+iJX: Xe T}
(*) Indirizzo: Dipartimento di Matematica - Universita, via Massimo d’Azeglio 85/A,

1-0521 Parma.
**) Ricevuto: 24-VII-1990.
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Two invariant CR structures ¢, and g, (respectively J; and J;) are said to be
equivalent if there exists a Lie endomorphism o: & — & such that oq; = ¢, and
to = g7 (respectively a Lie endomorphism oy: &y~ &y, such that of; = Jp).

In papers [3], [4], the reader can find many results concerning the analogous
problem for complex invariant structures. The case of CR structures has been
studied in detail for compact Lie groups and homogeneous compact manifolds
by H. Azad, A. Huckleberry, W. Richthoser in [1].

In [2] it is given the classification of a class of CR invariant structures of a
Lie group of first cathegory. Here, we want to give the classification for the
simpliest group which is not of first cathegory: GL™ (3, R), in order to under-
stand better what happens in these groups and to look in detail the role plaied
by the center of the Lie algebra in the construction of CR structures.

2 - Preliminaries

We refer to the paper of T. Sasaki quoted in [3]z, where the author gives the
classification of complex invariant structures for 3[(8, R). There, the reader
can find a clear discussion of the decomposition of 3l(8, C) in roots which re-
spect to Cartan subalgebras. We will use here the same notation as Sasaki and
report only the necessary materials for our computation.

3l(8, C) has two conjugate classes of Cartan subalgebras represented by
7 = R{hy, hy} and n, =R{iH;, iH,} where

hy=Ey—Ey he=FEo— Es
H, = “;’(Em—Elz) Hz="%(E11+E22—2E33)

E; being the matrix with 1 in the (i, j)-th component and 0 in the others.
The roots of 8[(3, C) with respect to the complexification #$ of »; are
real.
We report here a basis of roots vectors with respect to »5:

e, = ‘*L(Els'*'iEzs) e = % (B +1E3,)

¢ 2

%

e, = %(i(Em +Eop) + (Eyy — Eg))

e_, = Teﬁ e_B = 7€, 6_7 = TeT .
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Furthermore, denoting H, = [e;, e.;] for positive ¢ we have
HaiH1+iH2 HE=H1"iH2

from which se see that «<H, = —H,.
The values of roots are given by

alH,)=2 alHg) = —1 BH,) = -1 B(Hp) = 2.
It will be useful in the following the bracket relations
le., el =e, leg, e-,1=e, le-,, el=e
le—., e,]=¢ le,, egl=¢, le—., e5l=—e_,.

Any maximal parabolic subalgebra of 3((3, C) is conjugate under an inner
authomorphism of &, to one of the following

pa:=77c+c{ea’ 8‘3, 67’ e——a} pﬁ=77c+c{ea7 eﬁ’ 67,, e—ﬁ}’

When 5C = y{ the corresponding parabolic algebras p coincides with wp; when
n° =5 then dim (p Nn<p) =4.

Moreover, we recall the following useful propositions.

Proposition 1 [4]. Any maximal proper subalgebra of a complex
semisimple Lie algebra is either parabolic or semisimple.

Proposition 2 [8],. 33, C) cannot contain a semisimple subalgebra of
dimension greater than three.

Thus, any complex subalgebra ¢q of 3{(3, C) of dimension greater than 3
must be contained in a parabolic subalgebra p. Moreover, up to =-stable equiva-
lences o of 8l(3, C) we can assume that p is one of p,, ps. Let’s note that if
dim (g N 7q) <1, then we can suppose 7°= r5.

Since the involutive automosrphism X — —XX, transforms p, in ps, any complex
subalgebra ¢ of 8l(3, C) of dimension greater than 3 and such that dim(gn @) <1
which is contained in p, is equivalent to one contained in p,.
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3 - Classification of left invariant CR struectures

Now, let’s remind that gl(3, R) =RI® 3[(8, R) where I denotes the unit
matrix. Let ¢ gives an invariant CR structure on gi{(8, R); i.e. ¢ is a complex
subalgebra of gl(3, C), ¢ nrq = {0} and dimqg =4. We shall consider separate-
ly the following two cases:

) I¢g@rg (in particular we have gl(3, O)=¢®@ ¢ @ CI)
(i) leg®<q.

Case ().

Let’s intersect ¢ with 3[(3, C); then, either =g n 3l(3, C) = 7q and ¢ gives
an invariant complex structure of 3[(3, R) or ¢ 318, C)=1n where » is a
complex subalgebra of 3((3, C) of dimension three. If this last case occurs,
then tn is contained in =n™* where »* is the complex subalgebra of 3l(8, C) of
dimension 4, given by

¥ = (e @ CI)n 3l(3, C).

Now, it is easy to see that »* n wyp* = {0}, that is »* is an invariant complex
structure of 8{(3, R). So, given such a complex structure n*, we look for invari-
ant CR structures in gl(8, R) in the following way: start from any complex
subalgebra » of dimension three in 5* and consider » @ C(N + aI) where N is an
element of »*, which does not belong to » and a is a complex number.

Case (ii).

Since I € I, we can consider the following element of 31(8, C)
V = (trace (JI) 1 —3JI.

Thus, V ¢ n @ ) where v = 7q¢ n 8[(3, C), (dimy = 3), moreover mp* = @ CV
is a subalgebra of dimensione 4 in 3I(3, C) since [, Vlcw and
dim (n* N %) = 1.

Viceversa, starting from a complex subalgebra »* of 8l(8, C) of dimension
4 such that dim (»* N 7y*) = 1, and any subalgebra 5 of »* of dimension three
such that » n 7y = {0}, and any real vector V belonging to »* n mn*, we get the
following CR structures: ¢ = n @ C(I— ¥V + al)) Va e R.

We want to look now for equivalences between CR structures.
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Let o be a r-stable Lie authomorphism of &, then it is obvious that «(I) = rI
for some » € R* and that +(8l(8, C) c 38l(3, C). Viceversa any r-stable Lie au-
thomorphism of 31(3, C) can be extended to gl(3, C) putting «(I) =71 for
some real r# 0.

It is evident that the CR structures arising by cases (i) (ii) are not equiva-
lent, so let’s study them separatly.

Case (i).

We have two types of inequivalent CR structures arising from q c 8[(3, C)
or ¢ ¢ 81(3, C). For the first type, the problem of equivalence is reduced to
that of corresponding invariant complex structures of 31(3, R); therefore it
has already been solved in [3],. For the second type, it is obvious that if ¢ and ¢’
are equivalent in gl(3, C) then the corresponding complex structures of
8l(3, C) »* and »*' are equivalent in 3I(8, C), but starting from a complex
structure, we can get many inequivalent CR structures as we will see in a mo-
ment. Sasaki has classified the complex structures of 31(3, R) in two isolated
algebras II and III and a family I(3) with |A| <1. We will see what happens
starting from each of them.

CR structures arising from I(2) = {H,+ AH,, e,, €, e,}. Since the subalge-
bras of I(2) of dimension three are {e,, €;, e}, {e., €,, beg+H, +2H;} and
{es, e,,be,+ H, +xH,} thus we get the following CR structures

AQ, $)={H,+2H;+5sI, e,, e, e} A <1 se P
where & = {¢¥: —%<19$~27£},

B, s)={e,, e,, beg+2H, + H,, eg+ s} se P,

Note that, if b # 0 B(b, s) is equivalent to B(1, s’) for some s’ € <£; all the other
CR structures are not equivalent.

CR structures arising from II={H,+2H,, e,+e_,, ¢, e,}. Since the
subalgebras of II of dimension three are {e,+e_,, e, e} and {e; e,
ale, +e_,) + H, +2H,} thus we get the following CR structures:

II(s)={e,+e_,, e, e,, H,+2H,+ s} se &

II(b, s)={es, e,, ble,+e_,)+H,+2H,, e, +e_,+sI} se & becC.
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Note that II(b, s)is equivalent to II(—b, s); all the others CR structures are not
equivalent.

CR  structures arising from Il ={Z =3H,+2H,—3(e, +e.,)),
U=3H,+2H;+e,+e_,), V=—H,—e +e  +te,—e, W=H,+te,~e_.te
—e,}. The complex subalgebras of dimension three of III are easily seen to
be

{Uu, v, wi {U, £V+W, Z} {V, W, bU+Z}
{(V+oU, bU+W, -3U+Z} {Vv+bU, -bU+W, -3U+Z}.
From the first one, we get a family of CR structures
HI(s)={U, V, W, Z+sl} se £.

The second one gives no CR structures, while the last three cases give the same
CR structures

I, s)={V, W, bU+2Z, U+sl} se £ becC.

For the equivalence between the CR structures above, let’s make only a few
remarks. In cases B(b, s) and II(b, s) we have used the authomorphism o, ; of
813, C) with r € R* and k € C*, which will be often used in the sequel:

e,— ke 6—)"“_16 e, — —é€ e_,—> s€_
(3 (-3 B k B Y k Y o ) «
e_g— ke e_,— € I—-7I and fixin
-8 -8 —y Lo 7 gn .

Moreover since B(1, s) arise from I(3), it remains to look that there are not
equivalences s between B(1, s) and A@, s').

Computing «((H,, e,]) and o([H,, e]) it is easy to see that it should hold
ole,) = Ae, and o(e,) = Ce,+De, with |D|=1. By o(les, ¢,)=0 and
o(le.,e]) =0e, we get C=0 and oH,)=H,; then it would be o(g,)

bed

= Fe, + %eﬁ + sr1 for some E where o(I) =71 and o(H,) = %Hﬁ, which would

imply A =D =1. So n° should be fixed by ¢ which would imply s =0 while
se L.

Furthermore, any equivalence between II(b, s) and II{(b', s') would imply
an equivalence between 8I(8, C)NII(b, s) and 33, C)NII(b', s'), while
they are not equivalent as abstract Lie algebra (of dimension three) unless
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b= +b’. The same holds for algebras of type I1I(b, s). II(b, s) is equivalent to
II(—b, 8) by o_; —1. While ITI(b, s) is equivalent to III(—b, s), the isomorphism
being given by:

e,—> —e_g eg—H,+e,—e_,+tegte,
e.f—> e.._ﬁ"l'e_), C_,—> —Hﬁ+ea—6ﬁ+e],+6._ﬁ
e_g— —e, e_,—e,te, H,—»-H,+e,+2eg

H‘B‘—> —Ha_e_‘g"zea .

Let’s finally remark that III(s) cannot be equivalent to III(b, s) since
{U, V, W} is not isomorphic to {V, W, bU + Z} (their derived algebra being of
different dimension).

Case (ii).

In order to study case (ii) we need first to find the subalgebras »* of dimen-
sion 4 in 3[(3, C) such that

dim (n* n ™) = 1.
As we already noted in the introduction, we can assume that
wm* c{H,, Hy, e,, €, €5, €,} =D.
Moreover we shall have
¥ N = {H + ae, + ae_g} H=H aceC.

It is easy to see that if dim (z* N {e,, ¢, ¢,}) =2 then e, € w*. So, we suppose
first that e, € =v* and we find, after routine computations, the following possi-
bilities for =*:

e (U=e, V=26, W=e¢,, Z=H)
@) (U=e,, V=6, W=2H,+H,, Z=H+ae,+0de_s}
B(H)

® {U=e, V=e, W=Hgz— =4 e_g, Z=H+ae,+ae_g}

a
_|.. [
BCH)
where H = H.
When dim (=* n {e,, €, ¢,}) =1, and e, ¢ =*, we find the following possi-
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bilities for wn*

(1)’ {U“—‘eﬂ, V=Aea+e_ﬁ, W=H5—Aey, Z=Ha_HB} lA];El.
@ (U=Ae,+e,, V=A"¢,+ —j—zeﬁ+e_ﬁ, Z =H+ae,+ae_,, W=K+Te,)

ApH)+a=0 AA'a(H)=a K=2H, +H,
T=344" H=sH,~5sH, ls|=1.
@' {U=Be+e, V=A'e,+e, W=BH,—A'Be,+e,, Z =K+ Te}
K=H,+2H, T =3BA’ B#0.

In this last case, we can take V as real vector when |A'| =1, while, when
|A’| # 1 the real vector can be chosen to be

H,— Hg+me, +me_; mA’—%=w_7,.

Now, we have to find the subalgebras 5 of dimension three of »* such that
nnw={0} and [y, n* Nnwn*]cy, afterwards take {5, I+4(Z* +al)} where
Z* e p* nay* is real. We will write down the CR structures arising from cases
1,2,3,1, 2", 3 keeping in mind some obvious equivalences given by the autho-
morphisms of type o, ;. Let’s denote H, = sH, — SHy where s € &; now we get
the following CR structures:

Case (1).

Aa, )={U=¢e,, V=2¢, W=e,, I+iH,+al)} with a e R.
Case (2).

Bla, d, s)={U=e,, V=e, W+dZ =2H,+ Hy+ d(H; + e, + e_p),

I+uH+e,+e_g+al)} with d e C, aeR.
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Case (3).

1
G, s)={U=¢e,, V=e,, W=H;—f(H)e;+ Me_ﬂ,

I+iH;+e,+ez+al)} with a e R.
Case (1)'.
A'A, a)={U'=¢, V' =Ae,+e_,, W =Hy— Ae,,

I+i(H,~H,+al)}  with aeR, A=0, A#1.

Case (2).
! I ! T 1
g)i (C, a, S) = {U =ea"ﬂ(Hs)e7,, V =I{B+ ‘B(Ts)e_ﬂ_ﬁ(Hs)ep,
W' = c@H, + Hy+ ——0) + (= —2—0, + B(H,) e+ ———ec_
* ? a(Hs) * a(Hs) * 8 ﬁ(Hs) #

1+iZ' =1+iH;+e,+e_s+al)} where a eR, ceCux;

. 3 ! = 3
in the case ¢ = » being W' =2H, + Hp+ a(H) O

Case (3)'.
' A, a)={U'=¢+e, V'=A¢,+eyz, W =H;—Ae, +e,,
I1+i(H, — Hp + me_g +me,) + al)} where a eR, mA=m+38, |A|=1, AeC.

The dimensions of the first and second elements of central series of algebras
1) @) 3) (1) (@) exclude any equivalence between different families except for
types (2) and (2)' for which we can do the following considerations.
Since their derived algebras are spanned by U, V and U’, V' then if there is an
equivalence o, it must be oU=aU’'+bV’, oV =1IU'+kV’' and of course
oZ =oZ' p € R. By o[U, Z] we get a(H,) = of(H,.) which implies either s’ = —s
and p=1, that is s’"=s=iand p=1or s'=5 and p= —1, that is s' =s and
¢ = —1. Computing o[U, Z] and o[V, Z], it is easy to see that it must be p = -1
and JU=aU' —Q+aH)HV"), V=UU"+H;)—1V'). Moreover, by
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oddW+dZ, Z] and o«[W+dZ, U], we get 3+a(H,)d=0 or 3c=1. But if
3+ a(H,)d =0, then it would be also

_ __3a p 3a
d(W+dZ)= —-——a(Hs) U+ )

(«(H)+DV’

which is impossible. If 8¢ = 1 then

3 ., . 3+aHyd_
oW +dZ) = = U+ BV + ——
_3+aH)d 3
where B=—7 D CHI D).

Computing o[V, W+ dZ] one gets d =0 and by o[V, U], we can conclude
that there cannot be equivalences between class (2) and (2) (same caleulation
can be done for ¢ = ),

We study now the equivalences between algebras in the same family.
Case (1). It is easy to see that there are not equivalences.

Case (2). Any equivalence o between @B(a, d, s) and FB(a’', d’, s’) must
be of the following type (since the derived algebra is given by {U, V}):

e,— ke, e,— Ce, + %ey H;+e +teg—rH,, e, +e_p)

with r e R.
So oH=rHy+(r—k)e,+(r—k)e,. Now, computing o[H,, e,] and
o[H, e_p] we find H;=rH,, that is s=5s' and r=1. Computing ¢H, and

olH,, H,], we obtain either H,=1iH, and C = i%(l —k), C+#0, or C=0 and

k=1. In the last case, the Cartan subalgebra is fixed by o so
oW+dZ)=W+dZ. In the first case s=1i; computing o[U, W+dZ] and
oV, W+dZ] one obtains d=d'.

Case (3). Proceeding as in Case (2) (since the second derived algebra is given
by {U, V}) we get s=s' and r=1.
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Case (1)'. Let's compare £'(4, a) with Z'(A",a’). By
o(H,— Hy) = r(H,— Hy) with r€R, it must be [«(H;— Ae,), H,—Hg] =0 so
o(H;— Ae,) = k(Hy— A’ e,). Computing ole;, Hy— Ae,] we find two possibilities
for o: or eg = leg and k = 1 or oe; = (A" ¢, + e_p) and k = —1. Now bracket rela-
tions involving V' = Ae, + e_, show that [ must be real and A= +A".

Case (2)'. Let’s compare 9B '(c, a, s) with &' (c’, a’, s'). If c= —3% and
s =1, then the derived algebra is spanned by U’ +BH)V' =U'+V'. In all
the other ecases, it is spanned by {U’, V'). It is easy to see that, if ¢ is an equiv-
alence thus

o(U") = le,— B(H, e, o(Z") = 1(Hy + e+ e_s)

with ry(H:) = y(H,) unless s’ =1i and r = 2Ims. Computing o[V',Z'] we get
18(H,) = B(H,) from which we have s’ =s, r=1 and

a(V') = Cle, — B(Hy") e,) + D(Hy + e_p— B(H,) eg)

_1
ﬁ(Hs’)

with Ca(H,) = 1~ D. If s’ =i and r = 2Ims, arguing on ¢! as it has been done on
o, we have s=s’ and o(U") = (e, — B(H,") ¢,). Computing now o[U’, V'] and
ofV', W'] one gets c=c¢’'.

For what concerns Case (8), these algebras &'(4, a) are equivalent to
those of Case (1Y £'(A’, a) by the following equivalence:

[m”

e,—> %ea eg—> k(e — %ze_ﬂ+ %Hﬁ-— %er— —9—“&)
e,— %(er+ %ea) e kle_,— %2e<,~ %@-H“— %6_7— @e_ﬁ)
e_p—> 71;3_,, e_,—> %(e_r+ —?—e_ﬁ)
H,—-H, + %W@a+ %e_ﬁ Hg— Hg— %me_V— %ea A= %A.

Then we can conclude with the following
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Theorem. The inequivalent CR structures on GL™ (3, R) are given by the
Sfollowing

AQ, 9) Al<1 BQ, s) B, s)
II(s) 1I(b, s) beC Reb>0 or Reb=0 Imb=0
III(s) III(b, s) se &#.

Moreover, for the second group case (i) we get for a e R and s e &#
Ala, 8) ABa, d, s) deC G(a, s),
A (A, a) A=0 A#1 @B' (e, a, 8) ceCuom,

The first class A(}, a) of CR structures, arising in Case (i) and the families
(1) and (1)' satisfy the following condition: there is a Cartan subalgebra X of
al(3, C) and a z-stable subspace X' of X of codimension 1 such that

fg, X'1cq g+wq+X=¢.

All the other families (2), (3), (2)', do not satisfy the above condition, which
appears in [2] as a natural property in the case of a Lie group of first
cathegory.
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Sommario

In questo lavoro viene data una classificazione delle CR strutture invarianti per
traslazioni sinistre su (g{*(8, R).
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