ANDREA DE VESCOVI (*)

Study of a relaxed degenerate Dirichlet problem (**)

1 - Introduction

In this work we deal with pointwise continuity at the points at which the solution of the problem

(1.1)
$$Lu + \mu u = \sigma \quad \text{in } \Omega \qquad u = g \quad \text{on } \partial\Omega$$

vanishes (L is a degenerate second order differential operator, μ a Borel measure and σ a Radon measure. For the definition of Radon measure see [1]).

The problem (1.1) is a relaxed Dirichlet problem in $\Omega \subset \mathbb{R}^n$, $n \ge 3$. The estimate of the modulus of continuity will be carried out by a structural estimate of the ratio $V(r)/V(R_0)$, $0 \le r \le R_0$, on two concentric balls of the function of r

(1.2)
$$V(r) = \underset{B_r}{\text{osc}} |u|^2 + \int_{B_r} |Du|^2 G_{\Sigma}(x, y) w \, \mathrm{d}x + \int_{B_r} |u|^2 G_{\Sigma}(x, y) \, \mathrm{d}\mu$$

where $G_{\Sigma}(x, y)$ is the Green function of the operator L in a fixed large ball $\Sigma = (x: |x| \le R_0)$ centred in the origin, containing the closure of Ω .

The estimate will be given in terms of the so called Wiener modulus of the Borel measure μ defined in 7 and of $\|\sigma\|_{K_n(B_r)}$, the norm of the Radon measure σ in the Kato space $K_n(B_r)$, as indicated in 6, by a method developed by Dal Maso, Mosco in the work [3].

Our purpose is to extend the results obtained in [3], to the case of homogeneous degenerate differential operators.

^(*) Indirizzo: Dipartimento di Matematica del Politecnico, Piazza L. da Vinci 32, I-20133 Milano.

^(**) Ricevuto: 1-III-1989.

2 - Notation and preliminaries

In this section we introduce the degenerate elliptic operator and point out the main properties of problem (1.1).

We denote by L the operator

(2.1)
$$L = -\sum_{i,j} D_i(a_{ij}(x) D_i)$$

where D_i denotes the derivative with respect to the variable x_i and D = grad the usual gradient; $a_{ij}(x) \ \forall i, j = 1, 2, ..., n$ is a symmetric matrix of measurable functions defined in Ω such that

(2.2)
$$\frac{1}{c} w(x) |\xi|^2 \leq \Sigma_{i,j} a_{ij}(x) \, \xi_i \, \xi_j \leq c w(x) |\xi|^2 \qquad (c > 1) \, .$$

The weight w(x) will be a non negative function, defined in R^n such that w(x), $w^{-1}(x) \in L^1(\operatorname{loc}(R^n))$ and for which the following (A_2) conditions holds

(A₂)
$$\sup_{|B_r|} \left[\frac{1}{|B_r|} \int_{B_r} w(x) \, \mathrm{d}x \right] \left[\frac{1}{|B_r|} \int_{B_r} w^{-1}(x) \, \mathrm{d}x \right] \le C$$

where $|B_r|$ is the Lebesgue measure of the ball B_r and the supremum is taken over all Euclidean balls $B_r \,\subset \, \mathbb{R}^n$.

We shall use the additional assumption

The Green function of L in Σ , $G_{\Sigma}(x, y)$, is defined as the distributional solution of the problem

(2.4)
$$LG_{\Sigma}(x, y) = \delta x \text{ in } \Omega \qquad G_{\Sigma}(x, y) = 0 \text{ on } \partial \Omega$$

where δ_x is the Dirac distribution at x; $G_{\Sigma}(x, y)$ has a singularity at x and that satisfies the properties

$$G_r(x, y) = G_r(y, x)$$
 $G_r(x, y) \ge 0$

$$G_{\Sigma}(x, y) \in H^{1}(\Sigma \setminus B_{r}(y), w) \qquad B_{r}(y) \in \Sigma \qquad r > 0$$

$$G_{\Sigma}(x, y) \in H^{1,p}(\Sigma, w) \qquad 1 \leq p \leq 2n/(2n-1)$$

moreover $G_{\Sigma}(x, y)$ is Hölder continuous in $B_r \setminus \{x\}, r > 0$.

3 - Functional framework

We introduce, here, the spaces which are the functional framework of our problem in this paper.

We denote by $L^2(\Omega, w)$ the space of square integrable functions respect to the weight w(x) equipped by the norm

(3.1)
$$\|\Phi\|_{L^2(\Omega,w)} = \left[\int\limits_{\Omega} |\Phi|^2 w(x) \, \mathrm{d}x\right]^{1/2} \qquad \forall \Phi \in L^2(\Omega, w)$$

and by $H^1(\Omega, w)$ the closure of $C^{\infty}(\Omega)$ w. r. to the norm

(3.2)
$$\|\Phi\|_{H^{1}(\Omega,w)} = (\|\Phi\|_{L^{2}(\Omega,w)}^{2} + \sum_{i} \|D_{i}\Phi\|_{L^{2}(\Omega,w)}^{2})^{1/2}.$$

We define $H_0^1(\Omega, w)$ the closure of $C_0^{\infty}(\Omega)$ in the $H^1(\Omega, w)$ norm. On $H_0^1(\Omega, w)$ we can choose the following equivalent norm

(3.3)
$$\|\Phi\|_{H_0^{1}(\Omega,w)} = \left[\int_{\Omega} |D\Phi|^2 w \, \mathrm{d}x \right]^{1/2} \qquad \forall \Phi \in H_0^{1}(\Omega, w) \, .$$

We can introduce, now, a bilinear form associated to the operator L on $H_0^{-1}(\Omega, w)$

(3.4)
$$D(u, v) = \sum_{i,j} \int_{\Omega} a_{i,j}(x) D_i u D_j v dx \qquad \forall u, v \in H_0^{-1}(\Omega, w).$$

This bilinear form is well defined and coercive on $H_0^{-1}(\Omega, w)$.

We observe that D(u, v) can be also defined for $u \in W^{1,1}(\Omega, w)$ and $v \in C_0^{\infty}(\Omega)$. Putting together the properties of D(u, v) and those of $G_{\Sigma}(x, y)$ we have

(3.5)
$$D(G_{\Sigma}(x, y), \varphi(y)) = \varphi(x) \qquad \forall \varphi \in C_0^{\infty}(\Sigma).$$

We shall indicate by $L^2(\Omega, \mu)$ the class of functions that are square integrable

with respect to the Borel measure μ , i.e.,

(3.6)
$$\int_{\Omega} |\Phi|^2 d\mu < +\infty \qquad \forall \Phi \in L^2(\Omega, \ \mu).$$

Let $M_0(\Omega)$ be the equivalence class of non-negative Borel measures on Ω vanishing on every Borel set of null capacity (see 4). We suppose $\mu \in M_0(\Omega)$. We observe that μ can be $+\infty$ on some large subset of Ω .

If σ is a Radon measure, we denote by $\langle v, \sigma \rangle$

(3.7)
$$\langle v, \sigma \rangle = \int_{\Omega} v d\sigma \quad \forall v \in H^{1}(\Omega).$$

The weak formulation of problem (1.1) which we consider in our problem, is the following

$$D(u, v) + \int_{\Omega} uv \, d\mu = \langle v, \sigma \rangle$$

$$(3.8)$$

$$\forall u, v \in H^{1}(\Omega, w) \cap L^{2}(\Omega, \mu) \quad u - g \in H^{1}_{0}(\Omega, w) \cap L^{2}(\Omega, \mu).$$

4 - Capacity and its properties

We introduce here the notion of capacity (see [6]) associated to the operator L of a set E with respect to Ω , $E \subset \Omega$, by the relationship

(4.1)
$$\operatorname{cap}(E, \Omega) = \inf \{D(v, v)\} \quad v \in H^1_0(\Omega, w) \quad v \ge 1 \text{ on a neighbourhood of } E.$$

If we take $\Omega \equiv \Sigma$, mentioned above, we will write

$$cap(E, \Sigma) = cap E$$
.

The principal features of this type of capacity can be found in [5]. We recall the estimate

where \cong stands for an equality except for a multiplicative constant indipendent from x and r.

An estimate that will be used in this paper is the following

(4.3)
$$\frac{\operatorname{cap} B_{qr}}{\operatorname{cap} B_{pr}} \le 1 + Cx^{2n}(1+x)^{2n} \qquad x = \frac{q}{p} > 1.$$

The proof of relation (4.3) is the same of that of [2].

The following relation between the capacity of a ball and the Green function is proved in [5]

(4.4)
$$G_{\Sigma}(x, y) = \frac{1}{\operatorname{cap} B_{r}(y)} \qquad r = |x - y|.$$

Then in S_R , $r = B_R \setminus B_r \subset \Omega$, the Green function can be estimated by

$$(4.5) \frac{C}{\operatorname{cap} B_R(y)} \leq G_{\Sigma}(x, y) \leq \frac{C}{\operatorname{cap} B_r(y)}$$

with C a constant independent from x, r and R.

Finally we observe that the assumption (2.3) doesn't allow the esistence of points with positive capacity.

5 - μ -capacity and his proprieties

Def. 5.1. We say that $E \in \mathbb{R}^n$ is μ -admissible in Ω if E is a Borel subset of Ω and there exists a function $\emptyset \in H^1(\Omega, w) \cap L^2(\Omega, \mu)$ with $\emptyset - 1 \in H^1(\Omega, w)$.

Let μ_E a measure such that

(5.1)
$$\mu_E(T) = \mu_E = \mu(E \cap T) \qquad T \in \Omega$$

i.e. μ_E is the restriction of μ to the set E.

If E is μ -admissible in Ω , there exists a function \emptyset_E , called the μ -capacity potential of the set E defined as the unique solution of the problem [3]

(5.2)
$$L\emptyset_E + \mu_E \emptyset_E = 0 \quad \text{in } \Omega \qquad \emptyset_E = 1 \quad \text{on } \partial\Omega.$$

The μ -capacity of E respect to Ω is defined by

(5.3)
$$\operatorname{cap}_{\mu}(E, \Omega) = \operatorname{D}(\emptyset_{E}, \emptyset_{E}) + \int_{\Omega} |\emptyset_{E}|^{2} d\mu_{E}$$

for every μ -admissible set E.

We observe that $0 \le \emptyset_E \le 1$ [3].

If E is μ -admissible then $\emptyset_E \in L^2(\Omega, \mu_E)$ and so $0 \le \operatorname{cap}_{\mu}(E, \Omega) < +\infty$.

The proprieties of such type of capacity are analogous to those given in [3] for the usual elliptic case.

We are concerned with the case in which the coefficients of the operator L are simmetric. In such case it's easy to see an equivalent definition of capacity is given by the infimum problem

(5.4)
$$\operatorname{cap}_{\mu}(E, \Omega) = \inf \{ (\operatorname{D}(v, v) + \int_{\Omega} |v|^2 d\mu_E \quad v - 1 \in H^1_0(\Omega, w) \cap L^2(\Omega, \mu_E) \}$$

for every μ -admissible E.

6 - Kato space

Let Ω an open space, σ a Radon measure such that σ , $|\sigma| \in H^{-1}(\Omega, w)$. We define the functional $\langle \Phi, \sigma \rangle$ as in (3.7).

Def. 6.1. We will denote as $K_n(\Omega)$ the space of Radon measures σ on Ω such that

(6.1)
$$\lim_{r \to 0^+} \sup_{x \in \Omega} \int_{\Omega \cap B_r} G_{\Sigma}(x, y) \, \mathrm{d} |\sigma| \, (y) = 0.$$

We introduce a norm on $K_n(\Omega)$ defined by

(6.2)
$$\|\sigma\|_{K_n(\Omega)} = \sup_{x \in \Omega} \int_{\Omega} G_{\Sigma}(x, y) \, d|\sigma|.$$

We can prove, as on [1], that $K_n(\Omega)$ is a Banach space with the norm (6.2).

Proposition 6.2. The following properties hold for the norm on $K_n(\Omega)$

(6.3)
$$|\sigma|(\Omega) \leq k ||\sigma||_{K_{\pi}(\Omega)}$$
. (6.4) $\lim_{r \to 0^+} ||\sigma||_{K_{\pi}(B_r)}$.

Proof. The relation (6.3) is easily proved taking into account the relation (4.4). Let $\Omega \subseteq B_R(y) \subset \Sigma$, R fixed, then the Green function can be evaluated as in

(4.5); so from (6.2)

(6.4)
$$\|\sigma\|_{K_n(\Omega)} \ge \frac{|\sigma|}{\operatorname{cap} B_B(y)} .$$

This relation implies (6.3) with $k = cap B_R(y)$.

The relation (6.4) follows immediately from the definition of Kato space (6.1).

The main result of this section is the following

Theorem 6.3. If $\sigma \in K_n(\Omega)$ and u is a local weak solution of the problem

(6.5)
$$Lu = \sigma \quad in \ \Omega \qquad u = g \quad on \ \partial\Omega$$

then $u \in C^0(\Omega)$.

The proof of this result will be given in 8.

7 - Regular and Wiener points

An important result of this section is the following theorem (Poincaré inequality).

Theorem 7.1. Let $u \in H^1(\Omega, w) \cap L^2(\Omega, \mu)$ $B_{2r} \subset \Omega$ 0 < q < 1 and $S_{r,qr} = B_r \setminus B_{qr}$, then

$$(7.1) \qquad \int\limits_{S_{r,qr}} |u|^2 w \, \mathrm{d}x \leq \frac{Kw(B_{2r})}{\mathrm{cap}_{\mu}(S_{r,qr}, \ B_{2r})} \, (\int\limits_{S_{2r,qr2}} |\mathrm{D}u|^2 w \, \mathrm{d}x + \int\limits_{S_{2r,qr2}} |u|^2 \, \mathrm{d}\mu)$$

with K a constant independent from x and r.

The proof of this result will be given in 8.

Def. 7.2. A point $x_0 \in \mathbb{R}^n$ is a regular Dirichlet point for μ if every local weak solution of (3.8) is continuous and vanishes at x_0 .

A sufficient condition for the regularity of a point can be given in terms of a function $\omega_{\mu}(x_0; r, R)$ $0 \le r \le R$ associated to the measure μ at a given point x_0 .

Def. 7.3. For every $0 \le \theta \le R_0$, we put

(7.2)
$$\delta(\theta) = \frac{\text{cap}_{\mu}(B_{\theta}, B_{2\theta})}{\text{cap}(B_{\theta}, B_{2\theta})} \cdot \qquad (7.3) \qquad \omega_{\mu}(x_{0}; r, R) = \exp[-\int_{r}^{R} \delta(\theta) \, d\theta/\theta].$$

The function $\omega_{\mu}(x_0; r, R)$ is said Wiener modulus of μ at x_0 .

Remark 7.4. The following properties derived from the properties of the capacity

$$(7.4) 0 \leq \delta(\theta) \leq 1. (7.5) \frac{r}{R} \leq \omega_{\mu}(x_0; r, R) \leq 1.$$

Theorem 7.5. If V(r) is the quantity defined in (1.2), then there exist two constants k, β depending only on the elliptic constants and the dimension of the space, such that

$$(7.6) V(r) \leq k(\omega^{\beta}_{u}(x_{0}; r, R_{0}) V(R_{0}) + \|\sigma\|_{K_{v}(R_{v})}^{2})$$

with $0 \le r < R_0$, R_0 constant.

From Theorem 7.5, easily follows

Theorem 7.6. If x_0 a Wiener point for measure μ and the operator L, then x_0 is a regular Dirichlet point.

8 - Proofs

Proof Theorem 6.3. Let

(8.1)
$$E(x, \Omega) = \int_{\Omega} G_{\Sigma}(x, y) \, d\sigma(y).$$

We can see that $E(x, \Omega)$ is a weak solution of equation (6.5) with g = 0 and $|E(x, B_r)| \leq ||\sigma||_{K_r(B_r(x))}$.

We will prove that $E(x, \Omega)$ is continuous at $x_0 \in \Omega$.

We take a sequence of points $(x_k) \in B_R(x_0) \subset \Omega$ such that $\lim_{k \to +\infty} x_k = x_0$. We will

prove

$$\lim_{k \to +\infty} E(x_k, \Omega) = E(x_0, \Omega).$$

We have that

$$0 \leq |E(x_k, \Omega) - E(x_0, \Omega)| \leq |E(x_k, \Omega \setminus B_r(x_0)) - E(x_0, \Omega \setminus B_r(x_0))|$$

$$+ |E(x_k, B_r(x_0))| + |E(x_0, B_r(x_0))|$$

$$\leq |E(x_k, \Omega \setminus B_r(x_0)) - E(x_0, \Omega \setminus B_r(x_0))| + 2||\sigma||_{K_r(B_r(x_0))}.$$

From (6.4) we obtain the continuity of $E(x, \Omega)$ at x_0 . We observe now that, if

$$(8.2) p(x) = u(x) - E(x, \Omega)$$

where u(x) is the weak solution of (6.5) and $E(x, \Omega)$ is the function defined in (8.1), then p(x) is the solution of the following problem

(8.3)
$$Lp(x) = 0 \quad \text{in } \Omega \qquad p(x) = g \quad \text{on } \partial\Omega.$$

The De Giorgi-Nash-Moser theorem holds also in the homogeneous degenerate case [4], then p(x) is continuous at x_0 . So $u(x) = E(x, \Omega) + p(x)$ is continuous at $x_0 \in \Omega$. As the point x_0 is choosen in an arbitrary way, we have proved the theorem.

Proof Theorem 7.1. We need the following lemmas.

Lemma 8.1. If $u \in H^1(\Omega, w)$, then

(8.4)
$$\int_{B_r} |u - \bar{u}|^2 w \mathrm{d}x \leq C_p r^2 \int_{B_r} |\mathrm{D}u|^2 w \,\mathrm{d}x$$

with C_p is a constant indipendent from x and r and \bar{u} the average of u on a set $E \subset B_r$ [4].

Lemma 8.2. Let $u \in H^1(\Omega, w) \cap L^2(\Omega, \mu)$, then the following inequality holds

(8.5)
$$|\bar{u}|^2 \leq \frac{C}{\text{cap}_{\mu}(S_{r,qr}, B_{2r})} \left[\int_{S_{2r,qr^2}} |\mathrm{D}u|^2 w \, \mathrm{d}x + \int_{S_{2r,qr^2}} |u|^2 \, \mathrm{d}\mu \right].$$

Proof. If u = 0, the relation is obvious. We suppose then $\bar{u} <> 0$. From the definition of μ -capacity (5.4) we have

$$\operatorname{cap}_{\mu}(S_{r,qr}, B_{2r}) \leq \int_{B_{2r}} |\Phi|^2 w \, \mathrm{d}x + \int_{S_{r,qr}} |\Phi|^2 \, \mathrm{d}\mu.$$

Let Φ defined as $\Phi = 1 + \tau \frac{u - \bar{u}}{\bar{u}}$ with u defined on B_r $u \in H^1(B_r, w) \cap L^2(B_r, \mu)$ and with B_1 , B_2 two subsets of $S_{2r,qr/2}$, diffeomorfics to a sphere such that $S_{2r,qr/2} \subset B_1 u B_2$ and $E = B_1 \cap B_2$ and with \bar{u} we will denote the average of u on the set E. C_1 and C_2 are two constants in general different from C_p of Lemma 8.1. We define the function τ as $\tau = (0$ out of $S_{2r,qr/2}$, and 1 on $S_{r,qr}$) and $0 \le \tau \le 1$ on B_{2r} , $|D_{\tau}| < C/r$ on B_{2r} .

Taking into account these properties we obtain

$$\operatorname{cap}_{\boldsymbol{u}}(S_{r,qr},B_{2r}) \leq \frac{K}{|\boldsymbol{u}|^2} (\int\limits_{S_{2r,or2}} |\mathrm{D}\boldsymbol{u}|^2 \, w \, \mathrm{d}\boldsymbol{x} + \int\limits_{S_{2r,or2}} |\boldsymbol{u}|^2 \, \mathrm{d}\boldsymbol{\mu})$$

from which (8.5) follows.

We return now to the Theorem 7.1.

From the fact that sets B_1 and B_2 are diffeomorphic to a ball on they, it holds a Poincaré inequality

and analogous for B_2 . We have

$$\int\limits_{B_1} |u|^2 \, w \, \mathrm{d}x \leq r^2 \int\limits_{B_1} |u - \bar{u}|^2 \, w \, \mathrm{d}x + |\bar{u}|^2 \, w(B_1) \leq C_1 \, r^2 \int\limits_{B_1} |\mathrm{D}u|^2 \, w \, \mathrm{d}x + |\bar{u}|^2 \, w(B_1)$$

and analogous for B_2 . Adding the two formulas for B_1 and B_2 , letting $K = \max(C_1, C_2)$ and remembering that $w(B_1)$, $w(B_2) \leq w(B_{2r})$ because they are subsets of B_{2r} , we get

(8.7)
$$\int_{S_{r,qr}} |u|^2 w dx \leq Kr^2 \int_{S_{r,qr}} |Du|^2 w dx + |\bar{u}|^2 w (B_{2r}).$$

As in [3], we obtain

(8.8)
$$r^2 \leq C_3 \frac{w(B_{2r})}{\text{cap}_{\mu}(S_{r,qr}, B_{2r})}$$

Putting together the (8.5), (8.7) and (8.8) we obtain easily relation (7.1).

Proof Théorème 7.5. To prove the théorème we need the following results.

Lemma 8.3. For every 0 < q < 1, k > 0, we have

$$V(qR) \le \frac{k}{R^2} \int_{S_{R,gR}} G_{\Sigma}(x, y) |u|^2 w dx + k ||\sigma||_{K_n(B_R)}^2.$$

We recall also the following result due to [3].

Lemma 8.4. Let R > 0, 0 < q < 1 and $0 < r \le qR$, D(x) a measurable function $(r, R) \rightarrow (0, 1)$ and F(x) a non decreasing function $(r, R) \rightarrow (0, +\infty)$. We suppose that there exists a constant k > 0 such that

(8.9)
$$D(q\theta) \le D(\theta)/(1 + kF(\theta))$$

for every $r/R < \theta < R_0$. Then

(8.10)
$$D(r) \leq CD(R_0) \exp(-\beta \int_{r}^{R_0} F(\theta) d\theta/\theta)$$

where $C = \exp(k/(1+k))$ and $\beta = k/(1+k)|\log q|$.

Lemma 8.5. Let

(8.11)
$$\delta_{q}(\theta) = \frac{\text{cap}_{\mu}(S_{\theta,q\theta}, B_{2\theta})}{\text{cap}(B_{\theta}, B_{2\theta})} \qquad \delta(\theta) = \frac{\text{cap}_{\mu}(B_{\theta}, B_{2\theta})}{\text{cap}(B_{\theta}, B_{2\theta})}$$

then

(8.12)
$$\int_{r}^{R_{0}} \delta_{q}(\theta) \, \mathrm{d}\theta/\theta \ge (C-1) \int_{r}^{R_{0}} \delta(\theta) \, \mathrm{d}\theta/\theta + C \log|q| \qquad C > 1.$$

Proof Lemma 8.5. As in [3], we have

$$\operatorname{cap}_{u}(B_{\theta}, B_{2\theta}) \leq \operatorname{cap}_{u}(B_{a\theta}, B_{2a\theta}) + \operatorname{cap}_{u}(S_{a\theta,a\theta}, B_{\theta}).$$

We divide now for $cap(B_0, B_{20})$ and from the definition (8.11)

$$\delta(\theta) \geqslant \frac{\operatorname{cap}_{\mu}(B_{q\theta} , B_{2q\theta})}{\operatorname{cap}(B_{\theta} , B_{2\theta})} - \delta_q(\theta) = \delta(q\theta) \; \frac{\operatorname{cap}(B_{q\theta} , B_{2q\theta})}{\operatorname{cap}(B_{\theta} , B_{2\theta})} - \delta_q(\theta) \, .$$

We now estimate the rapport between the capacities.

Using relation (2.3) we get (q > 1)

$$C = \frac{\operatorname{cap}(B_{q\theta}, B_{2q\theta})}{\operatorname{cap}(B_{\theta}, B_{2\theta})} \leq \frac{w(B_{q\theta})}{q^2 w(B_{\theta})} \leq q^{-2} \left(\frac{|B_{q\theta}|}{|B_{\theta}|}\right)^{(2+a)/n}$$
$$= q^{-2} (q^n \theta^n / \theta^n)^{(2+a)/n} = q^a$$

where we have used an estimate of the Lebesgue measure of a ball. We have that $C \ge 1$ for q sufficiently small. Hence with the relation between the capacities we obtain the following relation between the δ -functions $\delta(\theta) \ge C\delta(q\theta) - \delta_q(\theta)$ and then $\delta_q(\theta) \ge C\delta(q\theta) - \delta(\theta)$. Integrating from r to R_0

$$\begin{split} \int\limits_r^{R_0} \delta_q(\theta) \, \mathrm{d}\theta/\theta &\geqslant C \int\limits_r^{R_0} \delta(q\theta) \, \mathrm{d}\theta/\theta - \int\limits_r^{R_0} \delta(\theta) \, \mathrm{d}\theta/\theta \\ &= C \int\limits_{qr}^{qR_0} \delta(\theta) \, \mathrm{d}\theta/\theta - \int\limits_r^{R_0} \delta(\theta) \, \mathrm{d}\theta/\theta \\ &= C \int\limits_r^{R_0} \delta(\theta) \, \mathrm{d}\theta/\theta - C \int\limits_{qR_0}^{R_0} \delta(\theta) \, \mathrm{d}\theta/\theta + \int\limits_{qr}^r \delta(\theta) \, \mathrm{d}\theta/\theta - \int\limits_r^{R_0} \delta(\theta) \, \mathrm{d}\theta/\theta \,. \end{split}$$

Taking into account that $0 \le \delta(\theta) \le 1$, we have (8.12).

Proof Theorem 7.5. Let

(8.13)
$$V(qR) > 2k \|\sigma\|_{K_n(B_R)}^2$$
 so that

$$V(qR) \leq \frac{2k}{R^2} \int_{S_{R,qR}} G_{\Sigma}(x, y) |u|^2 w \,\mathrm{d}x.$$

By using relation (4.5) and the Poincaré inequality (7.1) we have

$$N(q, R) = kw(B_{2R})/R^2/\text{cap}\,B_{qR} = k\,\text{cap}(B_R, B_{2R})/\text{cap}\,B_{qR}$$

$$V(qR/2) \leq V(qR) \leq \frac{N(q,\ R)}{{\rm cap}_{u}(S_{R,qR}\ ,\ B_{2R})} \ (\int\limits_{S_{2R,qR/2}} |{\rm D} u|^2 \, w \, {\rm d} x + \int\limits_{S_{2R,qR/2}} |u|^2 \, {\rm d} \mu) \, . \quad {\rm So}$$

$$\begin{split} V(qR/2) \leqslant & \frac{\mathrm{cap}(B_R,\ B_{2R})}{\mathrm{cap}\,B_{qR}\,\mathrm{cap}_{\mu}(S_{R,qR}\,,\ B_{2R})} \; (\int\limits_{S_{2R,qR/2}} |\mathrm{D}u|^2 \, w \, \mathrm{d}x + \int\limits_{S_{2R,qR/2}} |u|^2 \, \mathrm{d}\mu) \\ & = \frac{K(q)}{\delta_q(R)} (\int\limits_{S_{2R,qR/2}} G_{\Sigma} |\mathrm{D}u|^2 \, w \, \mathrm{d}x + \int\limits_{S_{2R,2R/2}} G_{\Sigma} |u|^2 \, \mathrm{d}\mu) \end{split}$$

where relations (4.3) and (4.5) are been used. Adding V(qR/2) on both sides we obtain $(1 + k\delta_q(R)) V(qR/2) \leq V(2R)$ with k a constant depending only on q and n. So

$$V(qR/2) \leq \frac{1}{1 + k\delta_q(R)} V(R)$$
.

From Lemma 8.4

$$V(r) \leq KV(R_0) \exp(-\beta \int_{r}^{R_0} \delta_q(x) dx)$$

and from Lemma 8.5

$$V(r) \le KV(R_0) \exp(-\beta \int_{r}^{R_0} \delta(\theta) d\theta/\theta)$$

where K and β are constants that can vary in each passage but that depend only on q and n.

From the definition of $\omega_{\mu}(x_0; r, R_0)$, we have

(8.14)
$$V(r) \leq K \omega_{\mu}^{\beta}(x_0; r, R_0) V(R_0) \qquad r \leq q R_0/4$$

where R_0 is a suitable constant.

If the assumption (8.13) does not hold, we have

$$(8.15) V(r) \leq 2k \|\sigma\|_{K_{\sigma}(B_{\sigma})}^{2}.$$

Then (8.14) and (8.15) can be summarized in the relation

$$V(r) \le K\omega^{\beta}_{\mu}(x_0; r, R_0) V(R_0) + 2k \|\sigma\|_{K_{\mu}(B_{\bullet})}^2 r \le qR_0/4$$
.

Proof Theorem 7.6. We have $0 \le |u(x)|^2 \le V(r)$. Hence

$$0 \le \lim_{x \to x_0} |u(x)|^2 \le \lim_{r \to 0} V(r) = 0$$
.

By taking account the properties of $\omega_{\mu}(x_0; r, R)$ and $\|\sigma\|_{K_{\eta}(B_r)}$ we have

$$\lim_{x\to x_0}|u(x)|^2=0.$$

I want to thank Prof. M. Biroli and Prof. F. Dal Fabbro of Politecnico of Milano for the useful advices gived in writing this paper.

References

- [1] M. AIZEMAN and B. SIMON, Brownian motion and Harnack inequality for Schroedinger operators, Comm. Pure Appl. Math. 35 (1982), 209-273.
- [2] M. BIROLI and S. MARCHI, Wiener estimate at the boundary points for degenerate elliptic equations, Boll. Un. Mat. Ital. (6) 5B (1986), 687-706.
- [3] G. DAL MASO and U. Mosco, Wiener criteria and energy decay for relaxed Dirichlet problems, Arch. Rational Mech. Anal., 95 (1986), 345-387.
- [4] E. B. Fabes, C. E. Kenig and R. P. Serapioni, *The local regularity of solutions of degenerate elliptic equations*, Comm. Partial Differential Equations, (7) 1 (1982), 77-116.
- [5] E. B. Fabes, D. S. Jerison and C. E. Kenig, *The Wiener test for degenerate elliptic equations*, Ann. Inst. Fourier (Grenoble), 32 (1982), 151-183.
- [6] J. Frehse, Capacity method in the theory of partial differential equation, Jahresberich Deutsch. Math. Vereinig. 84 (1982), 1-44.
- [7] T. Kato, Schroedinger operators with singular potentials, Israel J. Math. 13 (1973), 135-148.

Summary

We give a sufficient Wiener's type criterion for the regularity of a point for a relaxed Dirichlet problem relative to a degenerate elliptic second order operator.
