JAIME GUTIÉRREZ (*)

A note on indecomposable elements in the near-rings of formal power series (**)

Introduction

Let R be a commutative ring with 1. A formal power series over R is an infinite sequence $f=(f_0,f_1,f_2,...)$ of homogeneous polynomials f_n over R, each polynomial f_n being either 0 or of degree n; the smallest index n for which f_n is different from 0 is called the *order* of f, denoted by O(f). Every formal power series f can be written as a power series in X, $f=\sum a_iX^i$, $a_i\in R$ (see [5]). As usual, let us denote by R[[X]] be the set of all formal power series over R. It is well-known (see [4]) that $R_+[[X]]$ the set of all formal power series with positive order is an abelian near-ring with identity X, under usual addition "+" and substitution "o" of formal power series, i.e.

$$\textstyle \sum a_i X^i \circ \sum b_j X^j = \sum a_i (\sum b_j X^j)^i \qquad \quad R_+[[X]] := (\{f \in R[[X]]/O(f) \geqslant 1\}, \ +, \circ) \,.$$

The zero-symmetric part $R_0[X]$ of the near-ring of polynomials R[X] is (isomorphic to) a subnear-ring of $R_+[[X]]$. We follow the notation and terminology of Pilz [4].

1 – Def. As in ring theory, we say that an element $f \in R_+[[X]]$ is *indecomposable* provided that: (i) f is a non-zero and non-unit; (ii) $f = g \circ h$ implies g or h is an unit. Otherwise we say f is *decomposable*.

^(*) Indirizzo: Departamento de Matématicas Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, E-39071 Santander.

^(**) Partially supported by D.G.I.C.Y.T. PA 86-0471. - Ricevuto: 11-X-1989.

In the near-ring of polynomials over a field, the concept of indecomposable polynomial is connected with the degree; likewise in $R_+[[X]]$ the indecomposable series will be connected with the order, as will see.

For every $f,g \in R_+[[X]]$: $O(f \circ g) \leq O(f) O(g)$ (with equality iff R is an integral domain). Moreover, if R is an integral domain the units in the near-ring $R_+[[X]]$ are the followings: $f = \sum a_i X^i \in R_+[[X]]$ is an unit iff O(f) = 1 and a_1 is an unit in the ring R. In particular if R is a field and $f \in R_+[[X]]$ is non-zero and non-unit, we have:

- (i) f is indecomposable iff $f = g \circ h$ implies O(f) = O(g) or O(f) = O(h).
- (ii) There exist indecomposable elements $f_1, ..., f_r \in R_+[[X]]$ with $f = f_1 \circ f_2 \circ ... \circ f_r$. We say that $f_1, ..., f_r$ is a complete decomposition of f.

Using theorem of implicit functions over an arbitrary field K (see e.g. [5]), we have:

- (i) If $f \in K_+[[X]]$ (char(K) = 0) is non-zero and non-unit, then f is indecomposable iff O(f) is a prime number.
- (ii) If $f \in K_+[[X]]$, $(\operatorname{char}(K) = p \neq 0)$ is non-zero and O(f) non-prime and no power of p, then f is decomposable.
- 2 Our criterion to determine decomposable elements in the near-ring $R_+[[X]]$ is the following

Theorem. Let $f = \sum a_i X^i \in R_+[[X]]$ be a formal power series with O(f) = m and a_m unit in the ring R. Suppose there exist a strict divisor n of m with n unit in the ring R, then f is decomposable.

The proof is obtained by the following

Fundamental Lemma. Let $f = \sum a_i X^i \in R_+[[X]]$ be a formal power series with O(f) = m and a_m unit in the ring R. Then for every divisor n of m, with n unit in the ring R: $p(Y) = Y^n - a_m$ has a root in R iff $p^*(Y) = Y^n - f$ has one in R[[X]].

Proof. Let b be an element such that $b^n - a_m$. In order to determine $g = b_s X^s + b_{s+1} X^{s+1} + ... \in R_+[[X]]$ with m = sn and $g^n = f$. We find the b_i 's follows.

From $g^n = f$, we have $b_s^n = a_m$, we take $b_s = b$. $nb^{n-1}b_{s+1} = a_{m+1}$, we

take $b_{s+1} = a_{m+1} (nb^{n-1})^{-1}$. $nb^{n-1} b_{s+2} + \binom{n}{2} b^{n-2} b_{s+1}^2 = a_{m+2}$, we take $b_{s+2} = (a_{m+2} - \binom{n}{2}) b^{n-2} b_{s+1}^2 (nb^{n-1})^{-1}$. In general we obtain

$$nb^{n-1}b_{s+i}+P_n(b,b_{s+1},...,b_{s+i-1})=a_{m+i}$$

where $P_n(b, b_{s+1}, ..., b_{s+i-1})$ is a polynomial in $b, b_{s+1}, ..., b_{s+i-1}$ with integer coefficients. So, we compute all b_i 's in R.

The converse is immediate.

Proof of Theorem. $f = a_m X \circ (X^m + \sum ((a_m)^{-1} a_i) X^i)$, using Fundamental Lemma, there exist $g \in R_+[[X]]$ with $f = a_m X \circ X^n \circ g = a_m X^n \circ g$.

We turn our attention to the familiar case of formal power series over a field K.

Corollary. Let $f = \sum a_i X^i \in K_+[[X]]$ with g.c.d. (char(K), O(f)) = 1, then f is indecomposable over K iff it is indecomposable over any extension of K.

Examples. This corollary is also valid in the near-rings of polynomials if g.c.d. (char(K), degree(f)) = 1 ($f \in K[X]$). This assumption (see [1]) can not be omitted. Neither can the assumption in $K_+[[X]]$ g.c.d. (char(K), O(f)) = 1, the following illustrates: F_q is the finite field of q elements; f is indecomposable over K when $K = F_2$ and $f = X^4 + X^6 + X^7 + \sum a_i X^i \in K_+[[X]]$. Let α such that $\alpha^3 + \alpha + 1 = 0$, we can find the b_i 's with $f = g \circ h = (X^2 + (1 + \alpha^2)X^3) \circ (X^2 + \alpha X^3 + b_4 X^4 + b_5 X^5 + b_6 X^6 + \ldots)$, where $b_4^2 + (1 + \alpha^2)b_4 + \alpha = a_8$ and for all $i \ge 5$ $(1 + \alpha^2)b_i + p(\alpha, b_4, \ldots, b_{i-1}) = a_{i+4}$, where $p(\alpha, b_4, \ldots, b_{i-1})$ is a polynomial over K in $\alpha, b_4, \ldots, b_{i-1}$. So we compute $g, h \in F_{16}$.

As usual in the near-ring of polynomials theory when g.c.d. (char(K), degree(f)) $\neq 1$, ($f \in K[X]$) causes a lot of trouble.

In $K_+[[X]]$ when g.c.d. (char(K), O(f)) $\neq 1$ also is problematical. For example: let K be a field with char(K) = $p \neq 0$, then $f = \sum a_i X^i \in K_+[[X]]$ with $O(f) = m = p^r$ ($r \geq 1$) and $a_{m+1} \neq 0$ is indecomposable element.

- 3 Theorem. Let K be a field and $f \in K_+[[X]]$ with g.c.d. (char(K), O(f)) = 1 and O(f) non-prime number, then:
 - (i) There exist an unique complete decomposition $f_1, ..., f_r$ of f satisfying:

- (1) $O(f_i)$ is a prime number and $O(f_1) \ge O(f_2) \ge ... \ge O(f_r)$. (2) f_i are monics formal power series for i = 2, ..., r. (3) f_i are monomials for i = 1, ..., r 1.
- (ii) If $f_1, ..., f_r$ and $g_1, ..., g_s$ are two complete decomposition of f, then r = s and the sequences $\langle O(f_i) \rangle$, $\langle O(g_i) \rangle$ are permutations of each other.

Remarks-Examples. We appoint that we can find explicitly the decomposition of f as in (i). Part (i) is not true in the near-rings of polynomials (e.g. $X^4 + X^3 + X^2 + X \in Q[X]$ is indecomposable, where Q is the rational numbers). Gutiérrez, Recio and Ruiz de Velasco in [2] present a polynomial-time algorithm to decompose a polynomial over a field.

Part (ii) is also valid in the near-rings of polynomials when g.c.d. (char(K), degree(f)) = 1. More interesting results about the «uniquess» of a complete decomposition of a polynomial are in the books Lausch and Nöbauer [3], Pilz [4] and in the paper Dorey and Whaples [1].

The assumption g.c.d. (char(K), O(f)) = 1 can not be omitted in (ii), for example: let $K = F_2$ and $f = X^4 + X^7 \in K_+[[X]]$, having proved that f is decomposable over K, that is, we can determine the b_i 's in K such that

$$f = (X^2 + X^3 + X^4) \circ (X^2 + X^3 + X^5 + b_6 X^6 + b_7 X^7 + \dots) = f_1 \circ f_2.$$

Let $g = X^3 \circ f = X^3 \circ f_1 \circ f_2$. X^3 , f_1 , f_2 is seen to be a complete decomposition of g. On the other hand

$$g = X^3 \circ f = (X^4 + X^7)^3 = X^{12} + X^{15} + X^{18} + X^{21} = (X^4 + X^5 + X^6 + X^7) \circ X^3$$

we see that $X^4 + X^5 + X^6 + X^7$ is an indecomposable element.

References

- [1] F. Dorey and G. Whaples, *Prime and composite polynomials*, J. Algebra 28 (1974), 88-101.
- [2] J. GUTIÉRREZ, T. RECIO and C. RUIZ DE VELASCO, Polynomial decomposition algorithm of almost quadratic complexity, Proc. AAECC-6. Lecture Notes Comp. Sci. 357 (1989) (Springer-Verlag), 471-476.
- [3] H. LAUSCH and W. NÖBAUER, Algebra of polynomials, Amsterdam North-Holland Pub. Co. 1973.
- [4] G. Pilz, Near rings, North-Holland Pub. Co. Math. Studies 23 (1983).
- [5] O. Zariski and P. Samuel, *Commutative Algebra*, Volume II, Springer-Verlag 1960.

Abstract

In this note we investigate the indecomposable elements in the near-rings of formal power series. We indicate «coincidences» with the results on indecomposable elements in the near-rings of polynomials and we also give interesting examples of formal power series with orders divisible by the characteristic of the field having more than one decomposition.

		٠	