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Reciprocity and variational theorems
in a generalized thermoelastic theory
for non-simple materials with voids (¥%)

1 - Introduction

In a previous paper [3]; we were concerned with a generalized thermody-
namic theory for elastic solids with voids; more precisely, we started from a
modified entropy production inequality, originated by Green & Laws [7] (cf. al-
so [15]), in order to get a temperature-rate dependent formulation of thermoe-
lasticity for porous materials.

As is known [8], [19], such a formulation — one of the so-called generalized
(see also [13], [12]) is mainly acknowledged since it makes possible a finite ve-
locity of propagation for thermal perturbations (the second sound effect), there-
by avoiding a well-known flaw of the classical theory.

On the other hand, the introduction of an additional degree of freedom, connect-
ed for each material particle with the fraction of (elementary) volume which is void
of matter, proves to be useful to describe the mechanical behaviour of elastic solids
having small pores, or voids, in their constituent structure [16], [4].

In the present paper, we aim to carry on the study of these topics in the more
general framework of non-simple materials. In short, these (elastic) materials are
defined by including the gradient of the strain among the independent kinematical
variables; the resulting theory thus accounts for a wider range of spatial depen-
dence in the response functionals [14], [20]; ».

(*) Indirizzo: Istituto di Fisica Matematica ed Informatica, Facoltd di Ingegneria,
Universita, I-84084, Fisciano, SA.
(**) This work has been performed under the auspices of G.N.F.M. of the Italian Research
Council and with a 60 per cent grant from M.P.I. (Italy). — Ricevuto: 22-X1-1989.
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Starting from the field equations established for this context in [2], we shall
deal with reciprocity (of Graffi type), wvariational (of Gurtin type) and
minumamn (of Reiss type) principles (). Classical results will be recovered from
our’s as particular cases.

We recall that Graffi [6] obtained reciprocal results in elastodynamics by us-
ing the conwvolution (in time) of the relevant fields, thus avoiding recourse to
Laplace-transform (cf. also [11];). Gurtin’s approach to variational questions
(e.g., in classical elasticity [9]) starts from a single integro-differential equation
that is proved to be equivalent to the motion equation together with the appro--
priate initial conditions. Finally, Reiss’ method [17], in some sense related to
Gurtin’s, allows to lay down minimizing functionals based on the original time
domain rather than on the Laplace-transform domain (cf. [1]).

The quoted principles will be proved in 3, 4 and 5, respectively, after hav-
ings stated the basic equations and other preliminary things in 2.

2 - Basic equations. Preliminary results

Throughout this paper, we shall employ the standard (Cartesian) indicial no-
tation. Introduced once for all a fixed, orthonormal frame of reference in the
physical space (= R?), vectors and tensors will have components denoted by
Latin subseripts (ranging over {1, 2, 3}). Summation over repeated subscripts
is implied. Superposed dots or subscripts preceded by a comma will mean partial
derivative with respect to the time or the corresponding coordinates. Moreover,
we shall disregard regularity questions, and simply assume a degree of smooth-
ness up to the order requested to make sense everywhere.

The general balance laws can be invoked in the context of linear, generalized
thermoelasticity for non-simple materials with voids, to yield the following field
equations [2], [11];

Tij,j = bk + &fi = ol
(1
hitgtel=ckd  quter=elyn  inQx(0, +).

(") The last result will be actually achieved in the purely mechanical case.
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In these equations, usually referred to as motion equations (the former two)
and energy equation (the latter), Q stands for the (bounded) domain of R® occu-
pied by the elastic body in a fixed, natural reference configuration. We assume
the body is homogeneous, and identify it with Q.

i = mig i the so-called hyperstress tensor and t; = T + w1 = 75, Where
T; is the usual (Cauchy) stress tensor [20], 2, [14], [11]3; h; and g are the equili-
brated stress vector and the intrinsic equilibrated body force [16], [4], respec-
tively; ¢; and » denote the heat flux and the (specific) entropy. These are the de-
pendent variables of the theory, needing a constitutive equation.

Further, o is the bulk mass density [16] f; the usual body force, » the external
heat supply, k the equilibrated inertia and 6, the (absolute, constant) tempera-
ture in the reference configuration.

Finally, %; and ¢, along with the temperature 8 (measured from 6,), are the
thermokinetic variables of the theory: u; represents the displacement field and
o the change in volume fraction field (with respect to the reference one, as-
sumed constant).

In terms of the constitutive fields Ey, Ky, ¢, 9,4, 0, 6, 0 ;, where E; = 3(u; ;
+u; ;) and Ky, =, 5, the constitutive equations for (1) read as follows [2]:

v = Ay By + Bijpgr Kpgr + Mijo + Hy 0 1 + Ay (0 + o)
it = Bpgije Bpg + Cogpgr Kpgr + Rigre o + Ly 9, + Cige (0 + o)

hi = Hz:jkEjk -+ quriqur + sz + Dij ®,j + ¢; (9 + OC@)

@)
g= _Mley - szhKijh —Cp — di N m(B + OLG)

q;= Go(bié'l" kij()’j)
on=a _AijEij—" Cithijh_' meo — Ci@,i'{- do + hé“ bi()yi .

The coefficients in the above expressions are all characteristic constants re-
lated to the material and thermal properties of the (homogeneous) body. It can
be proved [2] that they obey the following symmetry relations

Ay = Apig = Ajina Bijpgr = Biipgr = Bijgpr Cijipgr = Cpgrije = Cijrgpr

Aij = Aji Dij = Dji Cijk = Cjik H ik = H jik = H ikj
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Ry =Ry My = My Liggr = Lijipr b=k (®).

In the sequel, we shall assume b; = 0 in (2);5 ¢ [8], [19]. Note that insertion of
(2)5 and (2)g into energy equation (1); leads to an evolution equation for 6 of
wave (hyperbolic) type.

Consider now four pairs of disjoint and complementary subsets of the
(smooth) boundary 8Q, 3,0, 8,,1Q (s=1, 3, 5, 7), and let n; denote the out-
ward unit normal to these. We append to (1) the following system of mixed ini-
tial-boundary conditions:

®  w=w w=wd e=¢ =¢" 0=0 y=n" n0Qx{0};
U; = uF on 8,2 %0, +ox) P,=PF on 9,Qx(0, +)
(4) Dui = gi* on 83.(2 X (0, +°°) Ri = Ri* on 849 X (O, +°°>
o= g* on 3;Q %X (0, +w) h=h* on 30 X (0, +0oo)
6 = 6% on 9;0 % (0, +w) qg=q* on 3302 X (0, +»)

where Du; = u; ;n;, h = hyn;, ¢ = q;n;, and P;, R; are suitably defined vectors so
that the power of the surface tractions and hypertractions can be written as
[ (Pyi; + R;Duy) A2 [20]y, [14], [11]5. P; and R;, as well as & and g, are of course
a0

determined by w;, ¢, 0 through the constitutive equations.

Right-hand members in (8), (4) denote assigned fields: along with f;, [ and r
— the external actions — these are the data of the initial-boundary value prob-
lem (1)-(4). An array of fields (u;, ¢, 6) meeting the left-side conditions in (4)
will be called thermokinematically admissible; if (u;, ¢, 6) meets all equations
(1)-(4), for some assignment of the data, it will be called a (regular) solution to
the problem.

With a view towards the claimed results, we conclude the section by giving
an alternative formulation of the problem (1)-(4) in which the initial conditions
(3) are incorporated into the field equations.

Let e(x, )=¢, I(x, )=1 V(x, ) eQ X [0, +), and denote by axb the
convolution (in time) of fields on Q X (0, +») .

t

(@sd)x, )= [alx, t—)b(x, 7) dv=(bsa)x, t) xeQ).
0

(® The symmetry of the (linear) keat-conduction tensor k; is one of the major out-
comes of generalized thermoelasticity.
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Of course, ¢ = 1x1. Further, define

Fi;= olexf; +ud + tir]) L = oles 1+ ke’ + to)]

()
R = o[(1/60) L7+ 1° — (a/p)].

Following [9], we can easily prove

Theorem 1. The fields u;, o, 0 form a solution to problem (1)-4) if and
only if they satisfy, through (2), the boundary conditions (4) and the following
equations

e (55— i i) + i = U ex (b ;+9)+ L = oko

(6)
(1/80) 15 g; ; + R = (o — @) in Q %[0, +»).

In the sequel, we shall assume 6° =0 in (3).

3 - A reciprocity principle

Consider now two different sets of data for the problem in concern

D(ﬂ)={f}5), l(ﬁ)’ ,,-(,8), ulocz», 7:"19(‘8), SpO(ﬁ)’ g'00(13)’ )70(/3)’ ui*(B)

PO gx@  px®  x@  pE@  gx@ - ax@) B=1, 2
with the corresponding solutions
M UP=@w®, 9, ¢9) B=1, 2.

We also define F®, L®, R® by means of (5), and <2, n8, ¥, g©, ¢, n® by
means of (2). We prove the following

Theorem 2 (Reciprocity Principle). Let a non-simple, generalized ther-
moelastic body with voids Q be subjected to data DL and D® with correspond-
ing solutions UW, U®. Then, the following relation holds

Ly=1y
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where I, = [[FPsul+ L9 " — (e + a1)x R¥: 6] d 0
Q

+ [ ex[PPsul + RP2 Duf® + hPs oW — (1) (L¢P + g @) 697 d.3.
&b

Proof. The proof follows standard steps (ef. [11], [18]). By equations (2)
and symmetry relations, we easily see that

Jp= [ ex [P EP +ulx KB + b 0@ — gD 0@ — (6D — 0) (69 + 2f?)] d©
o

is equal to Jy; (recall that 6° = 0). By convolution of the field equations (6), which
hold for both U®, U®, with the fields of the other solution U®, U®, respeec-
tively, we also realize — through divergence theorem — that

L,=J, +J‘[V’L(;(B)>~u(7)+0ku(a)"” ) — (1/6p) e (15 ¢ + o) 697 d 2.

The terms on the right-side are all symmetric in 8, y, and thus the thesis
follows.

4 - A variational principle

The field equations (6) can be of course written in form of one (five-dimen-
sional) vector equation

® AU=F

where A is a linear operator. We only need to define
F=F;, L, —(e+al)+R)

and, by means of (2),

(AU); = pu; — €3 (735 = i k), 5 Ay =pckp—ex(h;;+9) (=1, 2, 3)
€)
(AU)s = —(e+ al)x (on — @) + (1/6p) e (1« Qii + og; 5) -

For U see (7). Recall now the definitions of 3, and call D, the domain of defini-
tion of A. It is a simple matter to prove — a proof based only on (9) and diver-
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gence theorem — that YUY U® e D,

40 JAAUD:U® - AUP: UD) do
0
=a£ ex {(PPxu® — PPz u®) + (RP:Dul® — RMx Du®) + (h®s

—h Wi 6@~ (1/0)[(Lx ¢P + aq @) 6 — (1 ¢ P + agP)= 6P 1} d 2.

Note that if AU® =F® and AU® = U®, we recover from above the re-
ciprocity principle.

Now, if the right-hand member in (10) were zero for each U®, U® belonging
to some subdomain D° of D4, a well-known result (e.g., [10]) would imply that
the functional on D°

dU) =3 [(AU=U —-2U=F)dQ
Q

has a stationary point at some U e D° if and only if U satisfies equation (8).
Thus, a variational principle for our problem in the case of homogeneous bound-
ary conditions (4) would be available at once.

Nevertheless, a more general result can be proved as well [11]s. To this end,
let us introduce a given (five) vector W= (w;, o,, 6,) € D4 obeying all the
boundary conditions (4). Assume that U € D, meets equations (4), (8). Then, it
is clear that V=U—W € D, satisfies

AV =F' in O xX[0, +=)

with F' = F — AW and homogeneous boundary conditions.
So, we are led to consider the functional

(11 V) = o)

=12 [[AU«U+ (AW U —AUxW)—2U=F — AW« W+ 2W=«F] dQ
9

that can be easily worked out by means of (9) and (10).
We give the final result in form of the following

Theorem 8 (Variational Principle). Let Dj the subdomain of all
thermokinematically admissible vectors U = (u;, ¢, 6) € Dy. Then, the func-
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tional on D}

(12) Du;, @, 0) =% [{lex (v Ey+ s K + hix g 1 — g% )
5
—=(on — @)= (€ + al)% 6] + [ous= u; + phps o — (1/6y) e+ (1 q; + aqy)= 0 ;]

—2[Fpu;+Lep—(e+al)sRx61}dQ— [ (exuxPF) dX

3,0

~ [ (exDusR¥) dx — f(e*;o\h”‘)dy+ f(l/@o)ex(lxq +ag®)x0d3

8,0 30

has a stationary point at, and only at, the solution of the initial-boundary val-
ue problem (1)-(4).

We only note that, in writing the funetional (12) from (11), we have neglect-
ed inessential terms (i.e., with vanishing variations).
Theorem 3 is, actually, a variational principle of Gurtin type [9].

5 - A minimum principle for the purely mechanical problem

In this final section, we assume
b=q=9=0 in O x[0, +e0).

Dropping the equations involving 6, ¢; and », we will refer to problem (1)-(4)
as purely mechanical. An array (u;, o) satisfying the pertinent left-side condi-
tions in (4) will now be called kinematically admissible; " will denote the class
of these arrays. Moreover, we keep the notions of solution to the problem and of
data (with clear exclusions).

Recall now the constitutive equations (2). We will have occasion to consider
the quadratic form

(13) X, X;, Xy, X =35 X5 X+ 3C e Xip X, por T +deX®
+3D5 X; X; + Bpgiii X pg Xt + Lisjin Xy X,

Note that, for X =9, X;=9;, X;=E;, X =Ky, this form takes the
meaning of a potential energy den31ty for Q along (u;, ¢).
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The stationary functional (12) can be used to yield a minimizing functional in
the present context. We premise some definitions.

Let _# denote the class of the fields on Q X (0, +), say v, that admit (veal)
Laplace-transform 7 in Q

v(x, 8)= [ exp(—st)v(x, t)dt VseR™.
R+

Set also L={we £ 0 v, vye ¥}

Further, let G be the set of all functions g:te[0, ©)— g(t) e R* such
that

(14) gty = | exp(=st)G(s) ds
R+

for some non-negative (smooth) function G having compact support in R* (cf.
(17}, (5D )

Now, assume the data belong to ¥ and u;, ¢ to .2 in this case, we would
be entitled to consider the fransformed functional O3, ) and try to prove a
minimum principle, in the Laplace-transform domain, of Benthien & Gurtin
type [1]. Rather than do this(®), we resort to Reiss’ idea [17], and set up the
funetional

P, o) g1= J G 8@, $)s*ds.
R+
We are thus led to the following (cf. [3]p)

Theorem 4 (Minimum Principle). Let (u;, ¢) be a solution to the pure-
ly mechanical problem (1)-(4), with all data belonging to £, let also u;, ¢ be-
long to £. Given any geG, consider the (well-defined) functional over
I nF

Wi, ¥; gl= § gt+D{IGAmF;®Fu(@ +3Dy D¢

R*xR* Q

+%Cijkpqr Sijk (t) Spqr (T) + %C¢(t) (ﬁ('t') + quijk qu (t) Sijk (T)

(*) The minimum character is lost when going back to the time domain by inverse
transform.
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L, @ S (2) + My Fiy (O U=) + Hyp 1, O Fy (7) + Ry, Sy (0 <)
+di, i (8) $()) + 3ot (1) 0; (2) + k(D) $(=)) — (of; D v; ()

+l@® N A0} dtds— [ git+a{ [ PF@®vi(a) AT
Q

R*xR* 2

+ [ RE®ODv(x) dZ+ [ h*() (=) dZ} dtd=+ [ g@) dt [ o{[v;(0)
8,0 30 R+ Q

~u? 150 00, 8) + KEY0) — ¢ 1U(0) — BE9(1)} A2
+9(0) [ {0 OF0:0) = uf 1+ FYOBUO) ~ T} do

where Fi; = 3(v; j+; 1), Sy = vy, 5. Then, provided the quadratic form (13) is po-
sitive definite, it results

P, O); gl= ¥, ¢) g) Vi, eI n P
and equality holds only if (v;, ¢) = u;, o).

Proof. The main steps are as follows (for more details see [3],). Evaluate
first A¥ = P[(v;, ¢); 91— ¥Fllu;, o); gl. Then, consider that (u;, ¢)is a solu-
tion, and multiply equations (1); and (1)s, at time ¢, by (v; —w;) and (¢ — ¢) at
time <, respectively. Integrate over 2 and use the divergence theorem (with ex-
tensive recourse to integration by parts and reversal of the order of integration
between space and time); of course, v; —u; =0 on 3; 2 X (0, +), Dy; —Du; =0
on 3;2 X (0, +») and ¢—¢ =0 on 30 X (0, +x).

By insertion of g(f) as in (14), Laplace-transform of the various fields will ap-
pear, so that we finally get

AV = [ G(s) ds{ [l -, @,i“f’,i, FA'ij‘Ezj, gijh_ffljh)
R* Q

1082 (0; — )% + ks (b — 621 d Q).

Clearly, AY¥ is (strictly) positive, unless (u;, ¢)= (v;, ). Conversely, A¥ =0
implies (9; — #;)(s) = () — p)(s) =0 over the support of G (containing an inter-
val), and then over the whole of R* [5]. By the uniqueness of Laplace-trans-
form, we thus get v, — %, =¢—9=01in Q X (0, +w).
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Summary

In the context of a temperature-rate dependent formulation of thermodynamics for
non-simple elastic solids with voids, we prove reciprocity and variational theorems for the
mixed initial-boundary value problem. A minimum principle is also established in the
1sothermal (purely mechanical) case.



