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A. MORRO and B. STRAUGHAN (*)

Equations for reacting viscous fluids
near chemical equilibrium (**)

1 - Introduction

Reaction-diffusion equations for mixtures of viscous fluids play an impor-
tant role in everyday life and in modern technology. We mention specifically
acid rain effects [9], the nuclear winter phenomenon [2], warming of the strato-
sphere [10], [6], and enzyme recovery from reacting mixtures [1], [7]. However,
the equations are usually written down in an ad hoc manner and often vary con-
siderably. Therefore, a rational derivation of a relevant system of equations
would seem appropriate.

From an operative viewpoint the general theory of mixtures (cf. [8];2) is
much too cumbersome because of the large number of pertinent unknown fields.
A reasonable approximation seems to be that of mixtures with one veloeity field
as in the classical theory of mixtures (cf. [4]). The notion of one velocity is ap-
pealing sinee it yields as simple a theory as possible but still retains all the fea-
tures appropriate to the study in hand.

In this paper we develop a theory for a mixture, with one velocity field, of
chemically reacting viscous fluids provided the reactions stay close to equilibri-
um. We derive the equations for the mixture and investigate the restrictions
imposed by thermodynamics on the relevant coefficients. Relative to a previous
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work on the subject by Gurtin and Vargas [4] we generalize the model by let-
ting the fluid mixture be viscous. As to the procedure we adhere to I. Miiller’s
approach whereby the entropy flux is an unknown in the thermodynamic analy-
sis to be characterized along with the other constitutive functions.

In 2 we develop the constitutive theory for a viscous mixture. In 3 we study
the additional information gained by linearizing about a state of chemical equi-
librium. Then 4 presents a simple model for a mixture of viscous fluids allowing
for a Boussinesq approximation in the body force. This model is applicable to a
layer close to chemical equilibrium, acted on by a gravitational force.

Throughout the article we employ standard notation. A superposed dot de-
notes the material time derivative, the subscripts ¢, 8, v, o take the values 1
to N and label quantities of the pertinent constituent. Summation over repeated
indices («, B, v, ) is understood. The other subscripts denote partial deriva-
tives. The symbols have the following meaning: ¢ density of the mixture, v ve-
locity of the mixture, c, concentration of constituent «, 6 temperature of the
mixture, T stress tensor, b body force, ¢ internal energy (per unit mass), » en-
tropy, ¢ free energy, g heat flux, r heat supply, k, relative mass flux of con-
stituent o, m, mass supply due to chemical reactions, L velocity gradient, D
symmetric part of L, v = 1/p specific volume, p, = 8¢/dc, chemical potential of
constituent o.

2 - Constitutive theory

Consider a mixture of N+ 1 fluids. The balance equations are

2.1) p+eoVer=90

(2.2) oC, = —V-h,+m, (e=1,..,N)
2.3) 0=V-T+b

(2.4) e =—V-q+T-D+or

and express the balance of mass, the balance of mass for each constituent, the
balance of linear momentum, and the balance of energy. To them we add the
second law of thermodynamies in the form

2.5) pﬁ>~v-(%+k)+%.
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In terms of ¢ = e— 6y, (2.5) is conveniently rewritten in the form

(2.6) ot ) = T-D=0V-k+ Tq-g<0.

We now develop the econsequences of these relations, in the first instance for the
case of a compressible mixture and then for an appropriately defined incom-
pressible one.

2.1 - Compressible mixture. Denote by A the ordered array
A=(’l), 8, C; w, g, E, D)

for which C = (¢q, ...,cn), w=Vv, g=V8, E= (&, ..., &) where &= Vc,.
The constitutive assumptions to be employed are that

&= J(A) T = T(A) 7= 5(A) q = ¢(A)

@ . .
k= kA) h, = h,(A) m, =1, (A).

We now examine the compatibility of the response functions (2.7) with the en-
tropy inequality (2.6) using the standard arguments of Coleman and Noll. Upon
differentiation and use of (2.2) we can write (2.6) as

(2.8) —o(y+ 1) 0— by G — ete &, — obp* D

HT =91 = o W) 1+ o0 ® Y ]- L

—(gbw-V)V'v-i-V-J—(%q+k)~g——maya—h“-v,ua>0
where J = 0k +u h,. Since J=J(A) and §, §, &, D appear linearly in (2.8)
then the inequality can hold for all motions provided only that
7= —dy Gg=0 p =10 g =0 (@=1,...,N).
As a consequence u, =g, (v, 6, C, w). Then inequality (2.8) reduces to

Oty
“ 39

[T~ 91— s 0) 1+ @ Y )-L= (G a+k —Jo+ b, T2 )-g

9 3
e g+ Uy = b, 222y w4+ T, (V6 + T, - (VVe,)
ac, B s

"*‘(J'c:l - hﬁ

U= B ® 22 ). (V90) + Uy~ 44, @ 1+ (VD) = 1,0, 0.
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The arbitrariness of the symmetric tensors VVo, VVc¢,, VVo and of the third-order
tensor VD allows us to determine further consequences of the entropy inequali-
ty. The whole result is as follows.

The free energy ¢ is independent of g, =, D, namely

b=dJd, 6, C, w).
The entropy » is related to ¢ by
2.9 n= =y .
The energy flux J due to diffusion satisfies
symJ, =0 symJ: =0 (@=1,...,N)

(2.10) 3

(]
Jw

sym{J,—h,® )=20 Jp—¢, ®1=0.
The reduced entropy inequality is

%)
(T~ 41— o )1+ 50 ®4) L= (sq+k—Jo+ Z2h)-g

Oy
ac,

3
Ry £+ (T, ~ b, 2 ) —m,p, = 0.

e~ v

As an aside, in view of the conditions (2.10) we can write

J=d,V-v+Jw, 6, C, w, g, E)

symJ, =0 symJ; = 0.

2.2 - Incompressible mixture. The main reason here for studying an incom-
pressible mixture is the simplification introduced into the resulting model. The
difficulties encountered in analysing the stability of a convection layer of a sin-
gle compressible fluid (cf. [11]) are such as to motivate a study of an appropri-
ately defined incompressible model, whenever this is possible.

We shall understand by an incompressible mixture of N+ 1 fluids, one in
which the restriction v = constant always holds. Hence, owing to (2.1), it fol-
lows that

Vv=0.
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The thermodynamic analysis for an incompressible mixture follows that for a
compressible one provided the constraint is taken into account. Accordingly,
we consider the array

A1=(9, C} g, E; D)

as the set of independent variables and then exploit the inequality
o+ 70— T-D— 6V -k + -;—q-gso.

Letting again u, = 3¢/c, and J = 6k + u, h, we may write the entropy inequality
as

Ot
* o6

os+ )b+ ety g+ e bty D= T-D+ (Sq+k—Jy+ k. 2)-g

8
8‘; b _J,)& —J,- (V) = J, - (VVe,) — Jp- (VD) + m,p, <0

+(hy

Making use of the arbitrariness of 6, g, &, D, VVc,, and VD the following de-
ductions may be obtained.
The free energy is independent of g, E, D, viz.

¢ =06, C).

The entropy » is determined by ¢ as in (2.9).
The energy flux J satisfies

@.11)  symJ,=0 Jp=0 symJ, =0 (x=1,...,N).

The stress T, to within an arbitrary pressure tensor —pl, satisfies the reduced
entropy inequality

Oty
a6

T-D+(J,— %q—k—-ha )-g+ U, — g z—‘;ﬁ )& —u,m, =0
for every motion of the mixture with a divergence-free velocity.

Let © be the vector space associated with the three-dimensional Euclidean
space. An isotropic function F: 9 —©V is such that QRuy,...,uy)
= flQu,, ..., Quy) for any element Q of the full orthogonal group. A theorem by
Gurtin [3] proves that if sym 8f/ou; = 0 (i = 1, ..., M) then f necessarily vanishes.
Accordingly, if J is supposed isotropic then by (2.11) we conclude that J vanish-
es. Incidentally, if J = 0 then Miiller’s entropy extra flux k is related to the rela-
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tive mass fluxes k, by

k=-L1,n, .
0

3 - Linearized theory near a thermochemical equilibrium state

Although 2 gives much information on the constitutive forms for the general
case, the resulting equations are still formidable from an analytical point of
view. Therefore we now present a simplified theory for which the constitutive
functions are linear in their respective arguments.

The theory is elaborated for successively stronger states of equilibrium. The
procedure is performed in 3.1-3.2 where the development is for a compressible
mixture, the incompressible case being immediately obtained by formally set-
ting ¥ = 0.

3.1 - Equilibrium states. A homogeneous state A is defined to be a solution
of the governing equations of the form

X:('(")" é; 6; 07 07 07 0)7

i.e. a state in which w=0, g=0, £=0, D=0. A routine calculation shows

that there exist constants x, 1,, ¢, AL, Ag, w,and functions u, A, m?, m]

of v, 6, C such that

=4, 6, C) g=—xg— 25— w+ 0@
h,=2,9 = gy — w,w+ O(?) m, = md+mltrD+ O(>)
3.1)
T= (b, +mlu)1+2uD +2tr D)1+ O(2) 0k = —u, h,
®w=0, 8A+2:=0 %—Q-g+ha~Vya+m£ym<0

as g = ]A—Z[——-)O; here a-_'Q‘“.‘*aha and

[A—AP=v=3+|6—6]*+ |wf+ g+ 2lc, — ¢.)* + |E.f1+D-D.
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A homogeneous state for which the further restriction
m, (A) =0

holds is called an equilibrium state. Expanding m, (A) near an equilibrium state
yields

M = 50y — Bg) — 8,0 — 0) — & (v —B) — o, tr D + O()

where 74, 8., ¢, and o, are constants.
On account of the constitutive equations (8.1) the balance equations (2.1),
(2.2) reduce upon linearization to

(8.2) b =V-v
(3.3) PC, = A dcg+ AL A0+ w, AV +m,
while the energy equation (2.4) simplifies to

010+ aed + d, &, = xAcy + Agdcg + LAV + o
where

- - = = — Oty
0y = plny = o€y g = o0y, = 0P, d, = o0, = —998—9

the derivatives being evaluated at A. Here p = —¢, is the pressure.

3.2 - Strong equilibrium states. For inviseid mixtures, the condition m,p,
= O(s?), where jz, = u, (A), holds in equilibrium states. Accordingly, the follow-
ing definition introduces an additional restriction on such states.

A strong equilibrium state is an equilibrium state for which

(3.4) Mty = O().

In the neighbourhood of an equilibrium state A
(3.5) o =+ Gg (03— C) + 7,0 = D) + 2, (0= ) + O(D)
where the derivatives

R ks _ Oy
# "~ Be, =" 3w ST
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are evaluated at A. Hence it follows that
3.6) Vi, = Q8+ v, w0+ 1.9.

We assume the matrix (a,;) is invertible and it is then possible to solve (3.5) for
¢y~ Cgin terms of u, —pm,, v— v, 0 — 6 and (3.6) for £ in terms of Vi, w, g. It is at
this point the strong equilibrium condition is utilized. For, substitution into
(8.1); and taking account of (3.4) gives

g=—kg—1,Vu,+ 02 h,=—-1,g— LV + 0 M, = —t,u—u)+ 0

together with the positive definiteness of the matrices (Z,;) and

Iﬁ/é ll/—é s ZN/E
l1’ Zn o llN
W w0 lw

In view of (8.6) the coefficients are related to those in (3.1);3 as follows

x=k+la%a )xa::l'garga -=la}’a
)‘; - l; -+ Zog3 ;{'3 )‘9‘.3 = lav (7,.,‘3 w, = la‘.? '}’ﬁ
T‘Jrf.‘) = tav Cl/,rg é\a - taﬁzﬁ 3; - to(ﬂ ')’}3 B

We shall further assume that the matrix (a,,) is positive definite; this is a rea-
sonable assumption as Truesdell and Toupin ({12], § 158) show such a conclusion
is valid for an inviseid mixture.

4 - A simplified model

We return now to an incompressible mixture and suppose ¢ = ¢ except n the
body force term. This is analogous to the Boussinesq approximation for a non-
reacting fluid and allows application to convection problems in a layer. The
stress, in (8.1), in equilibrium is a hydrostatic pressure which we denote by
—pl. From equation (2.3) we find, for v =0,

Vp =7pb.

For a layer we may take the components of b as (0, 0, —g) where g is the gravi-
ty constant. In our Bousinnesq approximation we assume the perturbation ¢ to
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¢ in the body force depends only on 6, ¢, and so

b(c+¢)=b3[l—a(6— 0 +4,(c,~¢,)] where

Then, collecting together equations (2.3), (3.2) and (3.3), the system of equa-
tions valid near chemical equilibrium is

4.1) oU ;= —Vz +pdv —oblad + 6,4,)
4.2) Vio=0

(4'3) ;?”v,t: )‘va¢w+)‘;A79_va¢w—o\\vT9
(4.4) alﬁ’t+dw¢w,t=fcﬂﬂﬁ+iwd¢w

where 4=60-9, ¢,=c¢,—¢C,, ==p—p and .+ denotes the partial time deriva-
tive. Moreover % = x—m, AL, Ay = Ay + xhgo-

The term in 2] in (4.3) represents the Soret effect while the 2, terms in (4.4)
are a Dufour effect. Such effects are important in liquid metals and in gases
(see, e.g., Hurle and Jakeman [5]) but a simpler model valid in many practical
situations may be achieved by their neglect. To do this we may set 4, = 0 and
select %, =d, 2, /c. The system then reduces to (4.1), (4.2) and

_, . 4,7 | d,?,
p.@v,t=)‘vw‘4¢w~7‘1m¢wuév’& al'&,izy‘Atg—{_ - .ow+ — 4.
P

P
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Abstract

The paper derives equations for a mizture of chemically reacting viscous fluids near

chemical equilibrium. The theory is developed using continuum thermodynamics of diffu-
sive mixtures allowing for one velocity field only.
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