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A generalization of some commutativity theorems
for rings (II) (*%)

1 - Introduction

Wedderburn’s theorem, asserting that a finite division ring is necessarily
commutative, has been generalized in several directions. A well known theorem
of Jacobson states that if, for each x in a ring R, there exists an integer n> 1,
depending upon x, such that ™ =z, then R is commutative. Herstein further
generalized this result. He proved that, if for each @ in a ring R there exists an
integer n>1, depending upon z, such that (x"—«) is central, then R is
commutative.

Bell [8], proved: «If R is a ring in which for any pair of elements x, and y in
R, there exists an integer n = n(x, y) = 1 such that xy = yx”, for all x and y in
R, then R must be commutative». This result was later extended by Bell [3]3
himself, and he proved that a ring R in which for every pair of elements x and y
in R, there exist positive integers m =1 and n = 1, satisfying xy =y™ 2", is
commutative. Recently, Quadri and Khan [11] generalized the above re-
sults.

The objective of this paper is to generalize the above mentioned results, and
to extend the main theorems of [7] and [9]; for left (resp. right) s-unital
rings.

(*) Indirizzo: Department of Mathematics, Faculty of Science, King Abdul Aziz Uni-
versity, P.0. Box 9028, SA-21413 Jeddah.
(**) Ricevuto: 16-VI-1989.
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2 - Preliminaries

Throughout this paper, R represents an associative ring not necessarily
with unity 1. Let Z(R) denote the center of R, C(R) the commutator ideal of E,
N the set of all nilpotent elements of R, and N’ the set of all zero divisors of
R.

Def. 1. A ring R is called left (vesp. right) s-unmital if xe Rx (resp.
x € xR), for every x in R. Further, R is called s-unital if it is both left as well as
right s-unital, that is  €e Rz naR, for each x in E.

Def. 2. If R is s-unital ring (resp. left of right s-unital), then for any finite
subset F' of R, there exists an element ¢ in R such that ex = xe = x (resp. ex =«
or we = x) for all « in F. Such an element ¢ is called the pseudo-identity (resp.
pseudo left identity or pseudo right identity) of F' in E.

In preparation for the proof of our results, we first state the following well-
known results.

Lemma 1 ((8};, Lemma 3). Let R be a ring such that [x, [z, ¥]1 =0, for
all ¢ and y in R. Then [x*, y] = ka*" [z, y] for any positive integer k.

Lemma 2 ([2], Lemma 2). Let R be a ring with unity 1, and let « and y be
elements of R. If kx™[z, y]=0, and k(x+1)"[x, y] =0 for some integers
m=1 and k=1, then necessarily klx, y] = 0.

Lemma 3 ([6];, Theorem). Let f be a polynomial in » non-commuting in-
determinates x;, s, ..., %, with relatively prime integral coefficients. Then the
following are equivalent:

(1) Every ring satisfying the polynomial identity f= 0 has nil commutator
ideal.

(2) Every semi-prime ring satisfying f= 0 is commutative.

(3) For every prime p, the ring of 2X 2 matrices over Z, fails to satisfy

f=0.

Lemma 4 ((11];, Lemma 3). Let R be a ring with unity 1, and let ¥ and m
be natural numbers. If (1 —y*)x =0, then (1 —y*)x =0, for all  and ¥ in
R.
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Lemma 5 ([12], Lemma). Let R be a left (resp. right) s-unital ring. If for
each pair of elements « and ¥ in R there exists a positive integer &k = k(z, ¥),
and an element ¢ = e(x, ) of R such that 2*e = x* and y*e = y* (resp. ex* = a*
and ey® = y*), then R is an s-unital ring.

The following theorem is due to Herstein.

Theorem H ([4], Theorem 18). Let R be a ring, and let » > 1 be a fixed
integer. If (x™ —x) € Z(R), for each x in R, then R is commutative.

3 - Main result

The following theorem is the main result of this paper, which generalizes
some commutativity conditions for rings.

Theorem. Letm>1, n, and k be non-negative integers, and let R be a left
(resp. right) s-unital ring satisfying

@ e[z, yl =[x, y™1z*

Jor all © and y in R. Then R is commutative.
First, we prove the following lemmas.

Lemma 6. Let R be a left (resp. right) s-unital ring, and let m > 1, n and
k be non-negative integers. If R satisfies (1), then R is as s-unital ring.

Proof. Let R be a left (resp. right) s-unital ring, and let x and ¥ be arbitr-
ary elements of RB. Then, we can find an element ¢ = e(x, y) of R such that
ec=« and ey =y (resp. wxe=2x and ye=1y). From (1), we have e¢"[e, y]
= [e, y™]e* (resp. x"[x, e] = [z, e™]x*). Hence,

m k41

n+1y_enye=eymek__y e

e

mk+1 m—1,k _

y=ye+tyme—ymeF i =yle+ym e —ym T eF ) e yR
(resp. x"*le—x"ex = xe™at — g™ttt gFtl=emyk*l e RgFtY) for m > 1.

Therefore, R is an s-unital ring by Lemma 5.
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Lemma 7. Let R be a ring with unity 1, and let m>1, n=0and k=0 be
fized integers. If R satisfies (1), then N ¢ Z(R). Further, C(R) c Z(R).

Proof. Itis trivial to prove that for any natural number ¢, the polynomial
identity (1) implies

2) xm [f(:, y] — [CC, ym‘]wtk

for all  and y in E.
Now, let » be an element in N. Then by (2), we have

s [:L‘, u)] = [{U, um‘]wtk

for every @ in R, and any integer ¢t = 1. But as u is nilpotent element, u™ =0,
for sufficiently large ¢, and ™[z, #] =0, for all x in R and % in N.
Replace 2 by (x+1) in the last polynomial identity to get

(@+ 1"z, u]l = (@+ D" [(x+ 1), u]l =0 = 2" [, u]

for allx in B, and % in N. In view of Lemma 2, we obtain [z, ] = 0, forallxin I
and u in N. Therefore, u € Z(R), and hence ‘

(3) NcZ(R).
Next, let

0 0
1

0 0
0 10

&= eg=( ) Y =€ =( ).
Then « and ¥ fail to satisfy the polynomial identity (1), for all non-negative inte-
gers n, k and m > 1. Hence, by Lemma 3, C(R) is nil ideal, that is C(R) c N.

Therefore, (3) gives
@) CRYcN cZ(ER).

Remark 1. In view of Lemma 7, it is guaranteed that the conclusion of
Lemma 1 holds for any pair of elements @ and y in a ring B with unity 1 which
satisfies x"[x, y] =[x, y™]x*, for fixed non-negative integers =, k, and
m > 1.

Proof of the Theorem. Since R is a left (resp. right) s-unital ring which
satisfies (1), for non negative integers =, k and m > 1, R is an s-unital ring
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by Lemma 5. Therefore, in view of Proposition 1 of [5], we may assume that
R has 1.

Since R is isomorphic to a subdirect sum of subdirectly irreducible rings R;,
(¢t € I), each of which as a homomorphic image of R satisfies the hypothesis of
the theorem placed on R, so we may assume that R is a subdirectly irreducible
ring. Let S be the intersection of all its non-zero ideals. Then S = (0).

Now, if n =k =0, then [x, y] =[x, y™] for all x and y in E. Hence [z, y™
—y] = 0 for each « and y in R. Therefore, R is commutative by Theorem H. Let
n=Fk=11in (1). Then «[z, y] = [z, y™]x for all x and y in E. Replacing x by
(@ + 1), we obtain (x + D[z, y] =[x, y"I(x + 1), and hence [z, y] = [z, y™], that
is [x, y" —yl=0 for all  and y in R and m > 1. Hence, R is commutative by
Theorem H. Next, suppose that n =1, and k = 0 in (1). Then zfx, y] = [z, y™]
for all x and y in R. The usual argument of replacing x by (x + 1) in the last poly-
nomial identity gives [«, y] = 0 for every « and y in R is commutative. If n = 0,
and k = 1 in (1), we have [z, y] = [x, y™]x, for all #,and y in R. Thus, R replace
x by (@ + 1) in the last identity to get [x, y™] = 0. Hence [z, y] =[x, y™]z =0
for all ¢, and y in B. Therefore, R is commutative.

Next, suppose that » > 1, and k> 1. Let ¢ =2™— 2. Then ¢ > 1, for m > 1.
Thus, by (1) we obtain

ge” [z, yl = @™~ 2)x" [, y] =2" 2" [z, y] — 22" [, y]
=2"[x, y™] xk — 27 [z, y] =[x, Q)™ x* —x"[x, @l

=a"[x, Cl-2"[z, @y]=0.

Hence, gx"[x, y] =0, for all  and % in R. Replace = by (x + 1) in the last
polynomial identity to have g(x + 1)"[x, y] = 0 = qx"[x, y], for all x and y in R.
Therefore, Lemma 2 gives

®) gle, y1=0

for all x and ¥ in R. In view of (4) and Lemma 1, we have [x7, y]
= g?™ [z, y] =0 for all x and y in R. Thus, (5) gives [x?, y]1 =0, for all # and y
in E. Therefore,

(6) x7e Z(R)

for all x and ¥ in R and ¢ =(@2"—2)>1, for m>1.
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Replace y by y™ in the polynomial identity (1) to get

O a"[z, y™ =[x, @™ a*

for all z, and ¥ in E.
Now, since by (4) commutators are central, then Lemma 1, and (1)
gives

x [z, y"] =[x, y™1a" = my™ x, yla"
=my™ la"[x, y] = my™ [z, y™]z*
[e, (™™ 2* = mly™™ e, y™lat =my™ ", y™lak
= my™ Ly™ [z, ylak.
Thus, (7) gives

(8) mym—l (1 _ y(m— 1)2)[90, ym] xk =0

for all , and y in E.

Replace by (z + 1) in (8) to get my™ 1 (1 — ™~ P)x, y™ N + ¥ = 0 for all
«, and y in R. So, by Lemma 2, we obtain my™ (1~ y™= e, y™ = 0 for all
# and ¥ in R. Therefore, by (4) and Lemma 4, we have

© my™ (L =y )z, y™1=0

for all  and y in R.
Next, we claim that N’ ¢ Z(R). Let w € N'. Then by (6), we have

w?=V e N' nZ(R) Sutm= =0,
By using (4) and (9), we obtain
™ Mw, ™1 - ut™" Py =0

for all ze R, and u e N'.
If mau™ e, w™] # 0, then (1 — 9™ ~Y") e N'. Hence, S(1 — u2~ ") =0 for
u e N'. Thus, we have a contradiction as S # (0). Therefore,

10) mu™ Hx, u™] =0

for all x and y e B, and weN'.



[7] A GENERALIZATION OF SOME COMMUTATIVITY THEOREMS FOR RINGS 137

Now, using (1) and (4) along with Lemma 1 repeatedly, we obtain

N 2
a? 2, u] = 2™ (@ [z, u)) = 2" [x, u™]z* =[x, u™ ]

- - T
— mum(m 1) {CC, um] m.‘zk — mu(m l)u(m 1y [iU, um] a,/.21:

2
=mu™ [90, um]u(m—l) 2k

for all x e B, and u e N'.

Thus, (10) implies that 22" [, u] =0, for all x € R and % € N'. Replace = by
(@ + 1) in the last polynomial identity to get ®'[z, y]=0=(x + *[x, u] =0
for all x € R, and u € N’. Hence, Lemma 2 yields [z, ] =0, for all x € B, and
u € N’, that is u € Z(R). Therefore,

(11) ‘ N' cZ®R).

By (6), we have 29, and £9" are central for allx e R and ¢ = (2™ —2) > 1, for
m >1. Then (1) implies that

(@7 —x9™) x" [z, y] = 2@ [z, y]) — 2T (=", y])
= o™ @[z, y]) — ™[z, y™12b) = e [z, 27y] - [, 2T y™]aF

="z, v9y] - [x, @y "]x* = x"[x, 2yl — "2, x%y].

Therefore, (x?—a™)x"[x, y]1=0, for all x and y in B. Let t=gm—qg+1
and let s=n+qg—1, for g=2"—-2 and m > 1. Hence,

(12) (@—axHae'le, y1=0

for all # and ¥ in K.

Now, if z®[x, y] =0, then (x + 1)°[x, y] = 0=2a°[x, y], for all x and y in E.
By Lemma 2, we obtain [, y] =0, for all x and y in R. Hence, R is commuta-
tive. But #°[x, ]+ 0 gives (x — ) e N’ ¢ Z(R), by (11). Thus, [x —x', y1=0
for all  and y in R. Therefore, R is commutative by Theorem H.

As consequences of our main result, we derive the following corollaries.
Corollary 1. Let R be a ring with unity 1, and let m>1 and k=0 be

non-negative integers such that [xy —y™z*, x] = 0 for each x and y in R. Then
R is commutative.
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Proof. By hypothesis we have z[z, y] =[x, y™]z* for all  and ¥ in R,
where m >1 and k= 0. Thus, R is commutative by the main Theorem.

Corollary 2. Let R be a left s-unital ring such that there exist integers
m>1, and k=0 satisfying the polynomial identity

(13) [ey —y™ak, 2]=0

for all x and y in B. Then R is commutative.

Proof. We notice that (18) can be rewritten as follows: «fz, y]
= [, y™]x* for all  and y in R, where m > 1 and k = 0. Therefore, R is commu-
tative by Theorem.

Corollary 8. Let R be an s-unital ring, and let m > 1 and n =0 be fived
non-negative integers. If R satisfies the polynomial identity

(14) [ty — y™x, ] =0

for all x and y in R, then R is commutative.

Proof. By (14), we have x"[z, y] =[x, y™]x for all x and y in B, where
m>1 and n=0. Hence, R is commutative by the main Theorem.

Remark 2. We would like to point out that Corollary 1 and Corollary 2,
where proved in [11]); Theorem and [11]; Theorem, respectively, for k=1. A
similar comment applies to Corollary 3, which was obtained in [9]; Theorem for
nz=1.

Corollary 4 ([7], Theorem). Let m and n be fixed non-negative integers.
Suppose that R satisfies the polynomial identity

(15) s ax, yl=[x, y™]

for all x and y in E.

(@) If R is a left s-unital, then R 1is commutative except for m =1 and
7= 0.

(b) If R is a right s-unital, then R is commutative except for m =1 and
n =0, and also for m =0, and n=1.
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Proof. According to Lemma 6, and [5] (Proposition 1) it suffices to
prove the theorem for R with 1.

(a) Ifm =0, then 2"[x, y] =0, for all x and y in E. Replace x by (x + 1), and
apply Lemma 2, to get (x + 1)"[x, y] =0=a"[z, y], for all x and ¥ in R, and
hence [z, y] =0, for all © and y € R. Thus, R is commutative. Let m = 1. Then
(15) becomes [z, y] = 2" 1y —x"yx for all x and y € R. Hence, by [6]5 (Theo-
rem) E is commutative provided that #» = 1. Now, for m > 1, commutativity of
R follows from Theorem.

(b) Let m =1 in (15). Then following the same argument as in the proof of
(a), we can prove the commutativity of R. If m =0, then n = 0, and hence the
assertion is clear. In case m > 1, R is commutative by the main Theorem.

Remark 3. Let K be a field. Then, the non-commutative ring

_ K 0
R_(K 0)

has a right identity element and satisfies the polynomial identity x[x, y] =0,

for all z and y € R. Hence, in case m = 0 and > 0, the main Theorem need not
be true for right s-unital ring.

Acknowledgement. The author wishes to express his indebtedness and
gratitude to the referee for his helpful suggestions and valuable comments.
Thank is also due to Dr. M. S. Khan and Dr. M. A. Khan.
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Abstract

Let m > 1, and k be non-negative integers, and let B be an associative left (resp. right)
s-unital ring satisfying

z" @, y] =[x, y™la*

Jorall x and y in R. Then R is commutative. The result of this paper presents a general-
ization of some properties ensuring commutativity of certain ring.
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