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GHEORGHE PiITIS (*)

Rizza’s conjecture concerning the bisectional curvature (**)

1 - Introduction

Let M be a C*-differentiable manifold of dimension n =3 and denote by T,
the tangent space to M at the point x € M.

In his paper [3], G. B. Rizza obtains a useful formula for the bisectional cur-
vature y,, with respect to the oriented planes p and ¢ of T, in terms of the sec-
tional curvature K, of some convenient planes r of T,. For two orthonormal
bases X;, X, and X5, X, of p and g, respectively, this formula is

. 1 21 . 2
g = ZZSKS‘,sSﬂ cos®3X; Xy cos® 1 X; X, sin” Sy S

21 in2 1 in2
_§SKSaD;4COS X, Xy sin®1X; X, sin® Sy Dy

ey
- gz SKD:BSJ‘4 SinZ%Xng COSZ';'X]'X4 Sil"l2 D‘i3 Sj4

-+ GE SKD,BDJ-4 Sin2 %Xz X3 sin2 %X]X‘; sin?‘ DiS Dj4
2

where S; = X;+ X, Dy =X;—X;, o, is the group of the permutations (¢, j) of
1, 2) and s = sign (i, 7).

As a consequence of the formula (1), it is proved in [3] that, if |K,| < C for
any plane r of Ty, then |y,,| <:C for all planes p and q of T,. Moreover, for

(*) Indirizzo: Department of Mathematics, University of Brasov, R-2200 Bragov.
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some couples of planes we have |y,,| < C, which suggests to G. B. Rizza the
following ’

Conjecture. Let C be the maximum of |K,| as r varies in T,. Then
pgl < C for any couple p, q of oriented planes of T,.

Remark. Ifn = 3 then the planes p, ¢ have in common a line and by Corol-
lary 2 of [3], the Rizza’s conjecture has an affirmative answer.

Our purpose, in this paper, is to give a negative answer to the Rizza’s con-
jecture, in dimension greater that 3. In fact, we prove that if K, € [~«C, C] or
K.e[-C, aC]and « € [-1, ] then |y,,| < C. For « € (3, 1] this is not generally
true and we present some counter-examples (Theorem 2 and Proposition 1).

2 - A theorem
In this section we prove the following

Theorem 1. Let C be the maximum of |K,| at the point x € M, when the
plane r varies in T,. If K, e [=aC, C]l or K, € [-C, «C] and « € [-1, 3] then
lpel < C for all oriented planes p, q of Tk.

Proof. For the oriented planes p, ¢, we choose orthonormal bases X;, X,
and Xs, X,, satisfying the conditions

Xl-X3=0 XZ'X4=0

where X -Y denotes the inner product of the vectors X and Y. An elementary
calculation proves the existence of such bases.
From the formula (1) we obtain by simple computations

Ttpg = % (K5, + Kp,p, 4 — (X Xy + X, - X,)%]

—%(Ks,p,,+ Kp 5, )[4 — X1 X, — Xp- X5)]
@
1K, s, (1+ Xy X1+ X, - X,) + 3K, p, (1 + Ko XA — X, - X))

+1Kp 5., (1= Xp-X3)(1 + X1 X,) =+ Kp, p, (1 — X X)(1 — X;- X,)

and two cases must be analyzed.
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Case 1. «e[—1, O]

In this case M has positive (or negative) sectional curvature at x, for any
plane of T,. Suppose 0 < K, < C. Then from (2) we deduce

= 1= 0 X+ X XP)+ 1L - (X X)Xy X)),

But |X1‘X4 +X2'X3‘ = 2 I(Xl'X4)(X2'X3)| = 1

and then y,, <C.

Now, renouncing to the terms preceded by the sign plus in (2) and proceding
as above, we obtain y, = —C, which, together with x,,<C, gives our
result.

If -C<K,<0 we use the same argument.

Case 2. «€(0, 1]

We know that K, € [-«C, C]or K, e [—C, «C] and because these two possi-
bilities are analogous, we analyze only the first one. From (2) we obtain

Tpg S [4 Xy X, + X X1+ &5 [4 (X, X, — X, X5
+5‘£4Q(1 + X, X)L+ X, X)) + %(1 X, X1 = X, Xy)

+%§(1 ~ Xy X)L - Xy Xy) + %;—(1 ~ X X1+ Xy Xy
and

lpg = aC ZL[4— (X Xy + Xp- X1 - —[4 X, X, — X, X5)7]
€ e oC
_Z( + Xp- 3)(1+X1'X4)"T(1+X2'X3)(1—X1'X4)

—"—(1 Xo X3)(1—X;-Xy) — _‘(1 Xo X))+ X1 Xy).

Introducing the notations U = X;- X, V = X, X3, from the precedent inequali-
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ties we deduce immediately that if
—%[8(1 ) -+ U2 =61 - UV —(1+a) V] < 3—20-
3

—%—[8(1+a)—(1+oz)U2+6(1-—a)UV—(1+a)V2]2 —3—20-

for all U, Ve[—1, 1], then [y,|<C.
By simple computations, (3) becomes

£, V)“'——4(2a-ﬁl)—(l+a)U2—6(1—~a)UV—(l+a)V2$O
3)
(U, V)—=—4(2cx~1)—(1+a)U2+6(1—a)UV—(l+a)V2SO.

But we have £, (U, V) =f; (U, —V) therefore we study only the extremum of f;.
Since

&f
auav

_ &R P

2 _ 2
= 307 v P =—16(2"—5ax+2) < 0

(

for « € [0, 3), the function f; attains its extremum on the boundary of the set
[-1, 1I1x[-1, 1].

Using this remark, we shall prove that f£(U, V)<0 for all
U, Vel-1, 11

First, from the expression of f; it follows that if UV = 0 then f; (U, V) =<0.
For UV <0 we have f1(U, 1)<0if U<0and f,(U, —1)<0if U>0. As f; is
symmetric with respect to U and V, we have proved that for U, Ve[~1, 1]1(8)
is valid in the case « € [3).

If « =1, (3)' is obviously true and the proof is complete.

The precedent proof supplies some information on the case « € (z, 1]. Thus,
if « € (3, 1] then

A>0 Fh =—-21+a)<0
oU*®

which prove that for U=0, V=0 the function f; has a maximum on
[—1, 11x[—1, 1]. But £;(0, 0) =42« — 1) > 0 and then (3)’ is not satisfied for
all U, Vel[-1, 1]
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This argument suggests that examples of manifolds with the property
P) K |<C and |yl >C

for some p, q must be sought among the manifolds whose sectional curvature
varies in [—«C, C] or in [—C, «C] with « € (3, 1].

3 - Examples

In this section we present examples of manifolds with the property (P).

Let M be a Sasakian manifold of dimension » = 2m + 1 = 5. This means that
on M is given an almost contact metric structure (F, &, », <), the tensor fields
F, & y satisfying the conditions

@  FP=-I+7®c¢ 7@ =1 FX-FY =X-Y —n(X) »(Y)

for any vector fields X and Y on M (I is the identity transformation).
As it is well-known, M is Sasakian if and only if the almost contact metric
structure has the property

® (VxPY=X-DE—nX

where V denotes the Riemannian connection of the metric « (see for instance [1],
p- 73). '

Theorem 2. Let M be a Sasakian manifold and « € (z, 11. If for any
plane r of T, we have

2

(a) K,e[-aC, C] and Cell, 2—-)
-
or }
(b) K,e[-C, uC] and Cell, 2

then there exist two oriented planes p and q, of Ty, such that |yl >C.

Proof. For any unit vectors X, Y e T,, we have

X =at+bT, where a®+b%2=1, T,L1& and |[T4f=1
(6)
Y=ct+dT, where c%2+d*=1 ToLf and |T=1.
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Moreover, X and Y are orthogonal if and only if
(") ac+bdT-Ty=0.
Using the properties of the Riemann-Christoffel tensor & we have
REX, Y, X, V)=a?d R, Ts, & To)+2abcdR(Ty, & & Ts)
+2abd? R(E, Ty, Ty, To)+2b%cdR(Ty, & Ty, T2)
+b2c2R(Ty, &, Ty, &+ b2d2R(Ty, Ts, Ty, T2).
But on a Sasakian manifold the following equality holds
® R(U, NE=yWNU-n(HV
for all U, VeT, ((1], p. 75) and then
RE To, & To)=&(Ty, § Ty, =1
KTy, & & Ty)=~-T1T,
RE, Ty, Ty, To) =Ty, & Ty, T2)=0.
Now, using (6) and (7) we obtain
9 Kyy=2-0b*—d?+ b2d?[1— (T, - T2)*1 Ky 1, -

Suppose Kyy= —aC. If b%2d%[1—(T;-T,)*]1=0 then from (9) follows
Kyy=0, which contradicts the hypothesis Kxy<0. Therefore
b2d2[1— (T, - T5)?]1# 0 and from (9) we obtain

2-b%—d*+aC

_b2d2[1 e T)Z] $~(2*~b2—d2+a0)<—ac.
- 1°42

(10) I{T1 T, -

But —«C is the minimum of the sectional curvature and then by (10) it follows
b2 =d?=1and T, -T, = 0.

In this way we have proved that there exists two orthonormal vectors T},
T,, with the properties

KT1T2= —OCC TI_LE T2_LE,.

Let {e1, €s,...,6n, €+ =Fe,, ex=Fey,...,e,+=Fe,, £} be an adapted
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base of T,. By a theorem of E. Moskal (see [4], p. 39-43 or {1], lemma, p. 93) we
have

11 R(ei, €, ¢, ep) =2~ Keigj - Kei,gj, for i #7.
By the above argument, (11) becomes

(12), Ry, FTy, Te, FT) 224+ -C>C

in the case (a), and

(12}, Ry, FTy, Ty, FT)=2+C—-aC>C

in the case (b).
Now, from the general formula (see for instance [3])

-4

1
-z

XXy Xio X
Xz‘Xl Xz'Xg

Xy Xy X3 Xy

wpe = RX;, Xo, X5, X
Zpq ( 1y A2, A3, 4) X4'X3 X4'X4

we deduce that the bisectional curvature of the planes p, g, spanned by the vec-
tors Ty, FT; and Ty, FT, respectively, is y,, = KTy, FIy, Ty, FT,) and from
(12),, (12), we deduce the result.

Finally, we present some Sasakian manifolds which satisfy the hypotheses
of Theorem 2.

Lemma. 1. Let M be a Sasakian manifold and xe M. If X, Ye T, are
orthonormal, then

—1<8(X FY)*— (n(X) — (o)) <3.

The inequalities follow easily from (6), (7).
Afterwards, we assume that the manifold M is a Sasakian space form.
Then the curvature tensor of M is given by

(13) RX, V)Z = —k[lﬁ[(Y-Z)X—(X-Z)Y]

+ L 0@ 2@ Y 1N (D) X + X2y 7D 2= (V- 2) 90 8

+ @—Z——l—[Z-FY)FX-— Z-FX)FX+2X-FY)FZ]
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where k is the constant F-sectional curvature of M (see for instance [1],
p- 97).

From (13) we deduce that the sectional curvature of M is
(149  Ky=REX NY-X =23 4 Bl pyy - (007 - o))
for any orthonormal vectors X, Y e T,.

Suppose k < 1. By use of (14) and of Lemma 1, we have k < Kyy <1 for any
orthonormal vectors X, Y, and taking into account the Theorem 2, we
obtain

Proposition 1. Let M be a Sasakian space form of F-sectional curvature
equal to k and x e M.

(@) If ke [—1, —%) then |K,| <1 for all planes r of T, and there exists two
planes p, q, for which |y,,| > 1.

() If k e (-2, —1) then |K,| < |k| for all planes v of T, and there exists two
planes p, q, for which |y,,| > |k|.

Remark. As example of Sasakian space form which satisfies the hypothe-
ses of Proposition 1, we can consider the sphere S#"*! with the deformed
structure (studied by S. Tanno)

¥ = A =2t Fe=F X«Y=X-Y+20~ D1 ®7
where 2 is a positive constant ([1], p. 99).
(SZm+1 F® | gk % ) is a Sasakian space form with F'*-sectional curva-

ture k= % —~3 and it satisfies the hipotheses of Proposition 1, for

re (s, .
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Summary

See Introduction.






