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Uco GIANAZZA (¥)

Wiener points and energy decay
for a relaxed Dirichlet problem

relative to a degenerate elliptic operator (**)

1 - Introduction and notations
1.1 — Aim of the work is to characterize the regular points of the
weak solution of the problem
Lut+pu=v in Q
(1.1)
u=g on a0
where L is a degenerate elliptic operator
Lu= —Di (aij (x) D]'M)
such that
2w(@)|E? < ay (@) & & < Aw)| &

w(x) being a nonnegative weight in A, Muckenhoupt’s class, whereas u
is a Borel measure and v is a Radon measure. (To get a more precise
definition, see, for example, [1] or [7]). In the following H?(Q, w) and
HP(Q, w) are the usual weighted spaces HP and Hf, while L*(Q, w) is

(*) Indirizzo: Dipartimento di Matematica del Politecnico, Piazza Leonardo da Vinci
32, 1-20133 Milano.
(**) Ricevuto: 16-VII-1990.
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the space of (equivalence classes) of square integrable functions with regards
to p measure.

We will consider weak solutions of problem (1.1), that is functions
ue H'(Q, w)nL%(Q, u) such that

Ja;DjuD;v da+ [uv dp = (v, v) Yoe H(Q, w)nLEQ, w).
o] o}

Usually, to shorten the notation, we also denote

QfaiijuDiv dx = agq(u, v).

By B(r, z;) we mean the set of points x such that |z — x| <» while
>, = |#| < Ry and such as to satisfy Q c .. (As a matter of fact >, is a ball, big
enough as to contain the whole Q.)

1.2 — By G;‘ZR,%) we mean the Green function G(z, %) for the Dirichlet prob-
lem relative to L in B(r, x,) with singularity in xy, which is defined as the solu-
tion of

OB, 2) (@ GBlR,z) = 9(%0) Vo € Cy (B(R, ).

Many regularity properties for this funetion are known.

In particular, let us consider the capacity notion, relative to the operator L,
of aset £inQ, EcQ.

It is defined by

cap (B, Q) =inf{a,(, v), ve H}(Q, w), v=1on E}.

Equivalence relations for the Green-function have then been proved by [6]:
they have shown, for example, under certain conditions, that

C
cap (B(’)", y); B(Ro,?/))

C
cap(B(R, ?/), B(R(), y))

K
< Gawy,yp <

where C is a constant independent from ¥, Ry, 7, R.
As we work with operators L, which are symmetrie, we will also use the so-
called u-capacity of E in Q, defined by

Cap#(E, Q)=inf{a{)(v; 'U) +(§f |IU’2 df"E} v—1 EH(}(‘Q; 'LU)ﬁLZ(Q, F/'E)}

for all the sets £ which are admissible for the measure .
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Again, refer to [5] to get a complete definition of admissability and of Borel
measure up, restriction of u.
See, also, [3] for other relations.

1.3 — The regularized Green function G;‘(’R,xo), . is defined as the unique

o — 1 ©
0BR, 20 (P; GB,) = wBG, 7)) B(D,fx ! pl@)wx) d» Vo e Cg (B(R, @))).

When ¢— 0, G5 ,— G5 weakly in H'(B—B(, y), w) and in H'?(Bg, w)
(1< p<2N/(N — 1)) and uniformly in any compact K c Bp — {xg}.

1.4 — By K, (Q) we define the space of Radon measures v such that

(1.2) limsup [ GE@ dhly=0

70 2cQ 0nBO,Y

while K, 1, (Q) is the space of all Radon measures v such that v e K,,(Q"), with
Q' ¢ Q being Q' a domain.
We introduce a norm on K, (Q) defined by

1.3) Mo = sup [65°@) d M.
We can show that K, (Q) is a Banach space with the norm defined by (1.8).

1.5 — Coming finally to our problem, we call regular all the points @ of Q,
where w(x) is continuous and vanishes.

A criterion will be given, which characterizes such points by a Wiener test,
according to a technique developped by Wiener and recently adapted by [6], [7]
and [3],among others, to degenerate elliptic operators.

Ag a matter of fact, if we consider the ball B(r, xp) and we define

V(r) = sup Iu[2+ J IDulngﬁqu,.’xo)’de-l- J ‘ulzG;22q“‘T,xu)dN

B(r, z, B(r, z9) B(r, )

the estimate of Wiener modulus w, will be given thanks to a structural estimate
of the ratio V(»)/V(R;) on two homothetic balls with rays » and R,.
We come up to

V() = K; of VR) + KMk, @
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where w, is the Wiener modulus and K;, K, and 8 are constants which do not de-
pend upon .

1.6 — Let us point out that dealing with degenerate elliptic operators it is
not possible to use the classical Kellog argument on the equivalence of balls and
anuli in the Wiener test, due to the presence of points with positive capacity.
Therefore, in a certain sense, it has been necessary to invert the procedure nor-
mally followed and operate first with the so-called hole-filling and then with the
Poincaré inequality.

2 - Preliminaries
We prove the following lemma (Poincaré inequality).

Lemma 1. Let us consider v e H (B(r, z), w). We have then

@1 | Pwda
B(%—,z)

w(B(E, 2)
<C [ [ |DvPwdz+ [ v%du].

q
cap“(B(g, 2), B(R, z)) B&2 BR,?)

To obtain (2.1), we work as in [2], considering the definition previously giv-
en for cap, (K, Q) and using as test-function

y=1+ ="

We will need (2.1) in proving Theorem 1. We also have

Lemma 2. We choose ¢ as the capacitary potential of B(sR, z)in B(tR, 2)
with respect to L and we prove the following inequality

2.2) | [ ugpGZdv| < Clyllk,mar,» sup |u|
BUR B(R,2)

s Z,

G? being the regularized Green function and v a Kato measure, that is a Radon
measure such as those considered in 1.4.
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The proof is like the one given in [4].

Lemma 3. Let us consider u, weak solution of (1.1). We obtain

2.3) | DuPGhurwdz+uf+ [ u’Ghur,de
B(sR, z) B(sR,2)
a2
< Cit—s9)

< — " wlPwdx+ Cyly sup |u
w(B(R, 2)) B¢r,2 =Bk, 2 [ | ”K"(B(tR’Z»B(tRPz) i

q.e., where B(tR, 2) c B(R,, 2) and s <t, o = 3/2.

Once again, we reason as in [2], taking care of the terms with . and v.

3 - Results

Let us consider

capu(B(r, xy), B@r, x,)
cap(B('r, (L'o), B(27', mO))

3.1 ér) =

R dp
(3.2) w, (%, 7, B) =exp[— f 81

The funetion w, = w, (%, 7, R) is called Wiener modulus of the measure in x;.
It is easily proved that

-

<w, <1.

0<é()=<1

=]

We define the Wiener points as those &, such that
3.3) lim w, (@, 7, B)=0
r—0t

which is equivalent to
3.4 [3@SE = 4oo.

We then obtain

Theorem 1. There exist two constants K> 0 and B> 0, that depend only
on the dimensions of the space we are considering, on the ellipticity constants
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2, A and on the weight w(x) such that

(3.5) V() < Ku, (9, 7, R)*V(R) +Kllv

2
K, (B(E,xp)) *

Finally, we come to the main result of the work.

Theorem 2. If %y is a Wiener point of the u measure, then

(3.6 lim V(r) = xﬁ_{lglco u(x) = uley) =0

r—>0*

that is, %y is regular.

4 - Proofs

4.1 — Theorem 1. Let us assume as test-function in the weak form of
(1.1) v = uG? ¢ being:

G the regularized Green function relative to G* = Giyg, ,;
o the potential of B(sR, 2) in B({R, z) with respect to L.

Let us consider then, what our problem looks like. We have

Qf a; D;uD; (upG?) da +Qf ufoGrdu= (v, uGlp).
We easily obtain

1 1
a; D;uD;upG? + = ——er wiw dx + u2oG*d
B(tIé’:z) 7 P T g w(B(e, Z))B(c,fz) B(mf,z) P

1
<3 J a;DjeD;Giutde— [ ay;DjuD;ouGidz+ [ uGiody
B(R,2) B(R, %) BGR, %)

<-2 [ a;DuDpuGide+ [ uGipdv+i [ a;DieD;2G) de
B(R,2) B(R, 2) 2 Bk, 2

<-2 [ a;DuDipuGida+ (Lo, u?GZ)+ | uGledv.
BUR,2) ; 2 B(R, 2)
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From Lemma 2, recalling the definition of ¢, we get

1
a; D;uD;upG? + wwdx + u?oG?d;
B(mf,z) / ? w(Ble, 2)) B(,jz) B(tér,z) ialhas

<-2 [ a;DjuD;puGidx+ 1 sup |ul®+ ColMx, Sup ] .
B(R, 2) 2 Bar,2 BGR

Therefore, when o~ 0 and knowing that ¢ =1 on B(sR, 2), we have

22 [ |DuPGfwdx+|uf+2 [ w?G*du
B(sR,z) B(sR, 2)

< sup |[uff—-4 [ a;D;uD;
B(R,?) B(R,2)

If we simplify and use in the term on the right hand side the Young inequali-
ty, we obtain

A=x [ DuPG*wdx+uf+ [ »G*du

B(sR, ) B(sR,?)

< sup |ulf+494 sup |uf® sup GFcap(B(sR, #), B({R, 2))

BUR, 2) BGR,?)  9BGR,2
A
+ "y J D G*w dw + ColMlx, Ber,»» Sup |ul.
B(R, z)~ B(sR, ?) BUR,

Recalling the equivalence relation for the Green function, previously dis-
cussed in 1 (see also [6]) we further get

A=< (1 + Cl 7}) sup |’ll/12 + — f [Du]Zsz da+ CO”"HK,,(B(&R,Z)) sup lul
B(R, 2) 7 B(R,7)~ B(:R, 2) B(R, 2)

where C; is a constant which depends only on 7, 3/A, w(x).

Let us choose now t = 1 —gq, s = 2q, q € (0, 1/5) and take in the previous rela-
tion the supremum with z € B(gr, %,) and finally let us take n = y/C;.

If we neglect the first term on the right hand side, we obtain

sup |[uf2+ sup [ u?GFdp<(@+7y) sup |uf?
B(gR, 2) B(R, 2)B(R, 2) B(R, )

C R? 9
+ = su ——e——— Duffwdx+C sup |ul.
Y B(qR,I:co)(w(B(SR, 2) )B(R,m—IB(qR,mo) [Dul OHVHK”Bm,go) i
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By taking into account the equivalence relations for G and acting as in [3], we fi-
nally have

X
sup [ufP+K, J uzGB‘ZZR,xo)d!‘ <(1+y) sup |uf
B(gR, =) B4R, xp) B(R, %)

ca
+ = J DUl Ggior, ey w A% + Co Mk, s,z SUP |l -

Y B(R, %)~ B(GR, %) B(R, =)

From Lemma 3 we then get

sup [ufP=Cyx [ |Dul’Gglep . wda
BB, ) B(aR, %)

where C; <1 can be chosen arbitrarily small. Therefore, for arbitrarly y > 0 (it
will be fixed only afterwards) we easily have

C:x [ |Dul*Gglop ywda+ sup |uP+K, | 4GB, o A1

B(gR, %) B(gR, ) B(gR, %)
2, 614 2%
<@2+y) sup |uff+—— Il |Dul? Gpior, oywdx + ColMlx, sup |u|.
B(R, z) ¥ B@®,x) - BR,zy) B(R, %)

By the usual hole-filling argument, consisting in multiplying the whole
equation by y and then in adding to both sides the term

CiA [ |DuPGgag ywda we have
B(gR, x4)

X &,
(CiA+Co2y) [ |DufGporapywda+y sup |[uf+Kiy [ u*Gger ande
B(gR, o) B(gR, z9) B(gR, %)

sy@+y) Sup [uf+C14 [ |Duf? G zywda+yColMlk, sup |ul.

» %o B(R, o) B(R, %)
We can further estimate the right hand side B in this way

B=<y2+y) sup |ulf+CiAl | lDulzGﬁﬁzq-aR, wyWd
B(R, %) B(R, xp)

Cs R?
i Y 1 S Dulfwdz]+C sup |u
1 wBE. ) B(R’fxo) |Du| ] orllvllx,.B(R’go)l |
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&
= ‘;’(2+ )’) sup |'Ll,|2 -+ CIA f [Du]zGB‘zgq—lR’xo)’M)dx
B(R, 20) B(R, %)

—C, —
* wBR, %)) BE =)

Duffwdz+ CoylMlx, sup |u].
B(R, xy)

Let us apply now the Young inequality to the last term on the right hand
side. It results

CorlMll, sup |ul< Sy sup *lul+yC.|Mf,
B(R, %) B(R, %)

where « is very small and will be fixed only in the following.
Now, from Lemma 1 and taking into account the decomposition shown
before,

= 2
C= ClA -+ Cz )’)\ f |D’M/[2 GB&R’%)U)dw + Y S8up |u|2 -+ YKI f u2 GB(E2R, xo)dp,
B(gR, %) B(gR, 20) B(gR, 29)

<y@+Z+y) sup [ulP+Cia [ |DulGryigepwde
2 B(R, ) B(R, %)

Coreap, (B, a0), BR, a0)
- % 7 [ ulwdex
w(B(_Z—_: xo)) cap (B(_Z_’ x())a B(Ry xO)) B(%,xo)

C
. 6 [ u?dp+ KoMk, e,z

cap(B(%, xo), B(R, xo))B(R,WQ)

where we have put yC, = K, to simplify the notation

C=<y2+ —g— +y) sup |uff+CiA [ |DulfGRypig,mywda

(B, %o) B(R, %)

CeA

C.R?
S 4 § utdut Ko,
%U(B(—i, o))

o2 iR
2 wBER, %)) B, )

Y | uPwdx+
B(%,xo)

and we can also suppose Cg = 10C;C, where C is the constant that appears in
the Poincaré inequality.
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Recalling once again the equivalence relations for G, we can further
estimate

<2+ 3 5 T ) sup lu|2+C1AB( J o Dol Gtagt, o wd

B(R, z)

Ce2 .
—"-6*"—-6(%) | wPwda+AKy [ u?Geyip endp+ KoMk, -
’LU(B( y %)) B(-g-, ) B(R, o)

From Lemma 3 we get

#8(%) [ vwdz
w(B(% ,wo)) BE u)

—10C;

—502)\6(—-) sup Iu]2+5CCglo“(

B(gR, 29)

lul :

Again we take into account the Young inequality for the second term on the
right hand side and we recall that 0 < &(r) < 1. Therefore

50027\5‘(‘“)”"“K Sup [u] <5CC A, Sip Iul\yz sup [l + K, M, -

Finally we obtain

(ClA + CZ ‘)’A) f ]Du|2 G§‘()2R, xo)'l/l)dx
B(gR, %)

+[y+5C2A3(—)] sup |uff+yK; | u®Gpog,zydp
B(gR, %) B(qR, 2o)

<y@2+a+y) (sup Iu]2+ClAB( I ) |Dul? Griog-1g, o wda
»Zo

+KpA [ u®Grigg-ig,aydp+ Ka b,
B(R, xy)

having chosen K; = K, + K.
Let us now add to both sides

C CiA
6-1A sup |u?  and K, [ u’Ghengydp.
Ce Bgr, ) Cs "Bk, w0
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In such a case, we get

(C14+Cey) [ |Dul?Griggeywdw

B(gR, x)
+[CiA + —(y+502w(—))] sup |ul2+[CiA + )Cg] — uzGﬁﬁm,xo)dy
Cs Bgr, =) Cz B(R, %)

= [ClA + Qy(2 +a+ )’)] sup "U,]Z + CIA f ID’LL[Z GB(gq -1R, xo)wdw
B(R, z,)

02 R, %)

C\K;
——24) [ u®Gpogig, ap A + Ks Mk, e, 20y -

+(AK, +
C:  "BR z)

Let us now fix y = C,2¢(R/2) and « such that 2+« +y <3.
It will be enough to suppose a <1—Cy28(R/2) or also a <1 - Cya.
We can then estimate

[CiA+CE Aé‘(—) { |Duf? Gg‘ZZR,xo)w dx
2 "B, u)

+[01A+02w(—)]— sup [u]2+[ClA+C§M(—)]— [ u?Gglop, oy du
B(R, %) C2 B(gR, z)

2
= [ClA + “C‘ég‘)\d\( )] - Sup [u]z + ClA f |Du]2G3(2q~1R wo)ﬂ)dx
B(R, %)

+CIA( 6—) I u®Goegr, e dp + KsM, e,z -
2 BB, ap)
. . . o K
Therefore, if we divide and assume AK, < ?M( 5 C’ , we have

2 6 Kl 2~
f ID’M/l GB(2R xo)'Ll)d X+ F sup |’LL[ + - C f U GB?ZR,:::O) d{.L
B(gR, =) 2 B(gR, %) 2 B(gR, %)
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C2
Cll/l_*_ —22')\6\(‘}2‘2“) .
= { f lD’LLIz G)??Zq“R,:rQ) wda

C, A+ CE ).\a(l;—) B, )

K :
8 sup Pt T G du) + KoM,
Co B®R =) Cs BR )

where the meaning of the constant K, is clear.
Let us now introduce the auxiliary function

. , K ;
VY= [ |DulGpagrrmywda+ 6 sup |[ufP+ =+ [ u®Ghiggtrayde-
B, 20) Ca Bz Ca B,y

If we work as in [3] we get

- Eooey do
V() <exp (—‘B; d(E) ——c—) v(R) + K4“v

2
KYR

where 8 € (0, 1) is a suitable constant which depends only on 7, X/A, w(®), q.
Therefore, at the end we obtain

V(')") = Kwy (SUO , Ty R)ﬁU(R) + K“V”%(n(B(R,.’vg)) .

4.2 — Theorem 2. From Theorem 1 we reason as in [4] and we come to
the sufficiency of the Wiener condition for the regularity of w,.
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Abstract

We prove the sufficiency of a Wiener test for the regular points of the weak solution of a
relaxed Dirichlet problem relative to a degenerate elliptic operator.






