A. BENINI and S. PELLEGRINI (*)

Medial and permutable near rings (**)

Introduction and preliminaries

This paper considers near-rings whose multiplicative semi-group satisfies one of the following identities:

1. abcd = acbd

medial near-rings

abc = bac

left permutable near-rings

3. abc = acb

right permutable near-rings.

This terminology is used in semigroup and groupoid theory (see, for example [7]).

Near-rings with these identities have been studied by many Authors: medial near-rings in [10], left permutable near-rings in [5], [6], [8], [14], [15].

Recently in [2] Birkenmaier and Heatherly studied rings and near rings satisfying these identities and provided examples illustrating geometric applications of these structures. They answer a question submitted by Clay in [4]₂, showing that the MP-near-rings of [10]₁ arise naturally.

This paper is divided in four sections. In 1 we show that the near-rings with a left permutable idempotent element are special Φ -sums (see [1]₂ for the definition of Φ -sum); then mixed medial near-rings and left permutable near-rings with an idempotent are characterized as Φ -sums.

In 2 set $\mathcal{Z} = \{x \in N/xK = \{0\}, \text{ for some essential } N\text{-subgroup } K\}$ is studied.

^(*) Indirizzo: Dipartimento di Automazione Industriale, Facoltà di Ingegneria, Università, Via Valotti 9, I-25060 Brescia.

^(**) Ricevuto: 10-IV-1989.

In ring theory this set is defined via right ideals and it is called «singular ideal» [3].

In 3 the connection between \mathcal{Z} and Q (the set of nilpotent elements of N) is shown as well as the links between the prime and the essential ideals for each near-ring class which satisfies the above mentioned identities. This enables us finally to classify the left permutable θ -near-rings in 4 and characterize them as special Φ -sums.

Throughout the paper, N stands for a left near-ring. In general we adhere to the notation and terminology used in [11]. In particular, a near-ring $N=N_0$ $+N_c$ with $N_0 \neq \{0\}$ and $N_c \neq \{0\}$ is called mixed near-ring. The multiplicative semigroup of N is denoted by N^{\bullet} ; a subset $S \subseteq N$ is called ideal of N^{\bullet} if $SN \subseteq S$ and $NS \subseteq S$. The set $r(x) = \{y \in N/xy = 0\}$ is the right annihilator of x, and $r(S) = \bigcap_{x \in S} r(x); \ A_d(N) = \{x \in N / Nx = \{0\}\} \ \ (A_s(N) = \{x \in N / xN = \{0\}\}) \ \ \text{denotes}$ the right (left) annihilator of N and $A = A_d \cap A_s$. The set of the left divisors will be D and Q the set of nilpotent elements. An N-subgroup I is essential if $I \cap J \neq \{0\}$ for every N-subgroup J. An N-subgroup K including an essential Nsubgroup H is called essential extension of N. An essential ideal is an ideal essential as N-subgroup. An N-subgroup K is called left N-subgroup if $NK \subseteq K$. A near-ring N is strictly semiprime if $K^2 = \{0\}$ implies $K = \{0\}$ for every N-subgroup K. N is weakly semiprime if $KH = \{0\}$ implies either $K = \{0\}$ or $H = \{0\}$ where K and H are principal N-subgroups. Finally we recall that if N is a medial near-ring and e is an idempotent of N, r(e) is an ideal of N [10]₃; if N is a left permutable near-ring, r(x) is an ideal of N for every $x \in N$.

1 - Φ-sums of mixed medial and left permutable near-rings

We observe that if N is a left or right permutable near-ring then N is a medial near-ring.

In fact if N is left permutable (xy) zt = z(xy) t = xzyt; if N is right permutable xy(zt) = xzyt.

Therefore we will looking principally at medial near-rings. Left and right permutability are independent, and generally mediality doesn't imply either left or right permutability.

Proposition 1. Let N be a medial near-ring:

- (i) If $N \neq D$ then N is a left permutable near-ring.
- (ii) The set Q is a left ideal of N^{\bullet} and an ideal of N_0^{\bullet} .

- (i) Let $N \neq D$ and $0 \neq x \in N \setminus D$, then x(abc bac) = 0 for every a, b, $c \in N$ because N is a medial near-ring, so abc = bac and N is a left permutable near-ring.
- (ii) Let $q \in Q$ with $q^s = 0$, then $0 = n^s q^s = (nq)^s$ and this implies $nq \in Q$ for every $n \in N$, so Q is a left ideal of N^{\bullet} . Besides, if $m \in N_0$, then $0 = q^s m^s = (qm)^s$, thus Q is an ideal of N_0^{\bullet} .

We can note that a right permutable near-ring is always zero-symmetric: in fact 0n = 0(0n) = 0(n0) = (0n) 0 = 0.

In $[1]_2$ we have shown that a class of near-rings can be constructed on every semidirect sum of additive groups A and B. We call the structure obtained in this way Φ -sum of A and B in particular

Theorem 1. A near-ring N has a left permutable idempotent iff it is isomorphic to the Φ -sum of a near-ring A and a near-ring B with left identity e, when $f_{0,e} = 0_A$.

If N is a near-ring with a left permutable idempotent e then N=r(e)+eN ([11], p. 11) where r(e) is an ideal, eN is a left N-subgroup and $r(e) \cap eN = \{0\}$. Thus the hypotheses of Theorem 1 of [1]₂ are satisfied and N is isomorphic to the Φ -sum of r(e) and eN. Obviously e is a left identity of eN and $f_{0,e}=0_{r(e)}$, because $f_{0,e}=\gamma_{0+e/r(e)}$.

Conversely, let N be isomorphic to the Φ -sum of a near-ring A and a near-ring B with left identity e and $f_{0,e} = 0_A$. Then $\langle 0, e \rangle \langle 0, e \rangle = \langle f_{0,e}(0), \bar{f}_{0,e}(e) \rangle = \langle 0, e \rangle$, because $\bar{f}_{0,e} = \gamma_e$ (see Proposition 3 [1]₂). So, $\langle 0, e \rangle$ is an idempotent of N. Moreover $\langle 0, e \rangle \langle a, b \rangle \langle a', b' \rangle = \langle f_{0,e} \circ f_{a,b}(a'), \bar{f}_{0,e} \circ \bar{f}_{a,b}(b') \rangle = \langle 0, \gamma_e \circ \bar{f}_{a,b}(b') \rangle = \langle 0, \bar{f}_{a,b}(b') \rangle$ and $\langle a, b \rangle \langle 0, e \rangle \langle a', b' \rangle = \langle f_{a,b} \circ f_{0,e}(a'), \bar{f}_{a,b} \circ \bar{f}_{0,e}(b') \rangle = \langle 0, \bar{f}_{a,b} \circ \gamma_e(b') \rangle = \langle 0, \bar{f}_{a,b}(b') \rangle$. Thus $\langle 0, e \rangle$ is a left permutable element.

Corollary 1. A near-ring is a mixed medial near-ring iff it is isomorphic to the Φ -sum of a medial zero-symmetric near-ring A and a constant near-ring B where $f(A \times B) \subseteq End(A^+)$ and $\bar{f}(A \times B) \subseteq End(B^+)$ and both are right permutable subsets.

Let N be a mixed medial near-ring, then 0 is a left permutable idempotent. In fact 0nm = 00nm = 0n0m = 0m = n0m, and N is isomorphic to the Φ -sum of N_0 and N_c where N_0 is a medial near-ring. The remainder of the proof follows by Proposition 5 of $[1]_2$.

Corollary 2. A near-ring N is a left permutable near-ring with an idempotent element iff it is isomorphic to the Φ -sum of a left permutable near-ring A and a left-permutable near-ring B with left identity e, where $f_{0,e} = 0_A$ and both $f(A \times B) \subseteq End(A^+)$, and $\bar{f}(A \times B) \subseteq End(B^+)$ are commutative subsets.

Let N be a left permutable near-ring with idempotent element e. By Theorem 1 N is isomorphic to the Φ -sum of r(e) and eN which are both left permutable near-rings. Moreover e is a left identity of eN. The remainder of the proof follows by Proposition 5 of $[1]_2$.

2 - The singular set $\mathcal Z$

Let $\mathcal{Z} = \{x \in N / xK = \{0\} \text{ for some } K \text{ that is an essential } N\text{-subgroup of } N\}.$

Lemma 1. Let K be an N subgroup of N and let M be an essential extention of K, then there is an essential N-subgroup L such that $aL \neq \{0\}$ and $aL \subseteq K$ for every $a \in N$.

Let $a \in M$ and $L = \{r \in N | ar \in K\}$; obviously L is an N-subgroup of N and $aL \subseteq K$. Furthermore $aN \cap K \neq \{0\}$ because K is essential, so ar is a non zero element of K for some $r \in N$. Hence $r \in L$ and $aL \neq \{0\}$. Now, our goal is to show that L is essential: let $S \neq \{0\}$ be an N-subgroup of N. Obviously, if $aS = \{0\}$, then $S \subseteq L$, if $aS \neq \{0\}$, then $aS \cap K \neq \{0\}$ because K is essential, so, there is an $x \in S$ such that $ax \in K$ and therefore $S \cap L \neq \{0\}$.

Proposition 2. The set Z is non empty iff N is a zero-symmetric near-ring.

If N is a constant near-ring, then xy=y for every x, $y\in N$, so $\mathcal{Z}=\phi$. If $N=N_0+N_c$ and K is an N-subgroup, then $K_c=N_c$, so every N-subgroup is essential. Hence if $x\in \mathcal{Z}$ there is a K such that $xK=\{0\}$, but $N_c\subseteq xK$ and this is absurd. Finally, if N is a zero-symmetric near-ring then \mathcal{Z} is a non empty set because obviously $0\in \mathcal{Z}$.

In the following we will consider zero-symmetric near-rings. In this case the right annihilators, which generally are right ideals, are N-subgroups.

Proposition 3. An element $x \in N$ belongs to \mathcal{Z} iff r(x) is an essential N-subgroup.

If $x \in \mathcal{Z}$, there is an essential *N*-subgroup $K \subseteq N$ such that $xK = \{0\}$, so r(x) is an essential extension of K. The converse is trivial.

Proposition 4. The set Z is an ideal of the semigroup N^{\bullet} .

If $x \in \mathcal{Z}$ then $nx \in \mathcal{Z} \ \forall n \in N$ because $r(x) \subseteq r(nx)$. Moreover r(x) is essential and by Lemma 1, there is an essential N-subgroup L such that $nL \subseteq r(x) \ \forall n \in N$ (x = 0 implies L = N), thus $xnL = \{0\}$ and $xn \in \mathcal{Z}$.

Proposition 5. If $\mathbb{Z} \neq \{0\}$, then N has nilpotent elements.

Let N have no nilpotent elements and let $\mathcal{Z} \neq \{0\}$. If $0 \neq x \in \mathcal{Z}$, then $r(x) \cap xN \neq \{0\}$ because r(x) is essential and $xN = \{0\}$ implies $x^2 = 0$, which is excluded. So $x^2 \overline{n} = 0$ for some $\overline{n} \in N$. Because N has no nilpotent elements I.F.P. holds (see [13]). Thus $x\overline{n}x\overline{n} = 0$ and $x\overline{n} \in Q$, which is absurd.

Proposition 6. If $\mathcal{Z} = \{0\}$ then $A_s(N) = \{0\}$.

If $x \in A_s(N)$ then $xN = \{0\}$, so $x \in \mathcal{Z}$ and x = 0.

Theorem 2. If N has right annihilator a.c.c. then Z is nilpotent.

Let N have right annihilator a.c.c. Because $\mathcal{Z} \supseteq \mathcal{Z}^2 \supseteq ... \supseteq \mathcal{Z}^n \supseteq ...$ then $r(\mathcal{Z}) \subseteq r(\mathcal{Z}^2) \subseteq ...$, so, there is a positive integer s such that $r(\mathcal{Z}^s) = r(\mathcal{Z}^{s+1})$. Now, our aim is to show that $\mathcal{Z}^{s+1} = \{0\}$. Assume $a \in \mathcal{Z}$ such that $\mathcal{Z}^s a \neq \{0\}$. If $b \in \mathcal{Z}$, then $r(b) \cap aN \neq \{0\}$, hence there is an element $\overline{n} \in N$ such that $a\overline{n} \neq 0$ and $ba\overline{n} = 0$, so $r(a) \in r(ba)$. Since $ba \in \mathcal{Z}$ (by Proposition 3), if $\mathcal{Z}^s ba \neq \{0\}$, then $r(ba) \in r(cba) \ \forall c \in \mathcal{Z}$ and so on. Because right annihilator a.c.c. holds, there must be an element $\overline{a} \in \mathcal{Z}$ such that $\mathcal{Z}^s \overline{a} \neq \{0\}$ and $\mathcal{Z}^s b\overline{a} = \{0\} \ \forall b \in \mathcal{Z}$, hence $\mathcal{Z}^{s+1}\overline{a} = \{0\}$. But given that $r(\mathcal{Z}^s) = r(\mathcal{Z}^{s+1})$, then $\mathcal{Z}^s \overline{a} = \{0\}$, which is excluded.

3 - Links between \mathcal{Z} and Q

Now we turn our attention to medial and left or right permutable near-rings with $\mathcal{Z} \neq \phi$.

Proposition 7. Let N be a medial near-ring with $\mathcal{Z} = \{0\}$, then:

- (i) I.F.P. holds. (ii) abc = 0 implies bac = 0. (iii) N is weakly semiprime iff N is integral.
- (i) If ab = 0 then $anbN = abnN = \{0\}$, so $anb = 0 \ \forall n \in N$ by Proposition 6. (ii) If abc = 0, then $abcN = bacN = \{0\}$, so bac = 0 by Proposition 6. (iii) Assume $a \neq 0$, $b \neq 0$ and ab = 0. Then $aNbN = abN^2 = \{0\}$. Hence either $aN = \{0\}$ or $bN = \{0\}$. Thus a = 0 or b = 0 by Proposition 6.

Proposition 8. Let N be a left permutable near-ring with $\mathcal{Z} = \{0\}$, then ab = 0 implies ba = 0.

If ab = 0, then abN = baN = 0, so ba = 0.

Theorem 3. Let N be a strictly semiprime medial near-ring, then:

- (i) $QN = \{0\}$. (ii) $Q \subseteq \mathcal{Z}$. (iii) If right annihilator a.c.c. holds then $Q = \mathcal{Z}$.
- (i) Let q a nilpotent element of N and $q^s = 0$, then $q^s N^s = (qN)^s$ by the mediality of N and $qN = \{0\} \forall q \in Q$ because N is strictly semiprime. (ii) This is obvious, by (i). (iii) This follows immediatly, by Theorem 2 and (ii).

Theorem 4. Let N be a left permutable near-ring without left annihilator N-subgroups, then:

- (i) $Q \in \mathcal{Z}$. (ii) If right annihilator a.c.c. holds, then $Q = \mathcal{Z}$.
- (i) Let q be a nilpotent element of N and $q^s = 0$ and let K be a non trivial N-subgroup, then $qKq^{s-1} = Kq^s = \{0\}$. Assume $Kq^{s-1} \neq \{0\}$, then $r(q) \cap K \neq \{0\}$ and $q \in \mathbb{Z}$. If $Kq^{s-1} = \{0\}$, then $qKq^{s-2} = \{0\}$ and the previous condition arises again. Thus, after a finite number of steps we reach $Kq = \{0\}$, so $KqN = qKN = \{0\}$. Because $KN = \{0\}$ is impossible, it follows that $K \cap r(q) \supseteq KN \neq \{0\}$, so $q \in \mathbb{Z}$. (ii) This follows immediatly by Theorem 2 and (i).

Theorem 5. Let N be a right permutable near-ring in which ab = 0 implies ba = 0 ($\forall a, b \in N$) then:

- (i) $Q \subseteq \mathcal{Z}$. (ii) If right annihilator a.c.c. holds, then $Q = \mathcal{Z}$.
- (i) The proof is similar to Theorem 4 (i). (ii) This part follows immediatly by Theorem 2 and (i).

Examples. (a) Let's consider the near-ring $[Z_6, +, \cdot]$ where $[Z_6, +]$ is the cyclic group of order 6 and $[Z_6, \cdot]$ is defined as follows

	0	1	2	3	4	5
0	0 0 0 0 0	0	0	0	0	0
1	0	3	0	3	0	3
2	0	4	2	0	4	2
3	0	3	0	3	0	3
4	0	0	0	0	0	0
5	0	1	2	3	4	5

This near-ring satisfies the conditions of Theorem 3 and Theorem 4: in fact, $Q = \mathcal{Z} = \{0, 4\}.$

(b) Let's consider the near-ring $[Z_8, +, \cdot]$ where $[Z_8, +]$ is the cyclic group of order 8 and $[Z_8, \cdot]$ is defined as follows

	0	1	2	3	4	5	6	7
0	0 0 0 0 0 0 0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
2	0	4	0	4	0	4	0	4
3	0	6	4	2	0	6	4	2
4	0	0	0	0	0	0	0	0
5	0	4	0	4	0	4	0	4
6	0	0	0	0	0	0	0	0
7	0	6	4	2	0	6	4	2

This is a left permutable near-ring (hence a medial near-ring) that is not strictly semiprime ($\{0, 4\}$ is a nilpotent N-subgroup): therefore $\mathcal{Z} = N$ and $Q = \{1, 2, 4, 6\}$.

In [13] type 0, 1, 2 prime ideals and their respective radicals P_0 , P_1 , P_2 are defined. In the following a type 0 prime ideal will be called *prime* and a type 2 prime ideal will be called *completely prime*, as in [9] and [11]. In [2]₂ it has been shown that if N is a medial near-ring, then P is a type 1 prime ideal $(xNy \subseteq P)$ implies $x \in P$ or $y \in P$ if and only if P is completely prime $(xy \in P)$ implies $x \in P$ or $y \in P$.

Let us now take a look at a few links between prime ideals and essential ideals.

Proposition 9. If N is a medial near-ring with $\mathcal{Z} = D$, then each type 1 prime ideal is an essential ideal.

Let I be a type 1 ideal of N. If I is not essential, there is an N-subgroup $K \neq \{0\}$ such that $I \cap K = \{0\}$, so $K \subseteq D$ and $I \subseteq r(K)$. It is even true that I = r(K). In fact if $s \in r(K) \setminus I$, then $ks = 0 \in I$ and $k \in I$, because I is completely prime. Hence I is an essential ideal, since $K \subseteq D = \mathcal{Z}$.

Proposition 10. If N is a medial near-ring then each type 1 prime ideal which doesn't include \mathcal{Z} , is an essential ideal.

Let I be a type 1 ideal of N which doesn't include z, then there is a $z \in \mathbb{Z} \setminus I$ where r(z) is essential. Now $z\overline{z} = 0 \in I \ \forall \overline{z} \in r(z)$ and $z \notin I$ so $\overline{z} \in I$ because I is completely prime, thus $r(\overline{z}) \subseteq I$ and I is essential.

However, there are medial near-rings with essential ideals which don't include \mathcal{Z} , but which are not prime ideals, as in the following example.

Example. (c) Let us consider the near-ring $[Z_8, +, \cdot]$ where $[Z_8, +]$ is the cyclic group of order 8 and $[Z_8, \cdot]$ is defined as follows

	0	1	2	3	4	5	6	7
0	0 0 0 0 0 0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	0	2	4	6	0	2	4	6
4	0	0	0	0	0	0	0	0
5	0	4	0	4	0	4	0	4
6	0	4	0	4	0	4	0	4
7	0	2	4	6	0	2	4	6

This is a medial near-ring in which $r(5) = \{0, 2, 4, 6\}$ is an essential ideal which doesn't include \mathcal{Z} (because $\mathcal{Z} = N$), but which is not a type 1 prime ideal, in fact $3N5 = \{0, 4\} \subseteq r(5)$, but $3 \notin r(5)$ and $5 \notin r(5)$.

4 - θ -near-rings

Def. A. A θ -near-ring is a near-ring N which satisfies the following conditions: (1) If r(n) is an ideal, it is a type 1 prime ideal. (2) N=D.

Theorem 6. A left permutable near-ring N is a θ -near-ring iff Q is a type 1 prime ideal and Q = A.

By Proposition 5, N has nilpotent elements because N is a zero-symmetric near-ring. Let Q' be the set of nilpotent elements, whose nilpotence index is 2. Assume $q \in Q'$, then $q^2 = 0 \in r(n)$, which is a completely prime ideal, so $q \in r(n)$ $\forall n \in N$. If Q' = N, then N is a zero-near-ring and the theorem is trivial, therefore there is an element $x \notin Q'$.

Let $y \notin r(x)$ with $y \neq x$ (such an element exists because if $r(x) = N \setminus \{x\}$, then x(x+n) = 0, so $x^2 + xn = x^2 = 0$, and this is excluded) and $\overline{y} \in r(y)$. Because N is left permutable, then $yN\overline{y} \subseteq r(x)$, where r(x) is a type 1 prime ideal, hence $\overline{y} \in r(x)$ $\forall \overline{y} \in r(y)$, so $r(y) \subseteq r(x)$.

Since $y \notin r(x)$ and $r(y) \subseteq r(x)$, then $y \notin r(y)$, therefore $y \notin Q'$. For the same reason $x \notin r(y)$ and we can prove in the same way that $r(x) \subseteq r(y)$. So r(x) = r(y).

Thus, $\forall x \in Q'$ r(x) will be denoted by R.

If $x \in Q'$ then $x^2 = 0 \in R$ and $x \in R$ because R is completely prime, so $Q' \subseteq R$. Assume $p \in R \setminus Q'$, then r(p) = R and $p^2 = 0$ but $p \notin Q'$, so Q' = R. Let z be a nilpotent element whose nilpotence index is greater than 2. But $z^s = 0 \in R$ implies that either z^{s-1} or z belong to R and, after a finite number of steps, $z \in Q'$ and Q' = Q.

Finally $qNq = \{0\} \subseteq r(n)$ implies $q \in r(n)$ $q \in Q$, $\forall n \in N$, so $NQ = \{0\}$. Moreover $nNn \subseteq r(q)$ implies $n \in r(q)$ $\forall n \in N$, $\forall q \in Q$, so $QN = \{0\}$, that is Q = A. Conversely, let Q = A be a type 1 prime ideal of a left permutable near-ring N. Obviously condition (2) of Def. A holds. Assume now $xNy \subseteq r(n)$. If $n \in Q$, then r(n) = N and therefore it is a type 1 prime. If $n \in N \setminus Q$, then nx(ynx) y = 0 and $nxy \in Q$, hence either $x \in Q$ or $y \in Q$ and, because $Q \subseteq r(n)$ $\forall n \in N$, r(n) is a type 1 prime ideal.

Proposition 11. A left-permutable θ -near-ring is a zero-near-ring iff $\mathcal{Z} = N$.

If N is a zero-near-ring, it is obvious that $\mathcal{Z} = N$. Now let $\mathcal{Z} = N$ and $nN \neq \{0\}$. Then $r(n) \cap nN \ni i \neq 0$ hence i = nh for some $h \notin r(n)$, so $n \in r(n)$ because r(n) is completely prime, and therefore $n^2 = 0$. It follows that $nN = \{0\}$ and N is a zero-near-ring.

In the following $\mathcal{Z} = N$ is excluded.

Corollary 3. If N is a left permutable θ -near-ring then $\mathcal{Z} = Q = P_0$ = $P_1 = P_2$ and N/Q is an integral near-ring.

Given that N is a left permutable (hence medial) near-ring, $P_2 = P_1$ (see [7] for definition of P_0 , P_1 , P_2 and [2]₂ Propositions 2.7). Now, as Q is a type 1 prime ideal, $Q = P_1$. Let I be a proper prime ideal, then $Q \subseteq I$ because $NQ = \{0\} \subseteq I$ and $N \not\subseteq I$ and therefore $Q \subseteq P_0$. Given that $P_0 \subseteq Q$ (see [13]). $Q = P_0$. Finally, as $Z \supseteq Q$, if $z \in Z \setminus Q$, then r(z) = Q and Q is an essential ideal, so $\forall n \in N$, r(n) is an essential extension of Q and this implies Z = N but this is excluded, so Z = Q. Finally N/Q is integral because Q is completely prime.

Theorem 7. A near-ring N is a left permutable θ -near-ring with a non-zero idempotent element iff it is isomorphic to the Φ -sum of a zero-near-ring A and of an integral left permutable zero-symmetric near-ring B with a left identity e, when $f_{a,b} = 0_A$ and $\bar{f}_{a,b} = \gamma_b \ \forall \langle a, b \rangle \in A \times B$.

Let N be a left permutable θ -near-ring with a non-zero idempotent element e. Now r(e) = Q is an ideal and eN is a left N-subgroup. Moreover $r(e) \cap eN = \{0\}$. So N is isomorphic to the Φ -sum of r(e) and eN where r(e) = Q is a zero-near-ring, eN is a left permutable zero-symmetric near-ring and e is a left identity of eN. Moreover eN is an integral near-ring because enem = 0 implies enm = 0, that is $nm \in r(e) = Q$. But Q is completely prime, so either $n \in Q$ or $m \in Q$ and either en = 0 or em = 0. Finally, now $f_{a,b} = \gamma_{q+en/Q} = 0_Q$ and $\bar{f}_{a,b} = \gamma_{q+en/eN} = \gamma_{en/eN} \ \forall q \in Q \ \forall en \in eN$.

Conversely, let N be isomorphic to the Φ -sum of a zero-near-ring A and of an integral left permutable zero-symmetric near-ring B with a left identity e. Moreover, $\forall \langle a, b \rangle \in A \times B$ let $f_{a,b} = 0_A$ and $\bar{f}_{a,b} = \gamma_b$. In these hypotheses N is a left permutable near-ring with an idempotent element (by Corollary 2) because $f_{0,e} = 0_A$, $f(A \times B) = \{0\}_A$ is a commutative subset of End (A^+) and

 $\bar{f}(A \times B) = \{\gamma_b/b \in B\}$ is a commutative subset of End(B^+). Furthermore, easy calculation shows that Q is a type 1 ideal of N and Q = A. Thus, the hypotheses of Theorem 6 hold and N is a left permutable θ -near-ring.

In this way we have shown that the left permutable near-rings can be costructed by a semidirect sum of additive groups and a direct product of multiplicative semigroups of a zero-near-ring and of an integral zero-symmetric left permutable near-ring with a left identity.

References

- [1] A. Benini: [•]₁ Sums of near-rings, Riv. Mat. Univ. Parma (4) 13 (1988), 135-141; [•]₂ Near-rings on certain groups, Riv. Mat. Univ. Parma (4) 15 (1989), 149-158.
- [2] G. BIRKENMEIER and H. HEATHERLY: [•]₁ Medial rings (to appear); [•]₂ Medial near-rings, Mt. Math. 107 (1989), 89-110.
- [3] A. W. CHATTERS and C. R. HAJARNAVIS, *Rings with chain conditions*, Pitman Advanced Publ. Program Boston, 1980.
- [4] J. R. Clay: [•]₁ Generating balanced incomplete block designs from planar near-rings, J. Algebra 22(1972), 319-331; [•]₂ Math. Rev. 88a: 16070.
- [5] J. R. CLAY and D. A. LAWVER, Boolean near-rings, Canad. Math. Bull. 12 (1969), 265-273.
- [6] C. COTTI FERRERO, *Near-rings with E-permutable translations*, Near-rings and Near-fields edited by G. Betsch, 63-72 (North Holland Math. Studies 137, Amsterdam, 1987).
- [7] J. JEREK and T. KEPKA, *Permutable groupoids*, Czech. Math. 5 34 (1984), 396-410.
- [8] S. Ligh, The structure of a special class of near-rings, J. Austral. Math. Soc. 13 (1972), 141-146.
- [9] J. D. P. Meldrum, Near-rings and their links with groups (Research Notes in Math. 134, Pitman, Marshfield, MA, 1985).
- [10] S. Pellegrini Manara: [•]₁ Sui quasi-anelli mediali in cui ogni elemento è potenza di se stesso, Riv. Mat. Univ. Parma (4) 11(1985), 223-228; [•]₂ On regular medial near-rings, Boll. Un. Mat. Ital. Algebra e Geometria (VI) IV D, N. 1 (1985), 131-136; [•]₃ On medial near-rings, Near-rings and near-fields edited by G. Betsch, 199-210. (North Holland Math. Studies 137, Amsterdam, 1987).

- [11] G. Pilz, Near-rings (2nd ed.) North-Holland Math. Studies 23, Amsterdam, 1983.
- [12] D. RAMAKOTAIAH, Radicals for near-rings, Math. Z. 97, 45-46.
- [13] D. RAMAKOTAIAH and G. K. RAO, On I.F.P. Near-rings, J. Austral. Math. Soc. 27 (1979), 365-370.
- [14] E. F. RATLIFF, Some results on p-near-rings and related near-rings, Ph. D. Diss. Univ. Oklahoma, 1971.
- [15] N. V. Subranmanyam, Boolean semirings, Math. Ann. 148(1962), 395-401.

Sommario

Studiamo quasi-anelli soddisfacenti particolari identità polinomiali. Prendendo spunto dalla nota tecnica di J. R. Clay, caratterizziamo in termini di Φ -somme, i quasi-anelli mediali misti, i permutabili a sinistra con un elemento idempotente ed infine i θ -quasi-anelli.
