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SEVER SILVESTRU DRAGOMIR (*)

On continuous sublinear functionals
in reflexive Banach spaces and applications (**)

1 - Introduction

Let (X, ||-]) be a real normed space and consider the semi-inner products
< ? >ir < ’ >s’ given by

(2, y)i= tm (y+ talf — )2t

(@, y)s= lm (y+ tal* — [llF)/2¢

for all z, yeX.
For the sake of completeness we list some usual properties of these semi-in-
ner products that will be used in the sequel (see for example [1];):

@ (x, x)p=[alf for all xe X

i (-x, y)s=(x, —y)s=—(2, yhiifa, yeX
(i) {aw, By),=aB(x, y), for all x, y e X and B =0.
(iv) {ax+y, 2)p,=alx, x),+(y, ¢)p,ifw, yeX, R
W) (z+y, 2)p<|allllell + (y, 2), for a, y, zeX

(vi) the element x € X is Birkhoff orthogonal over y € X, i.e., |lz + ty| = |2
for all teR iff (y, x); <0< (y, x),

(*) Indirizzo: Trandafirilor 60, Bl. 84, Se. D, Ap. 9, 1600 Biile Herculane, R-Jud.
Carag-Severin.
- (%) Ricevuto: 8-I11-1990.
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(vii) the space (X, || is smooth iff (x, y);=(x, y),forall x, y € X or iff
(,)p is linear in the first variable where p=s or p =1.

For other properties of (, ), in connection to best approximation element
and continuous linear functionals see [1]; where further references are
given.

In paper [1]; (p. 504) we proved the following «interpolation» theorem for
the continuous linear functionals.

Theorem 1. Let (X, || |) be a real reflexive Banach space and f be a con-
tinuous linear functional on it. Then there exists an element u e X such
that

(&, up;sfw)ys(x, u);, forall zeX and |f]=ul.

Note that the next decomposition theorem is also valid.

Theorem 2. Let (X, |||) be as above and G be its closed linear subspace.
If G* denotes the orthogonal complement of G in the sense of Birkhoff,
then

X=G+G*.
For the proof of this fact see for example [1]; (p. 505), where further conse-

quences and applications are given.

The main aim of this paper is to extend the above results for continuous sub-
linear functionals and closed clins in real reflexive Banach spaces. Applications
for inequations as in [1], are also given.

2 - Semi-orthogonality in reflexive Banach spaces

A nonempty subset K of a real linear space X is called clin in X if the follow-
ing conditions are satisfied:

) », yeKimply x+yekK

(i) zekK, «a=0 imply ax € K.
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A real functional p defined on a clin K is said to be sublinear on K if
() plet+y<sp)+ply forall x, ye K
(ss) plox) = ap(w) for all x € K and «=0.

Def. 1. The element « in real normed space (X, ||-|)) will be called semi-
orthogonal in the sense of Birkhoff over ye X if (y, x);<0. We denote
x lgy.

It is clear that 0 Lgy; x 1g0; « Lgx implies x =0 and x lgy implies
o LgBy if «8= 0. For a nonempty subset A of X we put

Atsi={yeX|y 1gx for all xzeA}.

We also remark that 0eA's, AnAtsc{0} and xzeA's, «=0 imply
ox € Als,

The following theorem is a natural generalization of Theorem 2.

Theorem 3. Let (X, ||-|) be a real reflexive Banach space and K be a
closed clin in X. Then the following decomposition holds

) X=K+K"'s.

Proof. LetxeX. IfreXthenx=x+0withzxeKandO0e K's. ifx ¢ K,
since K is a closed convex set in reflexive Banach space X, then there exists a
best approximation element in K refering to x, i.e., there exists ' € K so that

dx, K)=|x—=z'|. :

Let put 2":=x—2' and consider « =0 and y € K. Then we have
ke —eyll = o — 2" — el =l = (" + )| = [’
because ' ,ay € K and K is a clin in X. Hence
" — ay|f = ||| for all «=0
what implies
(" = ay|fF — | )/20c = 0 for all «>0.

Passing at limit for s — 0 (s > 0) we obtain {(—y, x),=0,i.e., (y, ®); <0 for all
y € K what means that " € K*s and the theorem is proven.
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The following result holds.

Corollary. If K is a closed linear subspace in X, then K*s = K* where K*
denotes the orthogonal complement of K in the sense of Birkhoff.

Proof. It is clear that Kt ¢ K's.

Now, let x € K*s. Then (y, x); <0 for all 4 € K and since K is a linear sub-
space, then it follows (—y, );<0, i.e., {y, %),= 0 what implies that x ¢ K*
and the statement is proven.

Remark 1. If X is a Hilbert space, we recapture Theorem 2.1 from
[1]p.

The following lemma will be used in the sequel.

Lemma 1. Let (X, |||) be a Banach space and p: X — R be a continuous
sublinear functional on it. Then the set K(p):= {x € X, p(x) < 0} is a closed clin
m X. In addition, if we assume that there exists xy € X such that p(x,) <0 then
K(p) is proper in X, 1.e., K(p) is not o linear subspace.

The argument is similar to that in the proof of the Lemma 3.1 from [1]; and
we omit the details.
N
Theorem 4. Let (X, ||-|) be a real reflexive Banach space and p:X — R
be a continuous sublinear functional on it such that K(p)# X. Then there
exists w e X, |lull =1 such that

@ p@) = pu)w, u); for all xeK(p).
Proof. Since K(p) is closed and K(p) # X then there exists an element

w € K*5(p) such that w = 0. Since w ¢ K(p) we have p(w) > 0. On the other hand,
for all « € K(p) we have

plp(w) x — p(x) w) < p(p(w) x) + p(—p(x) w) = pw) p(x) — p(x) p(w) = 0
and then

pw) x — ple) w € K(p) for all xeKp).
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Since w € K*s(p) we get
(pw)x —p(@)w, w);<0 for all xe K(p).

Using the properties of semi-inner product (,); we deduce: p(w){z, w);
—p@)|w|f <0 for all x € K(p) what implies

p(x) = w(x, _@__)i for all xe K(p)
] flof] *

from where results (2).

Remark 2. If X is a Hilbert space we obtain the first part of Theorem 3.2
from [1].

The following two corollaries also hold.
Corollary 1. Let p:X— R be a continuous sublinear functional on re-

flexive Banach space X such that K(p) # X. Then there exists an element u € X,
el = 1 with the property that

. D)
S TP
Proof. It is clear that
inf 29 _ e PO g 03y
20 |l ]

By the above theorem there exists an element % € X, |ul|=1 such that:
p@) =pw){w, u); for all x € K(p). But (w, u);= —|l||u) = || what implies
that p(x) = —p(w)|l] for all € K(p), from where results the desired inequali-
ty.

Remark 3. The above corollary contains Theorem 3.10 from [1], what
works in the case of Hilbert spaces.

Corollary 2. Let p be as above. Then there exists an element u e X,
[ull = 1 such that the mapping p,:X — R, p,(@) = p@@) + pw)|| is a positive
continuous sublinear functional on X.
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3 - Clins with the (H)-property in reflexive Banach spaces
We start to the following

Def. 2. Let (X, ||-|) be a real normed linear space and K be a clin in it.
Then K will be called with the H-property if the set H(K):= K*sn(—K) also
contains nonzero elements.

Remark 4. If the clin K has the (H)-property, then K is proper in X, i.e.,
K is not a linear subspace in X.

Indeed, if we suppose, by absurd, that K is linear subspace and w e K*'s
N(—K)\ {0} then w e —K = K and since K*sn K = {0} we obtain a contradic-
tion.

The following lemma of characterization holds.

Lemma 2. The clin K has the (H)-property if and only if there exists a
nonzero element we K such that (x, w);=0 for all x € K.

Proof. Let —we K*sn(—K) then we K and since —w e K*s, we have
(x, —w);<0 for all x € K, i.e., (x, w);=0.

Conversely, if (x, w),=0 for all x € K then (x, —w);<0, ie., —-we K"
and since —w € —K we deduce that K has the (H)-property.

Examples. Let f:X— R be a nonzero continuous linear functional on re-
flexive Banach space X and put K,(f):={zeX|f)=0}, K_(f)
:= {x € X|flx) < 0}. Then K, (f) and K_(f) are clins with the (H)-property.

Indeed, by Theorem 1, there exists a nonzero element % € X such that:
(2, u);<flw)<{x, u), for all xeX.

Let x € K, (f), then {x, u),=0 and since f(u)=|u|f >0 we obtain that
ueK,(f), u#0 and {(x, u);=0, ie., K, (f) has the (H)-property.

The proof of the fact that K_ (f) is also a clin with the (H)-property is similar
and we omit the details.

Note that the following theorem is valid.

Theorem 5. Let (X, ||-|) be a reflexive and strict convex Banach space
and K be a closed clin in X such that K*s is also a clin. Then the following state-
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ments are equivalent:
(@) K, K*s are linear subspaces.

(ii) The following decomposition holds

X=K®KH"s.

Proof. (i)= (). If K is a liner subspace, then K*s = K* (see Corollary of
Theorem 3). Since (X, |-|) is reflexive and strict convex it is known that
X=K®K"

()= (). Let v e K, ve K*s and put « =« +v. Then by Theorem 3 there
exists m € K, n € K*s such that —x = m + n. Hence 0 = (u + m) + (v + n) with
u+me K, v+neK*s and since the null element has a unique decomposition
we obtain —-u=me K, —v=n e K's, i.e., K and K*s are linear subspaces.

Remark 5. The above theorem contains Theorem 2.4 from [1], which is
valid in Hilbert spaces.

Theorem 6. Let (X, || be a reflexive and strict convex Banach space
and K be a proper closed clin in X such that K*s is also a clin. Then K has the

(H)-property.

Proof. Since K is a proper closed clin in X then by the above theorem
there exists at least one element x such that

r=x"+" z'eK x" e K's
r =2+ r e K xy € K*s
and T F ' F 2.

By Theorem 3, there exists ¥’ € K and y” € K*s such that —x =y’ + 4" and
then

O0=@ +y)+ @ +y" z'+y' eK ' +y" e K's
O0=(x;+y")+ (@ +y" 2 +y eK x+y" € K's

with o' +y ' # o, +y’ and 2" +y" Fx+ 9.
Consequently, there exists m e K, ne K*s with m#0 and n#0 such
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that 0 = m +n what implies that n = —m and then the set K*sn(—K) also
contains nonzero elements.

Corollary. Let (X; (,)) be a Hilbert space. Then every proper closed clin
i X has the (H)-property.

Proof. Follows from the above theorem and to the fact that for all clin K in
X, K*s is also a clin in X,

Now, we can improve Theorem 4.

Theorem 7. Let (X, ||-|) be a real reflexive Banach space and p:X — R
be a continuous sublinear functional on it such that K(p) has the (H)-property.
Then there exists an element w € X, |[ul =1 such that

plu){x, u); for all xeK(p)

4 =
@ p(x) = —p(—u){z, u);  for all wxeX\K(p).

Proof. Because K(p) has the (H)-property, there exists w+#0,
w € K*s (p) n (—K(p)). Since w € K*s (p), we have p(w) > 0. Then by a similar ar-
gument to that in the proof of Theorem 4 we have

plx) = M —W—)i for all x ¢ K(p)
[l lI ]

and putting «:= w/jjw|| we obtain the first part of (4).

Now, let x € X\ K(p), then p(x) >0 and since —w € K(p) it follows that
—p(~w)=0. We obtain: pp@)(—w)—p(—w)x) < px) p(—w) + (—p(—w))
p(x) =0 what implies that —p(x)w—p(—w)x € K(p). Since w e K's(p) we
derive: (—p@)w—p(—-w)x, w);<0 for all xeX\ K(p), what implies
—p@|wlf — p(—w){x, w); <0 for all x € X\ K(p), from where results

p(x)>M<x, Wy for all xe X\ K(p)
[l [

and the second part of relation (4) is also valid.

Remark 6. If X is a Hilbert space we obtain the main result from [1]; (see
Theorem 3.2).
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Remark 7. If fis a continuous linear functional on X and since K(f)
=K_(f), then by (4) we have: flz) = flu){x, u); for all x e X.

On the other hand, substituting x by —x we derive that —f(x) = flu)
(—z, u);=—flu){z, u), for all x € X, what implies

J@ <flu)lx, u), for all zeX.

Consequently, Theorem 7 gives a natural generalization of Theorem 1 for
the case of sublinear and continuous functionals which has the (H)-proper-

ty.
Now, let consider the set

L(p):= {x € X|px) + p(—x) = 0}

where p is a continuous sublinear functional on Banach space X. Then L(p) is a
closed linear subspace in X. The proof is similar to that of Lemma 3.4 from [1]),
and we shall omit the details.

Def. 3. A continuous sublinear functional p is said to be of (C)-type (see
also [1],) if the set N(p):= H(p) n L(p) also contains nonzero elements.

It is easy to see that if p is a continuous linear functional then p is of
(O)-type.

The following result extend Theorem 3.4 from [1], which works in Hilbert
spaces.

Theorem 8. Let p be a continuous sublinear functional of (C)-type on re-
Sflexive Banach space X. Then there exists an element ve X such that

p@)=(x, v); forall weX.

Proof. Let we N(p), w+# 0. Then, as in Theorem 7, we have

plw)

p) =
[l

—(x, w); for all xeK(p)

—p—)<, w);  for all xe X\ K@).

ple) =
[lwl?
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Since p(—w) = —p(w), we obtain

p(x) = (a: wy; forall zeX

HW

and putting v:= (p(w)/|lw|?) w we obtain the desired inequality.

Remark 8. If p is linear, then the above theorems gives also Theo-
rem 1.

4 - Applications

Let (X, |- be a real reflexive Banach space and (¢;); - 75 be a linearly inde-
pendente family of vectors in X. Consider the following system of inequations

(xeX)
) (e1, x);=0 (2, ©)s=0 ... (e, €);=0

n R )
and put K(ey, ..., e,):= {z|x = 2 o'e;, o' =0} which is a proper closed clin in X
i=1

generated by (e¢;);-17. The next result holds.

Proposition 1. The following statements are equivalent
i) Kle,...,e,) has the (H)-property in X.

@il) The system (S) has a nonzero solution in Kley, ..., e,).

Proof. If Kle,...,e,) has the (H)-property, then there exists
xoe Kley,...,e,) \ {0} (see Lemma 2) such that (x, %),=0 for all
x € K(ey, ..., e,) what implies that (S) has a nonzero solution in K(ey, ..., €,).

Conversely, if we suppose that (S) has a nonzero solution x, in K(e,, ..., e,)

n s
then for all z:= ‘Z ade, =0 (@=1, n) we get

<x xO)s"‘(Eaez;xO)s ; a <eum0>s

and by Lemma 2 it follows that K(e,, ..., e,) has the (H)-property.

Remark 9. If (X; (,)) is a Hilbert space, then for all (e;); -17 a linearly
independente family of vectors, the system (S) has a nonzero solution in
Kley, ..., €,) (see [1]p).
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The following results are also valid in Hilbert spaces (see [1]:).

Proposition 2. Let (¢;);=17 be a linearly independente family of vectors
in X and Gley, ..., e,) be the Gram’s matrix associated to it. Then the system of
linear inequations

Gleg, ..., e )T =0 TeR:

has nonzero solutions.

Proposition 3. If (e);—1% s as above and F:R*"XR"—R, F@, ¥)
:=%Gley, ..., €,)Y", then there exists 7, =0 in R™ and Y, # 0 such that

FG@, §o)=0  for all T=0.

The following result is in connection to well-known theorems of J. von Neu-
man which are important in Games’ theory (see [2] or 3] p. 107).

Proposition 4. Let A=(a;);.:_:—f be o matric with real elements and

rang (A) = m <n. Then there exists %, € R%, such that: AZ{=0 in R™

Finally, we shall give another result in connection to Ville’s theorem (see [4]
or [3], p. 130) which is also important in Games’ theory.

Proposition 5. Let A be a symmetric positive definite matriz and g:R"
XR"—> R, 9@, 7):=TAy'. Then there ewists YpoeR%, Ty#0 such that:
9@, Yo) =0 for all x=0.

For the proof of these results see [1]; where further details and conse-
quences are given.
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Résumé

Dans cet article on introduit la notionne de semi-orthogonalité en sens de Birkhoff
dans un espace normé et on donne quelques théorémes d’éstimation pour les fonction-
nelles sublinéaires définites sur cet espace. On donne aussi quelgues applications pour les
néquations linéaires.



