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TiziANA COLLINI LANZI (¥)

Analysis of a «quasi molecular» model
relative to an elastic bar vibrating against a rigid wall (*%)

1 - Introduction

The problem of the motion of a dynamical elastic system subject to a unilat-
eral constraint is of considerable interest and has been studied by various meth-
ods, both from a theoretical and from numerical point of view, especially in the
case of a string vibrating against a rigid wall (see, for instance, [1], [2], [3], [4],
[5D).

A method of approach is to introduce a discrete model which physically ap-
prosimates the problem and to substitute such a model to the original system;
this has been done, for instance, in [5], for the problem of a string vibrating
against a rigid wall.

In the present paper we shall consider the motion of an elastic bar, clamped
at one end, in the presence of a rigid obstacle, represented by the half plane
n=0, against which the bar can vibrate, assuming that the corresponding
shocks are perfectly elastic.

This problem is studied adopting a «discrete» model of the bar, equal to the
one introduced by Greenspan [5];, in which the bar is considered as an aggre-
gate of «quasi molecules» which exercise upon each other attraction and repul-
sion forces, given by empirical lows. The study of the motion of the bar is there-
fore reduced to that of the single «quasi molecules».

(*) Dipartimento di Matematica del Politecnico di Milano, Piazza Leonardo da Vinci
32, 1-20133 Milano.
(**¥) Work supported by grants of MURST (60% e 40%). Ricevuto: 16-VII-1990.
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It is interesting to note that such a «quasi molecular» approach has been ap-
plied by Greenspan also to other problems related to the bar, such as heat con-
duction and melting [5];, obtaining some interesting results which cannot be re-
produced utilizing the classical continuum model.

Following the scheme given by Greenspan, we shall assume that the bar is
costituted by n «quasi molecules» (whose coordinates are denoted by &, ;
1= 1, ...,n) which, when at rest, are placed at the vertices of equilateral trian-
gles; the first five «quasi molecules» P;, P, Ps, P4, Ps, are fixed, while the oth-
ers are subjected to the external force f; and the obstacle is represented by the
surface » = 0.

The <«intermolecular» forces are, as mentioned above, of two types: attrac-
tion force ¥, and repulsion force F',; the first must prevail at «large» distances,
while the second must be stronger at «small» distances. These forces are, ac-
cording to Greenspan, of the form

(1.1 F,.= A" F,=B/r*

where r is the distance of two «quasi molecules» and A, B, «, 8 are positive
costants, determined empirically on the basis of computer experiments; it
must, however, necessarly be, « > 8. In what follows, we shall therefore always
assume that this condition is satisfied.

While, in Greenspan’s works, time is also discretized, thus reducing the
problem to that of an algebraic system, in the present paper the discretization is
limited to the space variables and, consequently, the equations of motion costi-
tute a system of strongly non linear ordinary differential equations.

In the framework set out above, it appears natural to simulate the action of
the rigid wall by assuming that the wall exercises on the «quasi molecules» a re-
pulsion force given by

c

1.2 F.=
12 T

C>0 y>1

where 7; obviously represents the distance of the «quasi molecules» P; from the
wall.

Our aim is to give a global existence and uniqueness theorem for the solu-
tion of the equations corresponding to the model described above and for a simi-
lar one, in which, however, the attraction forces between the «quasi molecules»
are «retarded». The introduction of such a retarded model is justified by the
fact that, while the repulsion forces are «short range» forces, the attraction
forces have a «long range» and therefore can be assumed to act subsequently to
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the repulsion forces. In this way, it is also possible to take into account the fact
that the velocity for the propagation of perturbations inside the bar is finite and
not infinite, as would be the case for «instantaneous» forces.

Obviously, a more sophisticated model should take into account the fact that
the retarded action of the forces depends on the distance of the «quasi
molecules».

2 - Mathematical formulation of the model

Let us introduce some notations which will be used in the sequel.
Let (y;, &) be the coordinates of the «quasi molecule» P; in the (&, 5) refer-
ence plane and

2.1) Ay = \/(m — )+ (& —g)F

the distance between the two «quasi molecules» P; and P;; we shall denote by p;;
and g; respectively the attraction and repulsion forces exercised by P;on P;; the
components of these forces are given by

—a -—-——-——B Nt . . == -_— _-——B . — .
Py = (Aij)ﬂ & EJ) Pyn = (Aij)ﬂ (n 77])

= -——A P . .y — ——_‘A o — . i
Qij,e = (A’L]) o (EI Ej) i, 5 (AU)G (771 7]])

according to what already illustrated in 1.
Finally, 7;, will denote the force of repulsion (obviously parallel to the n-axis)
exercised by the obstacle on P;, given by

c
2.2 _
@.2) = Oy

C>0 y>1.

The mathematical model corresponding to the problem outlined in 1 is there-
fore represented (for the non-retarded case) by the system of non linear ordi-
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nary differential equations

(@) = fi, @) + 75, (©) + g i{45,.®) + D4, O}
FEE

2.3

&@) =1+ >1:j {94,: @ +py,: )} .

j#Fi

Assuming that the bar is clamped at one end, we shall suppose that the «quasi
molecules» Py, Py, ..., P; are fixed (§(t) = ajn;(®) =B;7=1...5) and the index ¢ in
(2.3) varies therefore from 6 to 7, moreover we shall assign the initial condi-
tions

n(0)=920 §0) =§
2.4)

ni(0)=7/=0 gO) =8 .
For the retarded model, equations (2.8) are substituted by
@) =fir @) + 75, O + 25{05,, D + Py, (¢ = )}
j*i
2.5)
@ =fi(®+ ;j {5,:® + 5, — 2)}

J#i

with the same initial and boundary conditions; we shall however assume that
(2.4) hold also for —z <t =<0, where 7 is the time shift corresponding to the at-
traction forces.

In the following 3 and 4 we shall prove global existence and uniqueness the-
orems for systems (2.3), (2.5) with initial conditions (2.4).

3 - The retarded model. An existence and uniqueness theorem

Let us, first of all, prove the following

Lemma. Consider a material point on the x awis, subject to an external
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force feL?0,T) and to a repulsion force from the origin given by
F= % (A4>0, B>0, a>8>1).

Assume that £0) =E> 0, £ (0) = —k (k > 0); then &¢) = E > 0 (E depending
onf, a A, k, 8.

The equation of the motion is, in fact

4 _ B i@,

1 "(f) =
3.1 0= %5 " Bae

Integrating on [0, ¢] we obtain

—————}dt-l—ff(t)dt

El (t) - 5, (0) f{ Ea (t) ﬁ (t)

By the assumptions made, there exists obviously £* (depending on «, 8, A, B)

A > 2B 2B

. Takin * and observing that, since
Ea (t) Eﬁ ( t) g E E g
£(0)<0, there exists an interval [0, ¢*] in which & (f) <0, ) <% and

consequently,

such that V&=£*,

gH=&0)+ E;(O—)t—C\/_> ~k—CVT. Hence

(3.2) @ <k+CVT.

Multiplying (8.1) by &' (¢), we have, on the other hand

1d,e d &t L q T ,
2 ait O=Aq Toa1 Ba g T/OFO
and consequently, integrating on [0, {]
l 12
5% ®
—a+1(t E—a+1 0 —-ﬁ+1t —/3+1 0
A0 _Z 0 pE 0 pE O i fre o an.

Sa— —a+1 —B+1 E+l
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It follows, bearing in mind (3.2), and by the assumptions made,
et i) < C, in [0, t*] i.e. &) =E >0.

We now pass to the proof of the existence and uniqueness theorem.

Theorem 1. Assume that f;(t) € L*(0, T) and that « > B> 2; there exists
then a solution of (2.5) (2.4) with v;(®), &(t) € H2(0, T).

Observe that, by well known results (2.5) (2.4) admit a local solution on an
interval [0, ¢], with ¢ sufficiently small.

In order to prove the global existence in [0, 7] it is then suficient to esta-
blish some a priori bounds on the solutions.

Let us divide [0, T7]in subintervals [0, <], [z, 2<] ... and consider the first of
these; multiplying the first of (2.5) by »/(¢) and the second by & (), we
obtain

ni @ 9@ = n; O f;, @ + 9" @7y, (&) + g i85, +py,, E =)} 7} @)

Ve

3.3

£ (@) E) = E ()i (6) + ; A0s.c @) + Py = DY E D)

j#i

with 1 =6, ..., n.
Hence, bearing in mind the expression of p;, ¢;, 7;, and adding

4

1
©-4) 2 dt

éi (2 (@) + Z2)

A
/ (g @)

)

- §i<ﬁ,, ) 0! (&) + i () £ () +§i . <t>+§i

P E

C
(i @)

J
{ (i (@) — 0 )i (&) — 9f @) + (& @) — EDNE @) — & ()}

n

+ 2 2 {pg,, ¢ — D)0l (O +py st — D) E ()}

1

R

J
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which ecan also be written

65 143 Grore (t»+—c—~§ Ly r+ A2 L35 050

dt tdt 2

B =

j¥Fi

= §:31~ (fiy @i @) + @) & O + %i 27:3 iP5, & =D 0i @+ pyC—DED}.
+

YA

Integrating (3.5) between 0 and ¢ € [0, ©], we have

SN S () + E2(0) — 12 (0) — EEO) + —C Sy ()1
6 y—17
O + —A—’z 2 0 o)
J#z

t n n n
= Of {%i (fir @i O + [ @ & ) + Esli ; Py, &= D) 0i ) +py,: E— D E DN} di.

FE

Bearing in mind that the terms p; are known, since they are calculated on
the interval [—7, 0], and that some of the terms in (3.6) are positive, it follows
from (3.6) that

t n
3.7 Z (PP +E2 M) — 2 (0) — 1{2(0))$6[{%i(ﬁq B ni O+ & D) dt< M.

Hence the total kinetic energy of the «quasi-molecules» is bounded and, by the
Lemma proved at the beginning of this section, A; = ¢; > 0. Consequently, the
repulsion forces p; are bounded on the interval [0, <]

sup |py@®| <oy <+,
0st<~s
In exactly the same way it can be shown that
n
%— @) +E2 O —0f2(0) = E2(0) < M,

when t € [z, 27]. In fact, by what has been proved before, the terms p; calcu-
lated on [0, 7] are bounded. We can then repeat the procedure for the subse-
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quent intervals [27, 37] ... and so prove that

E(qz(t)+ 2(t) —nl2(0) = E2 (0 <M

on the whole of [0, T1].

By the Lemma already recalled, it is therefore also ;) =p>0,
7;(t) = 6> 0 with o = max(e;pz...). Consequently the functions g;(®), p;(t— ),
7;, () are bounded on [0, T]. From (2.5) it follows then, by the assumptions
made on f;(t), that »}, & e L%(0, T); this proves a global a priori estimate and,
consequently, the global existence theorem.

It can be observed that (3.6) corresponds to an «energy conservation
equation».

Theorem 2. The solution {n;(t), &)} given in Theorem 1 is unique.
Assume, in fact, that there exist two solutions {n{" (%), &V (®}, {(»?(®,

£2 (t)}; denoting by pV (8), ¢V @), »V @), p@ ©), ¢® (), r? (¢) the attraction and
repulsion forces relative to the two solutions and setting

w; (&) = 7V (t) — 2@ (t) =800t —E2@t)
we obtain
(3.9) {(P(t) — 9P "@®)} w! ()
WO=7"O PO
— I A
i 1 (mD @y 6P (t»f} AZ LIS 0P @) 0@ @) )

+ Z w! O{pP,t—1) —pP,t— 1)}

j #’: i
(8.10) {8V — 82" )} 2{ ()

PH-P0  Po-2o
0% 0@ By

- ﬁj:fzz' OPpPrt - -pPt-}+A ?m’ (@)
#

J#EL i*i
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Let us now study some of the terms appearing in (3.9), (3.10)

. @ @) — P @)
3.11 = ! (t
@10 i ®f (ml) oY @Ry Podar "0
@@ &) — 7P @) gt
= T Y iy w! (8) =~y () 0] (¢
Do@ay O O= Cay ey OO

where ¢(f) is a continuous function such that
@P O = @GP @) = gOGP @) — 7P @)
Moreover

i MO SR

0P ) 0@ @y )

©12) L= 3w O
jalﬁz

0L )y - P )

= 30! OEP O — 1P O}

5 0P 02 O

i A@) OO O+ O)
=3 O Or @O - OF
o 0P O 0f @

@O P OF+EPO-POF
0P Or 0P O

Y RO @ — 7 O}

+]E JLx (t)( §f)()) {w; @) —w; (D}
5. (" () = 7 () — 7 O + 9P @)
= S ! (O @) — oD (& v J
%wz(){m ® -9’ OH (Aﬁﬁ(t)Ag)(t))“ a(t)
J#
EO-80) -2 m+P 0 n
” ¢ )b(t>}+2 { () {wi () —w; (1)}

0P )22 ) L O g-> @)
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(w; @) — w; ) al®) N (2; () — 2; () b(®)
0P B 1P @) 0P A2 )

= ? sw! O @) — P O}
i+

1

n 1
w0/ (8) ——— {w; () —w; (¢
+E 00 G e O~ 0}

1

where h(f), a(t), b(f) are appropriate continuous functions on [0T].
Consequently

1 _ b(t)
WO= P 0Py

@ () = 7P (1)
i t = t
“O=owear P Por

are bounded on [0, T], bearing in mind that A({)=e, as proved in the
Lemma.
Let us now add (3.13) with vrespect to ¢ we obtain, setting

1) = ; L),

() = g ﬁjw; (8 o0 () — 10, (8)) g 8) + (2 8) — 2 (8) w5 (00} hence
KR
QIES ;- 1 i {lw! Ow; @ [uy @] + [wi @|]ow; ©)] [ug O]}
j#i
+ %i 7: i {lz: Ollw! @] g @) + [w! ®]]2; O] vy B}
YE

= 72;{ {lw; ®OP K, ®) + |w; ©F K () + |2, O1F K3 ()}

where K, (m =1, 2, 3) are continuous functions on [07]. Bearing in mind that,
by the boundary conditions, & () =»{ (t) =0 when (i=1,2,...,5), we obtain
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then from (8.9), (8.11), (8.13)

1.d<,,e2
2 dt;’lwt @

= %i lw! @)]|w; | FE) + A ?i {Jw! BP K, @)+ |w; O K () + |2; ) K3 (8)}

+Z E w! O{p§P, ¢ — =) —pP ¢~}

j#z

< 72:1 {lwi O C, @) + |w; ®)ED; () + |2 O K ()}

+2 Z lw! &) {pP,E— ) —pP@, ¢ — )}

_7#1

Cg(®)

P &) 2P O
In exactly the same way it can be proved that

where F(f) = and C, (1), D,(t), are continuous functions on [0T].

—;; % ; GRS éi {|2! ®Co @) + |2: B Dy (t) + |w; (1) B (8)}
+3 3 1at Ot = — pete - )]
JFi

where Cy(t), Dy(t), E,(t) are continuous functions on [07]. Hence

1d s 2

< .51: (| BCo @) + |5 D2D5 (&) + s QP Es @) + ! ©RCL (B}

+.§_L‘, ﬁ‘, lwi O{p§, ¢ — ) — Péz)r(t—r)}l"*'ﬁ:;i ?;l ' O {pP:t— ) — pP:(t — D}
*

1]")

]951 FED)

where Ds(t), E(f) are continuous functions on [0T]. Let us divide the interval
[0, T in subintervals [0, 7] [+, 2¢] ... and consider the interval [0, 7]. On this
interval the retarded terms corresponding to the two solutions coincide and we
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obtain therefore

(3.14) ﬁ::i [2/2 () + w{% (@)

e

1
2
< ?i {{z! P C2®) + | QP Ds () + lw; D) Es(¢) + lw! ®)]?C1 (6)}

with the initial condition 2/ (0) =w/ (0)=0.
Relationship (3.14) is of the form

agz () < ag () + B3" (0) with ¢ (0) = 0 = ¢(0)

t
from which follows, bearing in mind that ¢(t) = [ ¢’ () d», by Gronwall’s lem-
ma, ¢' (£) =0 and, consequently z;(t) = w; &) =0 fn [0, =]. In exactly same way,
uniqueness can be proved in the intervals [z, 27]....

4 - The non-retarded model. An existence and uniqueness theorem

Theorem 3. Assume that ;&) € L2, T) and o> B> 2, there exists then
a solution of (2.8), (2.4) with v;(t), &@) € HZ(0, T).

The existence theorem can be proved following the same procedure of Theo-
rem 1, substituting to the retarded terms p;, (¢ — 7) and p;; (£ — ) the non-retard-
ed terms p;, (%), p;, ().

Multiplying the first equation of (2.3) by »/ () and the second by & (7), we
obtain

4.1) £ Loz
=@t O+ o+ 3, W»ﬁ -2, Ww ®
s iy
4.2) TR
£ OO+ 3, é%——%a»a - % ; —B(E"(Zj_(—;fj;(t»s; ®.

J¥F1
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Adding the two equations (4.1), (4.2) we have

—(—1— n C n d

l (12 12 Q. 1-
4.3) 2 dt 21(771 (t)+§l @+ )""1 = dt(nz(t)) v
A d 33 o e B A5 o ay2-p
T dt%.y@v(t» 52 dt%;‘](zv(t))
¥ jFE

- .g (Fin 0! ) +Fs D EL Q).
Hence integrating (4.3) between 0 and ¢ [0, T1]
@y 1 .g (2@ + E2(@) — (2 (0) + £2(0))) + % g (@R = (s O 7)

n

+ 26:1: T i {HOG @)= = HOy (00~ — KOy (0)* 7% + K0 (00~}

5
- of i O O +F 08 @)} dt

where H = a‘_‘} = K= /3'%2. Let us study the function

@.5) 4t = HOg (P~ — KOy )P

considering the following two cases and bearing in mind that « >g> 2

(a) 2 <” _ﬁ\/H/K

we then have ¢(8)>0

(b) 20 =""NHIK.

In this case

K \-20-p K \6-21-p _
I8 < H(4) +K(47) N.
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We have therefore, in both cases, since (y; ()7 >0,

(4.6)

-;;g 2(t) + E2(8) — (2 (0) + £2(0))

n t n

< %i;j {HO; (0= — KO (0 *} + N + Of {%i (i @ 0i ) +fc @) & ()} dt

from which a priori estimates analogous to the ones of Theorem 1 hold.
The global existence is therefore proved.

Theorem 4. The solution {x;t), & @)} given in Theorem 3 is unique.

Assume in fact, that there exist two solutions {»{’ (®), &Y (®)}, {(»® @), &2 1)}
of (4.1), 4.2).

Setting w; (&) = 7P @) — 7P @) ) =80t - @) we obtain
4.7 @) — 20} wi @)

x B O-g’®) PO O
= Cuy (¢ LA 3wl o SR

1’ O POy ot (t))“ OF Or

jaéi

+ 2 ! O{pd, &) —pP, )} .

i # 1
4.8) {&V07(t) — EP"(t)} 2] ()

E(-l)t~£(~1)t £§2)t_.2)t »
080 _FOG0 )3 oo -pfio).

=§){

(D (4)) @ (£))=
I 0P @) oaPar T
We can observe that the terms
SHO0RO-PRO) 3wl 0RO -pE0)
jEG J*i

can be studied in the same way as (3.13) obtaining inequalities analogous to
(3.14). Hence, proceeding as in Theorem 2, the uniqueness of the solution
follows.
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Remark. The results obtained can be extended to the case g =2 by modi-
fying stightly the proof of Theorems 1 and 3. It should be noted however that,
as shown by Greenspan, the values for « and 8 utilized in this model are both
considerably larger than 2.
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Abstract

In the present paper we consider the motion of an elastic bar, clamped at one end, in
the presence of a rigid obstacle against wich the bar can vibrate, assuming that the corre-
sponding shocks are perfectly elastic.
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