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ANDREA DE VEScCoOVI (¥)

Study of a relaxed degenerate Dirichlet problem (*%)

1 - Introduction

In this work we deal with pointwise continuity at the points at which the
solution of the problem

(1.1 Lu+pu=0 inQ =g on oQ

vanishes (L is a degenerate second order differential operator, « a Borel measure
and ¢ a Radon measure. For the definition of Radon measure see [1]).

The problem (1.1) is a relaxed Dirichlet problem in QcR", n=3. The
estimate of the modulus of continuity will be carried out by a structural estimate
of the ratio V(r)/V(R,), 0<r<R,, on two concentric balls of the function of r

(1.2) V(r) = osc [ulP+ [ |DuP Gz, y)wdx+ [|ufGsle, y)du
- B, B,

where Gi(x, ¥) is the Green function of the operator L in a fixed large ball
I =(x:|x| <R, centred in the origin, containing the closure of Q.

The estimate will be given in terms of the so called Wiener modulus of the
Borel measure u defined in 7 and of |lo|| k&), the norm of the Radon measure ¢ in
the Kato space K,(B,), as indicated in 6, by a method developped by Dal Maso,
Mosco in the work [3].

Our purpose is to extend the results obtained in [3], to the case of
homogeneous degenerate differential operators.

(*) Indirizzo: Dipartimento di Matematica del Politecnico, Piazza L. da Vinci 32,
1-20133 Milano.
(**) Ricevuto: 1-I1I-1989.
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2 - Notation and preliminaries
In this section we introduce the degenerate elliptic operator and point out the

main properties of problem (1.1).
We denote by L the operator

@.1) L= -2, ;Djay=x) Dy

where D; denotes the derivative with respect to the variable x; and D = grad the
usual gradient; a;(x) Vi,j=1, 2, ..., n is a symmetric matrix of measurable
functions defined in Q such that

@.2) %w(m)]&]z <5 (@) £ 8 < cu(w) &P €>1).

The weight w(x) will be a non negative function, defined in R" such that
w(x), wi(x) e L'loe(R™) and for which the following (A;) conditions holds

(Ap) sup [ Yx)dx]<C

where |B,| is the Lebesgue measure of the ball B, and the supremum is taken
over all Euclidean balls B, c R™.
We shall use the additional assumption

w(B,)

(2.3) w(Br)

<([ RB ]I Jerom r<R a>0.

The Green function of L in X, Gs(z, %), is defined as the distributional solution of
the problem

2.4) LGy(x, y)=2¢x in Q Gs(x, ¥)=0 on oQ

where ¢, is the Dirac distribution at x; Go(x, ¥) has a singularity at 2 and that
satlsﬁes the properties

Gx(x, ¥) =Gy, @) Gz, ) =0
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Gs(z, ) e H(E\BALy), w) B(y)cz r>0
Gs(zx, y) e HY?(3, w) isp<s2w/(@n-1)

moreover Gy(x, y) is Holder eontinuous in B\ {z}, »>0.

3 - Functional framework

We introduce, here, the spaces which are the functional framework of our
problem in this paper.

We denote by LA, w) the space of square integrable functions respect to the
weight w(x) equipped by the norm

CRY 10200 =L § |OPw@) dz]? Vo eLXQ, w)

and by H{Q, w) the closure of C*(Q) w. r. to the norm

3.2) |1@ller0.0 = (Il + 3 D: D20, -

We define H,'(Q, w) the closure of C5(Q) in the HY(Q, w) norm. On H{Q, w) we
can choose the following equivalent norm

3.3) 18]l = [ ] |DB[2w dz] Vo e HHQ, w).

We can introduce, now, a bilinear form associated to the operator L on H,{Q, w)

(3.4 D(u, v)=2%;; [a;®)D;uDjvde  VYu, ve H'Q, w).
el

_This bilinear form is well defined and coercive on H XQ, w).
We observe that D(u«, v) can be also defined for # e W-(Q, w) and v € C7(Q).
Putting together the properties of D(u, v) and those of Gs(x, y) we have

(3.5) D(Gx(x, ¥), o)) = o) VeeCi(®).

We shall indicate by L3Q, 1) the class of functions that are square integrable
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with respect to the Borel measure yu, i.e.,

(3.6) [0 du <+ o Vo e LAQ, u).

Let My Q) be the equivalence class of non-negative Borel measures on
vanishing on every Borel set of null capacity (see 4). We suppose u € Mq(£2). We
observe that u can be + « on some large subset of Q.

If ¢ is a Radon measure, we denote by (v, o)

3.7 (?), o‘) = J"Uda Vv e HY(Q).

The weak formulation of problem (1.1) which we consider in our problem, is the
following

D(u, v)+ fuvdue= (v, o)
(3.8) ?
Vu, ve H(Q, w)nLXQ, u) wu—geHWQ, w)nLXQ, u).

4 - Capacity and its properties

We introduce here the notion of capacity (see [6]) associated to the operator L
of a set E with respect to Q, E cQ, by the relationship

4.1) capE, Q) =inf{D(, v)} veHYWQ, w) v=1onaneighbourhood of E.
If we take Q =X, mentioned above, we will write
cap(E, Z)=capk.

The principal features of this type of capacity can be found in [5]. We recall the
estimate

4.2) cap(B, , By) =w(B)/r?

where = stands for an equality except for a multiplicative constant indipendent
from « and 7.
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An estimate that will be used in this paper is the following

cap B,

4.3) cap B,,

<1+ Ca®(1 + o)™ :c=-g—>1.

The proof of relation (4.3) is the same of that of [2].
The following relation between the capacity of a ball and the Green function is
proved in [5]

1

4.4 Gslx, )= @B

r=|z—yl.

Then in Sg, r= Bz \ B,c, the Green function can be estimated by

C

_C < ¢
cap Br(y)

@) cap B,(y)

G);(-’L', ?/) S

with C a constant independent from x, » and E.
Finally we observe that the assumption (2.3) doesn’t allow the esistence of
points with positive capacity.

5 - u-capacity and his proprieties

Def. 5.1. We say that E c R"is u-admissible in Q if E is a Borel subset of Q
and there exists a function 0 € H\(Q, w) nLAQ, w) with 0 —1e H*(Q, w).
Let pz a measure such that

(5.1) wD =ps=pEnT)  TcQ

i.e. up is the restriction of u to the set E.
If E is y-admissible in Q, there exists a function @z, called the u-capacity
potential of the set E defined as the unique solution of the problem [3]

(5.2) LﬂE+,zLEQE=0 in Q @Ezl on 3Q.

The u-capacity of E respect to Q is defined by
(5.3) cap,(E, Q) =D, 05) + [|0g*dug

for every u-admissible set E.
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We observe that 0=<0;<1 [3].

If E is u-admissible then @z e L¥(Q, ug) and so 0<cap,(&, Q)< + .

The proprieties of such type of capacity are analogous to those given in [3] for
the usual elliptic case.

We are concerned with the case in which the coefficients of the operator L are
simmetric. In such case it’s easy to see an equivalent definition of capacity is
given by the infimum problem

(6.4)  capE, ) =inf{(Dw, v)+ [|w]fdur v—-1eHWQ, w)LAQ, up)}

for every up-admissible E.

6 - Kato space

Let Q an open space, ¢ a Radon measure such that o, |o] e H74Q, w). We
define the functional (@, o) as in (3.7).

Def. 6.1. We will denote as K,(Q) the space of Radon measures ¢ on Q such
that

(6.1) limsup | Gy(@, y)djo| (@) =0.

zel onB,

We introduce a norm on K,(Q) defined by

(6.2) llollic oy = sup [ Gs(z, y)d|s|.

We can prove, as on [1], that K (Q) is a Banach space with the norm (6.2).

Proposition 6.2. The following properties hold for the nmorm on K,(Q)

(6.3) |o](Q) < Kllo]lx 0 - (6.4) 1{}5} lloll e -

Proof. The relation (6.3) is easily proved taking into account the relation
(4.4). Let Q ¢ Bp(y) c 2, R fixed, then the Green function can be evaluated as in
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(4.5); so from (6.2)

lo]

6.4 S B
( ) “c”Kn(Q) cap BR(?/)

This relation implies (6.8) with k= cap Bg(y).
The relation (6.4) follows immediately from the definition of Kato space (6.1).

The main result of this section is the following

Theorem 6.3. If o€ K,(Q) and u is a local weak solution of the problem
(6.5) Lu=q¢ in Q u=g on dQ
then w € C%Q).

The proof of this result will be given in 8.

7 - Regular and Wiener points

An important result of this section is the following theorem (Poincaré
inequality).

Theorem 7.1. Let weHYQ, w)nL*Q, u) BycQ 0<g<l and
S,.¢r =B, \ By, then

Kw(B,,)
2 2 2
(7‘ 1) Sr{, lu] W dx < Capy(Sr,qr; BZr) (527‘.£f2 IDu[ de * Sgr,;{/g lul dy’)

with K a constant independent from x and r.
The proof of this result will be given in 8.

Def. 7.2. A point x,e R" is a regular Dirichlet point for u if every local
weak solution of (3.8) is continuous and vanishes at .

A sufficient condition for the regularity of a point can be given in terms of a
function w,(xy; 7, R) 0<r<R associated to the measure x at a given point z,.
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Def. 7.3. For every 0<<6<R,, we put

_cap,(By, Ba).

" cap(B,, Ba) @8) o, R)=expl- [ &0)ds/s].

(1.2) 3(0)

The function w,(xg; 7, R) is said Wiener modulus of u at x,.

Remark 7.4. The following properties derived from the properties of the
capacity

(7.4) 0=<dO<1. (1.5) <o,(w; 7, R)<1.

z

R
Theorem 7.5. If V(r) is the quantity defined in (1.2), then there exist two

constants k, B depending only on the elliptic constants and the dimension of the

space, such that

(7.6) V() < k(o (5; 7, Bo) V(R) + llo ”%(n(B,.))

with 0<r<R,, R, constant.

From Theorem 7.5, easily follows

Theorem 7.6. . If x, a Wiener point for measure u and the operator L, then
%y 18 a regular Dirichlet point.

8 - Proofs
Proof Theorem 6.3. Let

8.1 E(x, Q)= [ Gz, y)do(y).

We can see that E(x, Q) is a weak solution of equation (6.5) with g =0 and
|E (@, B))|<lollx,@.e-

We will prove that E(x, Q) is continuous at x, € Q.

We take a sequence of points (x;) € Br(x,) c 2 such that ;}HHC X, = x,. We will
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prove

é.if}l E(x,, Q)=E(x, Q).
We have that

0<|E(xy, Q)—E(®y, Q) <|E@, @\ Bxy)— E(x, 2\ B
+ |E(x, B(2o)|+ |E(x, Bo))|
< |E(z;, O\ B.(x) — E(®,, 2\ B, @)+ 2ol -
From (6.4) we obtain the continuity of E(x, Q) at x,. We observe now that, if
(8.2) p(e) = u(x) — E(x, Q)

where u(x) is the weak solution of (6.5) and E(x, Q) is the function defined in
(8.1), then p(x) is the solution of the following problem

8.3) Lpx)=0 in Q plx)=g on Q.

The De Giorgi-Nash-Moser theorem holds also in the homogeneous degenerate
case [4], then p(x) is continuous at %. So u(x) = E(x, Q)+ p(x) is continuous at
%o € Q. As the point z, is choosen in an arbitrary way, we have proved the
theorem.

Proof Theorem 7.1. We need the following lemmas.

Lemma 8.1. If ue H(Q, w), then

(8.4) [ u—affwde<C,7* [|Duffwdx

B, B,

with C, is a constant indipendent from x and r and % the average of u on a set
E cB, [4].

Lemma 8.2. Let weHYQ, w)nLXQ, ), then the following inequality
holds

¢ [ [ Dufwde+ [ |uPdul.

8.5 AP S s
( ) l | Cap“(s r,qr B 21‘) Sorqri2 Sor,griz
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Proof. Ifwu =0, the relation is obvious. We suppose then # << >0. From the
definition of u-capacity (5.4) we have

eap,(Sygr, Be) < [|OPwde+ [[PfFdu.

By, sr,qr

and with B, B, two subsets of Sy.,», diffeomorfics to a sphere such that
Ser g2 € BiuB; and E = B; N B, and with % we will denote the average of u on
the set E. C, and C; are two constants in general different from C,, of Lemma 8.1.
We define the function 7 as v = (0 out of Sp, 4, and 1 on S,.;) and 0 < <1 on By,
|Dr| < C/r on Bs,.

Taking into account these properties we obtain

Let @ defined as 6 =1+ & ; Ll with « defined on B, w e H'(B,, w)nLAB,, p)

cap,(Srgr, Bo) <72 ( [ [Duffwde+ [ |ulde)

2
Iu’[ Sor,qm2 Sorqr2

from which (8.5) follows.

We return now to the Theorem 7.1.

From the fact that sets B; and B, are diffeomorphic to a ball on they, it holds a
Poincaré inequality

(8.6) fuw—aPwde<C;?® [ |Duffwde
By

By

and analogous for B,. We have

[ luPwdr<?® [ |u—al>wdx + |@2wB) < C,7* [ |Dulfwdz + |@|*wBy)
B B, B

and analogous for B,. Adding the two formulas for B; and B,, letting
K =max(C,, C,) and remembering that w(B,), w(Bz) < w(B,,) because they are
subsets of B,., we get

8.7 Julfwde< K7 [ |Dulfwdx+ |al>wBs) .
Sr,qr Sr,qr

As in [3], we obtain

w(BZT)

8.8 P<Cy —— .
( ) ’ cap,u(sr,qr ’ BZr)

Putting together the (8.5), (8.7) and (8.8) we obtain easily relation (7.1).
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Proof Théoréme 7.5. To prove the théoréme we need the ”following
results.

Lemma 8.3. For every 0<g<1, k>0, we have

VR <5 | Gw, pluluwds + kel o, -

SR,qR

We recall also the following result due to [3].

Lemma 84. Let R>0, 0<g<1 and 0<r<qR, D) a measurable
Sunction (r, R)— (0, 1) and F(x) a non decreasing function (r, R)— (0, + ).
We suppose that there exists a constant k>0 such that

8.9 D(q6) < DB/ + kF(6))

for every r/R <6<R,. Then

(8.10) D{r) < CD(R,) exp(— ﬂrfR OF(t‘)) de/6)
where C = exp(k/(1 + k) and 8= ki1 + k)|logq|.

Lemma 8.5. Let

. cap,(Ssq » Bay) cap,(By , Ba)
8.11) 5,(0) = P.\p,g0 5 Ds 6) = PADy, Doy
cap(BB ) BZO) Cap(Bo ) BZO)
then
Ro Ry
(8.12) f 8(6)do/e=(C —1) f 3(6)dos+ C log[ql Cc>1.

Proof Lemma 8.5. As in [3], we have

Cap#(Be , Ba) < Capy(qu ’ quo) + Cap,u(sqa,qo » Bo).
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We divide now for cap(B,, Bs) and from the definition (8.11)

Capy(B q0 B 2q0) Cap(B g0y B 2q0)

0> 0B By 0= B, By

—5,06).

We now estimate the rapport between the capacities.
Using relation (2.3) we get (¢>1)

C — Ca‘p(BqG; B2q0) < ZU(BQO) < q—z( ‘B(w‘
cap(By, Bz)  q*w(By) |B,|

)(2+a)/n

o q—Z(qn 611/611)(24-5:)/11 o q:z

where we have used an estimate of the Lebesgue measure of a ball. We have that
C =1 for g sufficiently small. Hence with the relation between the capacities we
obtain the following relation between the é-functions 4(6) = Cé(g6) —&,(0) and
then ¢,(6) = C(¢6) — 4(6). Integrating from r to R,

Ry Ry Ry
[ s0)dele=C [ s(go)de/o— [ 2(6)de/6

qRg Ry

=C [ &6)do/o— [ &6)de/6

Ry By r Ry
=C [ Xo)delo—C [ &@®)de/o+ [ )de/o— [ &6)do/s.
r qr [

qRy

Taking into account that 0<4(9) <1, we have (8.12).
Proof Theorem 7.5. Let

(8.13) V(gR) > 2kl|ol% s, so that

2k Gy, PuPwde.

2
R SR,qR

V(gR) <

By using relation (4.5) and the Poincaré inequality (7.1) we have

N(g, R)=kw(Bay)/R*cap B,z =k cap(Bg, Bag)/cap By
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N(g, R) 2 2
V(QR2)<V(gR)< 0.5r om s B (SmjmlDuI wdcc+sm‘qu lufPdw). So

cap(Bg, Byr)
Dul*w dx + ul?
cap Byg cap,(Sgqr , Bar) (Szx.g;m [Dul qufk a] ?dw)

_K@
o(E)

V(qRI2) <

( J GsDulfwdx+ [ Gpluf?dw)

Sor gR2 Sor,2Rr2

where relations (4.3) and (4.5) are been used. Adding V(qR/2) on both sides we
obtain (1 + ké,(R)) V(gR/2) < V(2R) with k a constant depending only on ¢ and n.
So

1

From Lemma 8.4
Ry
V(r) <KV(Ry) exp(— B | &,(x)dx)
and from Lemma 8.5
Ry
V(r)<s KV(Ry) exp(— 8 [ 4(6) do/o)

where K and 3 are constants that can vary in each passage but that depend only
on ¢ and n.
From the definition of w,(w%y; 7, Ry), we have

(8.14) V(r) < Ko (o; 7, Ro) V(Ry) r<qR,/4

where R, is a suitable constant.
If the assumption (8.13) does not hold, we have

(8.15) V(r) < 2klolfk . -
Then (8.14) and (8.15) can be summarized in the relation

V(T) = Kaﬁ#(mo; 7, RQ) V(Ro) -+ Zk”U”%{”(Br) r= qR0/4 .
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Proof Theorem 7.6. We have 0<|u(®@)|*<V(r). Hence

0<lim [u(@)]P< im V(@) =0.
22 s

By taking account the properties of w,(zy; 7, R) and |lo|lxs, we have

lim ju(@)|?=0.
Ty

1 want to thank Prof. M. Biroli and Prof. F. Dal Fabbro of Politecnico of
Milano for the useful advices gived in writing this paper.
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Summary

We give o sufficient Wiener's type criterion for the regularity of a point for a reloxed
Dirichlet problem relative to a degenerate elliptic second order operator.



