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GIUSEPPE BUFFONI (%)

Perturbation of a matrix with positive inverse (¥%)

1 - Introduction

Let
1.1) A+ B

be an n X n real matrix, where A is a nonsingular matrix with positive inverse
(6], [3], [2], B a non-zero matrix, with nonnegative part U and nonpositive part
—V and v a nonnegative real parameter

(1.2) A71>0 B=U-V=#0 U=0 V=0 v=0.

The parameter v may be considered as a measure of the size of the perturbation
vB of the matrix A. Let

(1.3) Zu, vV)=A@+uU—-2V)!

where u, as v, is a nonnegative real parameter. For u=v=0, we have
Z(0, 0)=A"'>0; thus, det(A +vB)# 0 and Z(v, v)> 0 in a sufficiently small
neighborhood of 0. The purpose of this paper is to find the largest, possibly infi-
nite, number w such that A + vB is nonsingular and Z(v, v)>0 in [0, w).
Let us first consider the special cases where all the entries of B are
either nonpositive or nonnegative. In the case B= -V <0 (U =0) we have
that [6] (p. 83) w=1"A"1V)< + o, where 7(-) is the spectral radius of
the argument matrix. In the case B=U=0 (V=0), recently considered

(*) Indirizzo: ENEA CREA S. Teresa C.P. 316 - 1-19100 La Spezia.
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by the author, we have that the number w may be either finite or infinite;
an algorithm to evaluate w when w< + « is presented in [1].

We will describe an algorithm, the iterative process defined in Theorem 2, to
compute w when U=0, V=0 and w< + o; each step of this procedure re-
quires the application of the basic processes (2.4) and/or (2.5), described in Theo-
rem 1, founded on the processes for the two limit cases V =0 and U = 0 respec-
tively. In the case w = +, the successive approximations form a sequence di-
verging monotonically to +c. The results of numerical computations, per-
formed by using a Stieltjes matrix A [6] (p. 85) and a random matrix B, are
presented.

2 - The basic processes

Lemma 1. If P>0 and Q@>0, Q#0, are n X n matrices, then both the
spectral radius r(PQ) of PQ and the corresponding eigenvector are positi-
ve.

Proof. The matrix @ must have at least one positive entry; thus, as P >0,
the matrix PQ has at least one positive column. It follows that P@Qx > 0, where
x is any vector with positive components. From the inequality (6], p. 47
0 < min; (PQx);/x; < r(PQ) we have 7(PQ) > 0. Let y =0 be the eigenvector of
PQ corresponding to r(PQ). The vector Qy must have at least one component
greater than zero; otherwise, from the eigenvalue equation and the fact that
r(PQ) >0, we would have y = 0. As P >0, from the eigenvalue equation it fol-
lows y = PQy/r(PQ) > 0.

Remark. The spectral radius of the matrix QP is again positive:
7QP) = r(PTQT) > 0. However, the eigenvector of QP corresponding to 7(QP)
may have some components equal to zero; in fact, the matrix QP may have only
one row with positive entries.

Definitions:

(D0) We denote by w the largest, possibly infinite, number such that A +vB
is nonsingular and Z(v, v)>0 in [0, w).

(D1) We denote by u* the largest, possibly infinite [1], number such that
A +2U is nonsingular and Z(u, 0)>0 in [0, u*).
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(D2) We denote by v* the largest (v*=1/r(A7'V)< + o, Lemma 1)
number such that A — vV is nonsingular and Z(0, v») >0 in [0, v¥).

(D3) Let v be a fixed value in [0, v*); then, f(v) is the largest, possibly infi-
nite [1], positive value of the parameter u such that A +«U — vV is nonsingular
and Z(u, v)>0 for » in [0, fV)).

(D4) Let u be a fixed value in [0, u*); then, g(u) is the largest
(g(u) = 1/r[Z(u, 0)V]< + «, Lemma 1) positive value of the parameter v such
that A +uU — vV is nonsingular and Z(u, v)>0 for v in [0, g(u)).

Remarks. (i) When flv) < + 0, f{v) may be computed by the algorithm
described in [1]; 1/g(w) = r[Z(u, 0)V] may be computed by means of the power
method or its variants [4] (p. 25). (i) 0 <u* = f(0), 0 <v* = g(0) < + oo.

Lemma 2. Assume (1.2) and the definitions (1.3), (D1)-(D4). Then

@1 Zw, V>0 Z,(u, V<0 Z,wm, v)>0 for0<v<v* 0<u<fv)

2.2 Zw, v)>0 Z,(u, v)>0 Z,u, ©)>0 for0su<u* 0sv<gu).

Proof. From the definitions (D1)-(D4) it follows that Z(u, v)>0 for
[D=<v<ov* 0<u<fw)] or [0 su<u* 0<v<g(w)] By a direct computation
of the first and second derivatives of the identity (A4 +ulU —vV)Z(u, v) =1
with respect to % and v we obtain an expression for Z,,, Z,,, Z, and Z,, depend-
mg on Z(u, v), U and V. Taking into account (1.2) and the fact.that Z(u, v)>0,
we obtain the inequalities (2.1) and (2.2).

Remarks. (i) For the matrices Z(u, 0), Z(0, v) and Z(v, v) we have
from (2.1) and (2.2):

@21 Al=Zw, 0>0 Z,(u, 0)<0 Z,(u, 0)>0 Osu<u*=f0)
2.2y Z@O, v»>0 Z,00, v)>0 Z,,0, v)>0 Osv<v*=g(0)
and at least one entry of Z (04, v) must become infinite as v— v¥;

2.3 Z0, v=Zv, vy=Zw, 0)>0, 0 <v<min(m*, v¥).

@) From (2.3) we have w=min(u*, v*). Let us assume that
min (w*, v*)<w< max @*, v¥)< + ; then, from (2.1) and (2.2) it follows
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that w must be the smallest real positive fixed point of one of the two maps f(v)
and g(u).

Lemma 3. Under the assumptions of Lemma 2, it follows that:
(a) the function flv) is non decreasing with v in [0, v*);
(b) the function g(u) is increasing with u in [0, u*).

Proof. Part (a). Let 0 <v; <v, <v¥ we have Z(u, v;) >0, 0 < u<flvy,
i=1, 2. Now we will show that Z(u, v) = Z(u, vy), 0<u <f(vy), from which
it follows the thesis flvy) = fwy). For 0<<u<flv;) we may write
A+uU—vV=AQ+uU—-vV) [I—-@wy—v)Z(u, v)V]; thus, it is sufficient
to show that (vy—wv)r[Z(u, v)VI<1 ([6], p. 83). As 0<v;, <v*, from the
properties (2.1) we have Z(u, v)<Z(0, v;); it follows that
HZwu, v)VI<r[Z©, v)V]=7[I—-v,AV)"1A"1V]; and then

We = v Z(w, v)VI<@y—v)7ATVY[1 -0 7 A7TV)] = (0, — v)/(w* —v;) < 1.

Part (b) follows immediatly from (2.1)' and Lemma 1.

Theorem 1. Assume (1.2) and the definitions (1.8), (D0)-(D4). Then:
(a) w=min(u*, v*).
(b) The sequence {v,} defined by

(2.4) Vi +1 =f(?)k) k= O, 1, 2, aee Vo = 0

18 convergent monotonically to w if u* < w <v*. Otherwise, for some k> 1,
v, = v* and thus u* <v* <w.
(¢) The sequence {u;} defined by

@2.5) Up s 1= glo) k=0, 1, 2,... wug=0

18 convergent monotonically to w if v* S w <u* < 4+, Otherwise, for some
k>1, w=u* and thus v* <u* <w. When u* =+, it is convergent mono-
tonically to w, if w< + «; otherwise it is divergent monotonically to +o.

(d) When wu*=v% both the sequences (2.4) and (2.5), give
V= U =vF =uF<sw.

Proof. As noted in remark (ii) to Lemma 2, Part (a) follows immediatly
from the inequalities (2.3).
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Part (b) implies u* <wv*. As f(v) is defined in [0, v¥), the term v;,;in 2.4)
is defined if O0<w,<wv* TFor the first iteration we have
v, = flvg) = f0) = u* <v*. From remark (ii) to Lemma 2, w is the smallest real
solution of the equation

(2.6) v = flv)

if w* <w<v* in this case, w may be computed by the iterative process (2.4).
As f{v) is defined in [0, v*) and it does not decrease with v (Lemma 3), the pro-
cess (2.4) must produce a monotone non decreasing sequence bounded from
above by w and converging monotonically to w. If there are no real solutions of
(2.6) in [0, v*), i.e. if v<f(v), the process (2.4) must produce, for some k> 1,
an iterate v, =v* and then it is stopped; we have w = v*.

Part (c) implies v* <u*. Let us first assume u* < + o; as g(u) is defined in
[0, w*), the term u; ., in (2.5) is defined if 0 < u;, <w*. For the first iteration
we have u; = g(ug) = g(0) = v* <w*. From remark (i) to Lemma 2, w is the
smallest real solution of the equation

2.7 u = g(w)

if v* <w<u* in this case, w may be computed by the iterative process (2.5).
As g(w) is defined in [0, %*) and increases with % (Lemma 8), the process (2.5)
produces a monotone increasing sequence bounded from above by w and con-
verging monotonically to w. If there are no real solutions of (2.7) in [0, ™), i.e.
if w < g(u), the process (2.5) must produce, for some k> 1, an iterate u; = u*
and then it is stopped; we have w=u*. When u* =+, g(u) is defined in
[0, +); thus, the sequence {u;} is convergent monotonically to w, if w < + *;
otherwise, it is divergent monotonically to +.
Part (d) follows immediately from parts (b) and (c).

Remarks. (i) Theorem 1 assures the computation of w when
min (w*, v*)<w<max(u*, v*),i.e. when w is sufficiently small. Otherwise,
it provides a lower bound for w given by max(u*, v¥).

(ii) The processes (2.4) and (2.5) are of the fixed point type and have a linear
convergence ([5], p. 263). Given the approximations v, and uy, both the process-
es (2.4) and (2.5) require «internal» iterations to obtain the new approximations
V. and 4z, ;. The evaluation of vy, ; = flvy,) involves [1] the computation of a
sequence of inverses Z(vy,, ), i=1, 2,...,1(k), to perform the Newton steps
for the equation Z(w, w;) =0, and each «internal» iteration i requires 0(n®) op-



256 G. BUFFONI [6]

erations; however, when v;,; < + o, the convergence is quadratic [1] and the
method is performed successfully for n equal to some tens (few iterations,
1o (k) ~ 5-10, are necessary to obtain an accuracy of at least 12-14 digits, by using
a precision of 16 decimal digits). The evaluation of u; ., = g(u,;) involves the
computation of only one inverse, Z(u;, 0), and of the spectral radius of the ma-
trix Z(u,, 0)V, which is carried out by means of the power method; this itera-
tive process is generally much faster than (2.4).

3 - The successive approximations

Let m = max(u*, v*). If w<m, Theorem 1 allows us to compute w. If
w > m, then the matrix

3.1 A, =A+mB
is nonsingular and Z(m, m)> 0. Therefore we can apply the results of Theo-

rem 1 to the matrix A,, +vB and compute a new approximation of w. We have
A, +uU—-2vV)1=Z(m+u, m+ov).

Definitions:

(D5) We denote by f,, the largest, possibly infinite, number such that
A, +uU is nonsingular and Z(m +u, m)>0 in [0, f,). :

(D6) We denote by g,, the largest (g,, = 1/7[Z(m, m)V]< + », Lemma 1)
number such that A, — vV is nonsingular and Z(m, m+v)>0in [0, g,.).

Remark. fy=£0)=u* and g, = g(0) = v*.

Theorem 2. Assume (1.2) and the definitions (1.3), (3.1), (D0)-(D6). Let
the sequence {m;} be given by

(3.2)  m;=maxu’, v¥) j=-1, 0, 1,... u* =v¥ =90
. where

(33) 'Mj*.*_ 1= ’m] +fmj (3-4) vj*+1 = mj + gm] .
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Then, one and only one of the two following mutually exclusive statements is
valid:

(a) for some j = —1
(3.5) m; < min (w1, VD) SW<Myi;

thus, w may be computed by one of the algorithms (2.4) or (2.5) in Theorem 1
and the process (8.2)-(8.4) is stopped;

(b) the sequence {m;} is convergent monotonically to w, if w< + o, other-
wise it 18 divergent to + .

Proof. For j=—1 we have m_; =0, and, from (3.3)-(3.4), u§ =u* and
v§ = v*; Theorem 1 states that w may be computed by one of the algorithms
(2.4) or (2.5) if m_; = 0 <w < m, otherwise, w = m,. The matrix A +vB may be
written as A+vB = A, +@—-m)B. Forj=0, 1, 2,... the situation is analo-
gous to that for j= -1, where A, and v—m; replace A,.1=A4;=A and
v —m_; = v respectively. It follows that w may be computed by one of the algo-
rithms (2.4) or (2.5) in Theorem 1 if the inequality (3.5) is satisfied; in this case
the sequence {m;} is stopped. Otherwise, w=m;,;. Let us assume w< + «
and that the inequality (3.5) never be verified for j = —1; thus the sequence
{m;}, with m; <w, converges monotonically and lim m; = me, =w as j— +x.
In fact, (3.2)-(3.4) imply that either u*— m. or v¥— m.; therefore, either
Sm;— 0 or g, — 0; from (D5)-(D6) it follows that m., = w. Finally, it is easy to
verify that m;— +o if w= +ow,

Remark. The application of the process (3.2)-(8.4) needs three levels of
successive approximations: (i) the steps of (3.2)-(3.4), (ii) those, at the same lev-
el, of (2.4) and/or (2.5) and (iii) those of the «internal» iterations performed at
each step of (2.4) and/or (2.5) (see remark (ii) to Theorem 1). Each step of (3.2)-
(3.4) requires some steps of the processes (2.4) and/or (2.5); generally, few steps
(about 5-10) of (2.4) and/or (2.5) are necessary to gain a new step of (3.2)-(3.4)
when convergence is not reached; in the last step of (3.2)-(3.4) very different
numbers of iterations (from 10 to 100) of (2.4) and/or (2.5), depending on the spe-
cial situations, illustrated in the numerical experiments, are necessary to obtain
an accuracy of at least 6-8 decimal digits by using a precision of 16 decimal dig-
its. However, we can state that few computational effort is necessary to obtain
a good estimate, precisely a lower bound, of w when 7 is equal to some
tens.
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4 - Numerical results

Let us consider the matrix
“.1 A+uB=A+uwlU—-cV)

where ¢ = 0 is a measure of the relative contributions of U and V to the matrix
B = U —¢V. The problem of the computation of w = w(c), depending on ¢, is il-
lustrated here. Equations (2.6) and (2.7) are now written as u = flcu),
u=g(u)c. We note that in this case u* =f{0) is independent of ¢, while
v*(c) = g(0)/c and w(c) depend on c. For ¢ sufficiently small, the matrix V sup-
ports the positivity of Z(u, cu), in the sense that w(c), u* < w(c)<v*(c), does
not decrease with ¢; w(c) may be computed by the algorithm (2.4). As ¢ increas-
es, the contribution due to the matrix ¢V, to the perturbation B of A, becomes
more weighty than U. First we have u* <v*(c)<w(c) and then
v* (¢) <u* <w(c); in these situations w(c) cannot be computed by one of the al-
gorithms (2.4) or (2.5). Eventually, we have v*(c) <w(c)<u* and w(c) is de-
creasing with ¢; w(c) can now be computed by the algorithms (2.5).

As we have seen by means of qualitatively arguments, w(c) is non decreas-
ing when ¢ is sufficiently small, 0 <c¢<c¢, and it is decreasing when ¢ is suf-
ficiently large. We now show that the matrix (4.1) becomes singular for ¢ = ¢
and u = w(cy). The matrix Z(u, cu) increases with ¢ when 0<u <w(e); in
fact, from the identity Z(u, cw)A+u(U—-cV)]=1, we obtain
Z,(u, cu)=uZ(u, cu)VZ(u, cu);thus, Z(u, cu)>0and Z,(u, cu)>0. It fol-
lows that w(c) does not decrease with ¢ as, for some ¢>0,
det[A + w(c)(U — cV)]— 0 for c— c.

In the numerical experiments we used the matrix A+ vB given by

2 -1
-1 2 -1 | &
4.2) A+ob= # . . . won |
B I i
-1 2 -1
1.......... n kio.. ks

where k= 1/(n+1), A is a Stieltjes matrix (—A is a discrete analog of the sec-
ond derivative together with zero boundary conditions), B=U—¢V is ex-
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pressed as in (4.1) and its entries are different from zero only for 7, <i<1, and
ki <k <k, (B can be considered as the contribution due to an integral operator);
the non zero entries of U and V are random values, assumed uniformly dis-
tributed in [0, 1]. The inverse of a matrix and the random numbers have been
computed by the IMSL Library subroutines LINV2F and GGUBS respective-
ly; the spectral radius of a matrix by means of the power method. The computa-
tions have been performed in double precision (16 decimal digits). Now we de-
sceribe two sets of numerical experiments.

(NE1) In this set of experiments the matrices U and V are mantained fixed
with n + 1 =40, %, = k; = 10, i, = ko = 30; the evaluation of v*(¢) and w(c) has
been performed for various values of ¢. The results, for ¢ in the interval
[0, 100], together with the type of the process used in the computations and
the number of iterations, are shown in Table I. The trends of u*, v*(¢) and w(c)
versus ¢ are shown in Figure 1. Let ¢y (¢g ~ 1.299) be the value of ¢ for which
w(cy) = maximum. For 0sc<¢y, w() 1is increasing with ¢ and
det[A+w(eU—-cV)1#0; for c=c¢y, wl(c) is decreasing with ¢ and
det [A 4+ w(c)(U — c¢V)] = 0. In Table I only a lower bound for w(c) is reported for
¢=1.299 and ¢ = 1.3 because the algorithm (3.2)-(3.4) requires many steps of
the processes (2.4) and/or (2.5) when c is near ¢;. As ¢—> ¢g, the number of iter-
ations of the last step of (3.2)-(3.4), to obtain an accuracy of 6-8 decimal digits,
increases considerably; however, sufficiently good lower bounds of w(c) may be
estimated with less computational effort; for example, the last step of (3.2)-(3.4)
gives the following iterates:

for ¢ =125 u;=40.1249  ups = 40.5014  uy = 40.5221;
for ¢ =1.50 u;=8.1023 U5 = 9.5529 Uz = 9.5560.

(NE2) In this set of experiments the random entries of U and V, with fixed
n+1=>50, are generated differently for each case. The non-zero share of the
perturbation B goes from a small part to the whole matrix. Two values of ¢
(¢ =0.5 and ¢ = 2) have been chosen so that 0.5 <¢;<2 (see NE1); in this case
few steps (<3, j=~1, 0, 1) of the process (8.2)-(3.4) are required. The final
values of uf and v* of the process (3.2)-(8.4) and those of w
(min (uf, v¥)<w<max(uf, v/*)) are given in Table II; these results show
the monotonic trend of %, v* and w versus the size of the non-zero share of the
perturbation B.
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¢ v*(c) w(e) Number of iterations
and iterative process
0. + o0 u¥ = w = 3.5623 H
0.1 24.2680 u* <3.8427 <v* 6(H)
0.2 12.1340 u* <4.1710 <v* 9P
0.5 4.8536 w* <v* <5.6090 2(m)
[1() — 9]
1. 2.4268 v¥F <y¥ <13.2676 4(m)
[Lg) — 1() — 3() — 34(f)]
1.25 1.9414 v¥ <y <40.5230 16(m)
[1(@)...L(N...7(H — 85(N]

1.299 1.8682 v <u* <82.06<w —(m)

1.3 1.8668 ¥ <u* <78.03<w —(m)
1.5 1.6179 vEF <u¥* <9.5560 3(m)

[2(9) — 5(g) — T7(9)]

1.9235 1.2617 v¥ <u* =w = 3.5623 35(g)
2. 1.2134 v¥ <8.2017 <u* 34(g)
5. 0.4854 v* <0.6455 <u* 11(g)
10. 0.2427 V¥ <0.27T70 <u* Q)
100. 0.0243 v¥ <0,0246 <u* 3@

TARBLE I

v*(¢) and w(c) for various values of ¢ and the same matrices U and V with n+ 1 = 40,
i, = ky = 10, 1y = ky = 30. In the last column, the expression i(f), i(g) and i(m) mean ¢ iter-
ations of the processes (2.4), (2.5) and (3.2)-(3.4) respectively.

c (1, i) —(ky, kg) j uj* ’Uj* w
0.5 (1,49-(1,49) 0 0.5151 1.8497 1.0924
0.5 (10,40)-(10,40) 1 3.2111 8.4908 3.5128
0.5 (20,30)-(20,30) 1 55.6327 111.0136 66.7242
0.5 (1,25)-(1,25) 1 6.7914 16.3626 7.7851
0.5 (1,10)-(1,10) 1 81.3694 211.7408 93.8788
2.0 (1,49)-(1,49) 1 1.5340 0.7665 1.0558
2.0 (10,40)-(10,40) 0 1.8845 0.7279 1.5291
2.0 (20,30)-(20,30) 0 36.4945 4.1358 8.1412
2.0 (1,25)-(1,25) 1 7.5849 3.2565 3.4672
2.0 (1,10)-(1,10) 0 53.1624 14.8762 30.7650

TABLE II

w*, v* and w for various matrices U and V, with n+1 =150, and various values of

iy, i) — Uy, ko); ¢=0.5, 2.
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Fig. 1

u*, v*(c) and w(c) versus ¢ for the matrix A +w(U —cV) with n + 1 =40, 4, =k, = 10,
’L.z = kz = 30.
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Sommario

Sia A una matrice reale non singolare con inversa positiva e B una generica matrice
reale non nulla. L'inversa di A + vB sia positiva per 0 v <w < + © e almeno un suo ele-
mento sia uguale a zero per v = w oppure det (A +wB) = 0, in questo lavoro viene descrit-
to un algoritmo per calcolare w e sono presentati alcuni risultati numerici.
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