GHEORGHE PITIŞ (*)

Rizza's conjecture concerning the bisectional curvature (**)

1 - Introduction

Let M be a C^{∞} -differentiable manifold of dimension $n \geq 3$ and denote by T_x the tangent space to M at the point $x \in M$.

In his paper [3], G. B. Rizza obtains a useful formula for the bisectional curvature χ_{pq} with respect to the oriented planes p and q of T_x , in terms of the sectional curvature K_r of some convenient planes r of T_x . For two orthonormal bases X_1 , X_2 and X_3 , X_4 of p and q, respectively, this formula is

$$\begin{split} \frac{3}{2}\chi_{pq} &= \sum_{\sigma_2} sK_{S_{i3}S_{j4}} \cos^2 \frac{1}{2} X_i X_3 \cos^2 \frac{1}{2} X_j X_4 \sin^2 S_{i3} S_{j4} \\ &- \sum_{\sigma_2} sK_{S_{i3}D_{j4}} \cos^2 \frac{1}{2} X_i X_3 \sin^2 \frac{1}{2} X_j X_4 \sin^2 S_{i3} D_{j4} \\ (1) &- \sum_{\sigma_2} sK_{D_{i3}S_{j4}} \sin^2 \frac{1}{2} X_i X_3 \cos^2 \frac{1}{2} X_j X_4 \sin^2 D_{i3} S_{j4} \\ &+ \sum_{\sigma_2} sK_{D_{i3}D_{j4}} \sin^2 \frac{1}{2} X_i X_3 \sin^2 \frac{1}{2} X_j X_4 \sin^2 D_{i3} D_{j4} \end{split}$$

where $S_{ij} = X_i + X_j$, $D_{ij} = X_i - X_j$, σ_2 is the group of the permutations (i, j) of (1, 2) and s = sign(i, j).

As a consequence of the formula (1), it is proved in [3] that, if $|K_r| \leq C$ for any plane r of T_x , then $|\chi_{pq}| \leq \frac{4}{3}C$ for all planes p and q of T_x . Moreover, for

^(*) Indirizzo: Department of Mathematics, University of Braşov, R-2200 Braşov.

^(**) Ricevuto: 14-XII-1989.

some couples of planes we have $|\chi_{pq}| \leq C$, which suggests to G. B. Rizza the following

Conjecture. Let C be the maximum of $|K_r|$ as r varies in T_x . Then $|\chi_{pq}| \leq C$ for any couple p, q of oriented planes of T_x .

Remark. If n = 3 then the planes p, q have in common a line and by Corollary 2 of [3], the Rizza's conjecture has an affirmative answer.

Our purpose, in this paper, is to give a negative answer to the Rizza's conjecture, in dimension greater that 3. In fact, we prove that if $K_r \in [-\alpha C, C]$ or $K_r \in [-C, \alpha C]$ and $\alpha \in [-1, \frac{1}{2}]$ then $|\chi_{pq}| \leq C$. For $\alpha \in (\frac{1}{2}, 1]$ this is not generally true and we present some counter-examples (Theorem 2 and Proposition 1).

2 - A theorem

In this section we prove the following

Theorem 1. Let C be the maximum of $|K_r|$ at the point $x \in M$, when the plane r varies in T_x . If $K_r \in [-\alpha C, C]$ or $K_r \in [-C, \alpha C]$ and $\alpha \in [-1, \frac{1}{2}]$ then $|\chi_{pq}| \leq C$ for all oriented planes p, q of T_x .

Proof. For the oriented planes p, q, we choose orthonormal bases X_1 , X_2 and X_3 , X_4 , satisfying the conditions

$$X_1 \cdot X_3 = 0 \qquad \qquad X_2 \cdot X_4 = 0$$

where $X \cdot Y$ denotes the inner product of the vectors X and Y. An elementary calculation proves the existence of such bases.

From the formula (1) we obtain by simple computations

$$\frac{3}{2}\chi_{pq} = \frac{1}{16}(K_{S_{13}S_{24}} + K_{D_{13}D_{24}})[4 - (X_1 \cdot X_4 + X_2 \cdot X_3)^2]
- \frac{1}{16}(K_{S_{13}D_{24}} + K_{D_{13}S_{24}})[4 - (X_1 \cdot X_4 - X_2 \cdot X_3)^2]
(2)$$

$$- \frac{1}{4}K_{S_{23}S_{14}}(1 + X_2 \cdot X_3)(1 + X_1 \cdot X_4) + \frac{1}{4}K_{S_{23}D_{14}}(1 + X_2 \cdot X_3)(1 - X_1 \cdot X_4)
+ \frac{1}{4}K_{D_{23}S_{14}}(1 - X_2 \cdot X_3)(1 + X_1 \cdot X_4) - \frac{1}{4}K_{D_{23}D_{14}}(1 - X_2 \cdot X_3)(1 - X_1 \cdot X_4)$$

and two cases must be analyzed.

Case 1. $\alpha \in [-1, 0]$.

In this case M has positive (or negative) sectional curvature at x, for any plane of T_x . Suppose $0 \le K_r \le C$. Then from (2) we deduce

$$\tfrac{3}{2}\chi_{pq} \leqslant \frac{C}{8} \left[4 - (X_1 \cdot X_4 + X_2 \cdot X_3)^2 \right] + \frac{C}{2} \left[1 - (X_2 \cdot X_3)(X_1 \cdot X_4) \right].$$

But

$$|X_1 \cdot X_4 + X_2 \cdot X_3| \le 2$$
 $|(X_1 \cdot X_4)(X_2 \cdot X_3)| \le 1$

and then $\chi_{pq} \leq C$.

Now, renouncing to the terms preceded by the sign plus in (2) and proceeding as above, we obtain $\chi_{pq} \ge -C$, which, together with $\chi_{pq} \le C$, gives our result

If $-C \le K_r \le 0$ we use the same argument.

Case 2.
$$\alpha \in (0, \frac{1}{2}]$$
.

We know that $K_r \in [-\alpha C, C]$ or $K_r \in [-C, \alpha C]$ and because these two possibilities are analogous, we analyze only the first one. From (2) we obtain

$$\begin{split} &\frac{3}{2}\chi_{pq} \leqslant \frac{C}{8}\left[4 - (X_1 \cdot X_4 + X_2 \cdot X_3)^2\right] + \frac{\alpha C}{8}\left[4 - (X_1 \cdot X_4 - X_2 \cdot X_3)^2\right] \\ &+ \frac{\alpha C}{4}(1 + X_2 \cdot X_3)(1 + X_1 \cdot X_4) + \frac{C}{4}(1 + X_2 \cdot X_3)(1 - X_1 \cdot X_4) \\ &+ \frac{\alpha C}{4}(1 - X_2 \cdot X_3)(1 - X_1 \cdot X_4) + \frac{C}{4}(1 - X_2 \cdot X_3)(1 + X_1 \cdot X_4) \end{split}$$

and

$$\begin{split} &\frac{_3}{^2}\chi_{pq} \geqslant -\frac{\alpha C}{8}\left[4-(X_1\cdot X_4+X_2\cdot X_3)^2\right] -\frac{C}{4}\left[4-(X_1\cdot X_4-X_2\cdot X_3)^2\right] \\ &-\frac{C}{4}\left(1+X_2\cdot X_3\right)(1+X_1\cdot X_4) -\frac{\alpha C}{4}\left(1+X_2\cdot X_3\right)(1-X_1\cdot X_4) \\ &-\frac{C}{4}\left(1-X_2\cdot X_3\right)(1-X_1\cdot X_4) -\frac{\alpha C}{4}\left(1-X_2\cdot X_3\right)(1+X_1\cdot X_4) \,. \end{split}$$

Introducing the notations $U = X_1 \cdot X_4$, $V = X_2 \cdot X_3$, from the precedent inequali-

ties we deduce immediately that if

$$\frac{C}{8} \left[8(1+\alpha) - (1+\alpha) U^2 - 6(1-\alpha) UV - (1+\alpha) V^2 \right] \le \frac{3C}{2}$$

(3)

$$-\frac{C}{8} \left[8(1+\alpha) - (1+\alpha) U^2 + 6(1-\alpha) UV - (1+\alpha) V^2 \right] \ge -\frac{3C}{2}$$

for all $U, V \in [-1, 1]$, then $|\chi_{pq}| \leq C$.

By simple computations, (3) becomes

$$f_1(U, V) \equiv 4(2\alpha - 1) - (1 + \alpha)U^2 - 6(1 - \alpha)UV - (1 + \alpha)V^2 \le 0$$

(3)'

$$f_2(U, V) \equiv 4(2\alpha - 1) - (1 + \alpha) U^2 + 6(1 - \alpha) UV - (1 + \alpha) V^2 \le 0.$$

But we have $f_2(U, V) = f_1(U, -V)$ therefore we study only the extremum of f_1 . Since

$$\Delta = \frac{\partial^2 f_1}{\partial U^2} \frac{\partial^2 f_1}{\partial V^2} - (\frac{\partial^2 f_1}{\partial U \partial V})^2 = -16(2\alpha^2 - 5\alpha + 2) < 0$$

for $\alpha \in [0, \frac{1}{2})$, the function f_1 attains its extremum on the boundary of the set $[-1, 1] \times [-1, 1]$.

Using this remark, we shall prove that $f_1(U, V) \leq 0$ for all $U, V \in [-1, 1]$.

First, from the expression of f_1 it follows that if $UV \ge 0$ then $f_1(U, V) \le 0$. For UV < 0 we have $f_1(U, 1) < 0$ if U < 0 and $f_1(U, -1) < 0$ if U > 0. As f_1 is symmetric with respect to U and V, we have proved that for U, $V \in [-1, 1]$ (3)' is valid in the case $\alpha \in [\frac{1}{2})$.

If $\alpha = \frac{1}{2}$, (3)' is obviously true and the proof is complete.

The precedent proof supplies some information on the case $\alpha \in (\frac{1}{2}, 1]$. Thus, if $\alpha \in (\frac{1}{2}, 1]$ then

$$\Delta > 0 \qquad \frac{\partial^2 f_1}{\partial U^2} = -2(1+\alpha) < 0$$

which prove that for U=0, V=0 the function f_1 has a maximum on $[-1, 1] \times [-1, 1]$. But $f_1(0, 0) = 4(2\alpha - 1) > 0$ and then (3)' is not satisfied for all $U, V \in [-1, 1]$.

This argument suggests that examples of manifolds with the property

(P)
$$|K_r| \leq C$$
 and $|\chi_{pq}| > C$

for some p, q must be sought among the manifolds whose sectional curvature varies in $[-\alpha C, C]$ or in $[-C, \alpha C]$ with $\alpha \in (\frac{1}{2}, 1]$.

3 - Examples

In this section we present examples of manifolds with the property (P). Let M be a Sasakian manifold of dimension $n = 2m + 1 \ge 5$. This means that on M is given an almost contact metric structure (F, ξ, η, \cdot) , the tensor fields F, ξ, η satisfying the conditions

(4)
$$F^2 = -I + \eta \otimes \xi \qquad \eta(\xi) = 1 \qquad FX \cdot FY = X \cdot Y - \eta(X) \, \eta(Y)$$

for any vector fields X and Y on M (I is the identity transformation).

As it is well-known, M is Sasakian if and only if the almost contact metric structure has the property

(5)
$$(\nabla_X F) Y = (X \cdot Y) \xi - \eta(Y) X$$

where ∇ denotes the Riemannian connection of the metric · (see for instance [1], p. 73).

Theorem 2. Let M be a Sasakian manifold and $\alpha \in (\frac{1}{2}, 1]$. If for any plane r of T_x we have

(a)
$$K_r \in [-\alpha C, C]$$
 and $C \in [1, \frac{2}{2-\alpha})$

or

(b)
$$K_r \in [-C, \alpha C] \quad and \quad C \in [\frac{1}{\alpha}, \frac{2}{\alpha})$$

then there exist two oriented planes p and q, of T_x , such that $|\chi_{pq}| > C$.

Proof. For any unit vectors X, $Y \in T_x$ we have

$$X = a\xi + bT_1 \quad \text{ where } \quad a^2 + b^2 = 1, \quad T_1 \perp \xi \quad \text{ and } \quad \|T_1\| = 1$$

(6)
$$Y = c\xi + dT_2 \quad \text{where} \quad c^2 + d^2 = 1, \quad T_2 \perp \xi \quad \text{and} \quad ||T_2|| = 1.$$

Moreover, X and Y are orthogonal if and only if

$$(7) ac + bdT_1 \cdot T_2 = 0.$$

Using the properties of the Riemann-Christoffel tensor \mathcal{R} we have

$$\begin{split} \mathcal{R}(X,\ Y,\ X,\ Y) &= a^2 d^2 \mathcal{R}(\xi,\ T_2,\ \xi,\ T_2) + 2abcd \mathcal{R}(T_1,\ \xi,\ \xi,\ T_2) \\ &+ 2abd^2 \mathcal{R}(\xi,\ T_2,\ T_1,\ T_2) + 2b^2 cd \mathcal{R}(T_1,\ \xi,\ T_1,\ T_2) \\ &+ b^2 c^2 \mathcal{R}(T_1,\ \xi,\ T_1,\ \xi) + b^2 d^2 \mathcal{R}(T_1,\ T_2,\ T_1,\ T_2) \,. \end{split}$$

But on a Sasakian manifold the following equality holds

(8)
$$R(U, V)\xi = \eta(V)U - \eta(U)V$$

for all $U, V \in T_x$ ([1], p. 75) and then

$$\begin{split} \mathcal{R}(\xi,\ T_2,\ \xi,\ T_2) &= \mathcal{R}(T_1,\ \xi,\ T_1,\ \xi) = 1 \\ \\ \mathcal{R}(T_1,\ \xi,\ \xi,\ T_2) &= -T_1 \cdot T_2 \\ \\ \mathcal{R}(\xi,\ T_2,\ T_1,\ T_2) &= \mathcal{R}(T_1,\ \xi,\ T_1,\ T_2) = 0 \,. \end{split}$$

Now, using (6) and (7) we obtain

(9)
$$K_{XY} = 2 - b^2 - d^2 + b^2 d^2 [1 - (T_1 \cdot T_2)^2] K_{T_1 T_2}.$$

Suppose $K_{XY} = -\alpha C$. If $b^2 d^2 [1 - (T_1 \cdot T_2)^2] = 0$ then from (9) follows $K_{XY} \ge 0$, which contradicts the hypothesis $K_{XY} < 0$. Therefore $b^2 d^2 [1 - (T_1 \cdot T_2)^2] \ne 0$ and from (9) we obtain

$$(10) K_{T_1T_2} = -\frac{2 - b^2 - d^2 + \alpha C}{b^2 d^2 [1 - (T_1 \cdot T_2)^2]} \le -(2 - b^2 - d^2 + \alpha C) \le -\alpha C.$$

But $-\alpha C$ is the minimum of the sectional curvature and then by (10) it follows $b^2 = d^2 = 1$ and $T_1 \cdot T_2 = 0$.

In this way we have proved that there exists two orthonormal vectors T_1 , T_2 , with the properties

$$K_{T_1T_2} = -\alpha C$$
 $T_1 \perp \xi$ $T_2 \perp \xi$.

Let $\{e_1,\ e_2,...,e_m,\ e_{1^*}=Fe_1,\ e_{2^*}=Fe_2,...,e_{m^*}=Fe_m,\ \xi\}$ be an adapted

base of T_x . By a theorem of E. Moskal (see [4], p. 39-43 or [1], lemma, p. 93) we have

By the above argument, (11) becomes

(12)_a
$$\Re(T_1, FT_1, T_2, FT_2) \ge 2 + \alpha C - C > C$$

in the case (a), and

(12)_b
$$\Re(T_1, FT_1, T_2, FT_2) \ge 2 + C - \alpha C > C$$

in the case (b).

Now, from the general formula (see for instance [3])

$$\chi_{pq} = \mathcal{R}(X_1, \ X_2, \ X_3, \ X_4) \left| \begin{array}{cccc} X_1 \cdot X_1 & X_1 \cdot X_2 \\ X_2 \cdot X_1 & X_2 \cdot X_2 \end{array} \right|^{-\frac{1}{2}} \left| \begin{array}{cccc} X_3 \cdot X_3 & X_3 \cdot X_4 \\ X_4 \cdot X_3 & X_4 \cdot X_4 \end{array} \right|^{-\frac{1}{2}}$$

we deduce that the bisectional curvature of the planes p, q, spanned by the vectors T_1 , FT_1 and T_2 , FT_2 respectively, is $\chi_{pq} = \mathcal{R}(T_1, FT_1, T_2, FT_2)$ and from $(12)_a$, $(12)_b$ we deduce the result.

Finally, we present some Sasakian manifolds which satisfy the hypotheses of Theorem 2.

Lemma. 1. Let M be a Sasakian manifold and $x \in M$. If $X, Y \in T_x$ are orthonormal, then

$$-1 \leq 3(X \cdot FY)^2 - (\eta(X) - (\eta(Y))^2 \leq 3.$$

The inequalities follow easily from (6), (7).

Afterwards, we assume that the manifold M is a Sasakian space form. Then the curvature tensor of M is given by

(13)
$$R(X, Y)Z = \frac{k+3}{4} [(Y \cdot Z)X - (X \cdot Z)Y]$$
$$+ \frac{k-1}{4} [\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + (X \cdot Z)\eta(Y)\xi - (Y \cdot Z)\eta(X)\xi]$$
$$+ \frac{k-1}{4} [Z \cdot FY)FX - (Z \cdot FX)FX + 2(X \cdot FY)FZ]$$

where k is the constant F-sectional curvature of M (see for instance [1], p. 97).

From (13) we deduce that the sectional curvature of M is

(14)
$$K_{XY} = R(X, Y) Y \cdot X = \frac{k+3}{4} + \frac{k-1}{4} [3(X \cdot FY)^2 - (\eta(X))^2 - (\eta(Y))^2]$$

for any orthonormal vectors $X, Y \in T_x$.

Suppose k < 1. By use of (14) and of Lemma 1, we have $k \le K_{XY} \le 1$ for any orthonormal vectors X, Y, and taking into account the Theorem 2, we obtain

Proposition 1. Let M be a Sasakian space form of F-sectional curvature equal to k and $x \in M$.

- (a) If $k \in [-1, -\frac{1}{2})$ then $|K_r| \le 1$ for all planes r of T_x and there exists two planes p, q, for which $|\chi_{pq}| > 1$.
- (b) If $k \in (-2, -1)$ then $|K_r| \leq |k|$ for all planes r of T_x and there exists two planes p, q, for which $|\chi_{pq}| > |k|$.

Remark. As example of Sasakian space form which satisfies the hypotheses of Proposition 1, we can consider the sphere S^{2m+1} , with the deformed structure (studied by S. Tanno)

$$\eta^* = \lambda \eta$$
 $\xi^* = \frac{1}{\lambda} \xi$ $F^* = F$ $X_* Y = X \cdot Y + \lambda(\lambda - 1) \eta \otimes \eta$

where λ is a positive constant ([1], p. 99).

 $(S^{2m+1}, F^*, \xi^*, \eta^*, *)$ is a Sasakian space form with F^* -sectional curvature $k = \frac{4}{\lambda} - 3$ and it satisfies the hipotheses of Proposition 1, for $\lambda \in (\frac{8}{5}, 4)$.

References

- [1] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, Berlin, 1976.
- [2] S. Kobayashi and K. Nomizu, Foundations of differential geometry (I), Interscience Publ., New York, 1963.

- [3] G. B. Rizza, On the bisectional curvature of a Riemannian manifold, Simon Stevin 61 (1987), 147-155.
- [4] S. Sasaki, Almost contact manifolds (III), Lecture Notes, Tôhoku University, 1968.

Summary

See Introduction.

[9]

•			
			•