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Constraint and scaling methods to derive
shell theory from three-dimensional elasticity (**)

Dedicated to TRISTANO MANACORDA on his seventieth birthday

1 - Introduction

I here wish to show how the linear theory of thin shells can be obtained as an
exact consequence of three-dimensional elasticity in two alternative ways: by the
method of internal constraints and by the scaling method. I shall first sketch the
two methods, and then discuss briefly how they lend significance to each other.

The method of internal constraints to derive the classical plate equation of
Germain-Lagrange has been proposed in [14];. As is well-known, Germain-
Lagrange equation describes the equilibrium of a thin elastic plate of maximal
response simmetry when it is acted upon by transverse loadings. Slightly more
general versions of the constraint method have been shown to work in the case of
in-plane loadings [11] and in the case of single or multilayered plates of arbitrary
material symmetry subject to arbitrary loadings, in both statical and dynamical
situations [12].

The scaling method has been introduced in 1979 by Ciarlet & Destuynder [4];
a major achievement of it is Ciarlet’s «justification» of von Kérmén plate
equations [3];. The method has been later applied to a number of linear and
nonlinear models of plates, shallow shells and rods by Ciarlet himself and others
(vid. [3]; for an updated review and an inclusive list of references).

(*) Indirizzo: Dipartimento di Ingegneria Civile Edile, IT Universita degli Studi di
Roma, via E. Carnevale, 1-00173 Roma.
(**) Ricevuto: 21-1I-1990.
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The constraint and the scaling methods have been contrasted and put in
reciprocal perspective by Ciarlet & Podio-Guidugli [7]. Of course, both methods
have precursors and antecedents: to quote just the oldest ones, germs of the idea
of a constrained kinematics are found in a famous paper by Kirchhoff [10],
published in 1850; expansions in a thickness parameter appear in the papers of
Cauchy [2] and Poisson [16] on the subject, published in 1828 and 1829,
respectively. Deductions of the equations of shell dynamics from the three-
dimensional balance laws are given by Truesdell & Toupin in Section 213 of [17],
and Naghdi [13], where inclusive reference lists are also found.

2 - Preliminaries

Although a more general setting is easy to assemble [14],, for the purpose of
this presentation I shall let " be a compact oriented regular surface in a three-
dimensional Euclidean space & with associated translation space %/, and assume
that " has a global parametrization

2.1 x=x(z! 2HO.

Let n(x) be the unit normal at a typical point x € J. For a shell-like region,
modelled on J and having thickness 2¢, I shall mean a region &(¢) ¢ & such
that the mapping

(2.2) p=pQE, 22, O:=x(, 2%+ inx(!, 2%)

be a global orthogonal parametrization of &(c) itself, with {e[—¢, ] the
oriented distance from a point p € &(e) to the foot x € J° of the unique normal
line passing through p, and with the vectors

(2.3) e.:=x, (a=1,2)07

of the covariant basis at a point x € J° tangent to the lines of curvature of J".
The geometry of such a shell-like region is well-understood, and I shall
summarize it here only to introduce my notation.

() My geometric terminology is after Do Carmo [9].
() Here (), denotes differentiation with respect to z*
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At a point p e &(c) the covariant basis is

2.4) g.:=p.=e,+n, gs:=n

the contravariant basis is

2.5) g:=D,2() gF:=n

the metric tensor is

2.6) G=9.Rg+n®n=¢g®g,+n®n.

Consistently, at a point xe J,

2.7 e*:=D,2 e:i=n

is the contravariant basis, and

(2.8) I'=e,®e+n®n=e®e,+n®n

the metric tensor. For xe J and {e[—e, <] fixed, the shifters

2.9) A:=¢9,®e+n®n B:=¢g"Re,+n®n)

transforms the covariant (contravariant) basis at x into the corresponding basis
at p=x+ ¢n(x); in particular, either one of the surface shifters

(2.10) A=g,® e ‘B:=¢g"®e,

transforms linearly &,, the tangent space to J7, into &, the tangent space to
J’p. I shall denote by

2.11) G:=9,89g°=G—n®n

the restriction to &, of the linear transformation G(p) of #’; similarly, I shall

() Here D,z* denotes the gradient of the scalar field 2* = z*(p) on the surface patch
Jp through p obtained by parallel transport along the normal of the patch J of /.
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write
(2.12) Ii=e, @ e ‘L:=—n,®e¢e
-for the surface identity °I and the Weingarten tensor °L, so that, in particular,
(2.13) SA=T—-¢L.
Furthermore, I shall record here the transformation laws
(2.14) nds,:= g, X g, dz* dz! = ands, o:=detA
for oriented area elements,
(2.15) dv, := (nd?) - (nds,) = «dds,

for volume elements (*). From (2.15) a basic integration formula follows: for &£ a
shell-like part of & (c) modelled on the portion ¢ of S, and for ¥ = ¥(p) a field
over (),

2.16) [¥du,= [wds,  Pi= [ Pads.
<z S@ -t

PFinally, I shall define the gradient of a scalar field v = v(p) and a vector field

(*) Notice that, under my present hypotheses, g.() and e (x) are parallel and
Weingarten tensor is diagonal, so that, in particular,

A=1+pn0e®e+(1+1)e®e
where y;, y» denote the principal curvatures of S As
BAT=¢@ ATB=1I
the cofactor A* of A can be expressed as
A*¥=alB ai=detA=0+k DA +%0.
Then,
g1 X g2dzt d2? = A%(e; X e,) dz! d2? = «A™* nds,

(cf. (2.14)); moreover, a# 0 because, for & () to be a shell-like region modelled on J, ¢
must be (greater than 0 and) less than or equal to min{|y;|™%, |x|™'} over J.
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v=uv(p) over & () as, respectively,

.17 Vo:=v,=D,v+v,n Dyv:=v,9°()

(2.18) Voi=v,®¢'=D,v+v,®n D,v:=v,®g".

Likewise, for w=w(x) and w = w(x), respectively, a scalar and a vector field
over J, I shall write

(2.19) D,w:=w_ e Diw=w,®e.

Notice that, for w(p) =w(x) and w(p) = w(x) for all p € &(c) and x € J such that
p=x+¢n(x), one has, respectively, ’

2.20)  Vw=D,w="BD,w) Vw = (D, ) (D, w)*A =D, w.

3 - The method of internal constraints

Central to the method is the stipulation as exact mathematieal restrictions,
prevailing in all possible motions, of the traditional verbal hypotheses underlying
plate and shell theory, namely, that material fibers orthogonal to the middle
surface before loading remain approximately orthogonal to it after loading, and
suffer negligible stretching. Within the framework of linear strain analysis,
those restrictions take the form

3.1) Ewn=0 in $) 2E(u) :=Vu + (Vu)T.

It is possible to show (cf. e.g. [18], [14],) that the general solution of the
partial differential system (8.1) has the representation

(8.2), u(z', 28, o) =d@', 2%, O — (D, w(@, 2% +w, 22nE, 22

parametrized by two fields defined over ./, the scalar field w and the tangent

() Cf. the definition of D,2* in footnote (.
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vector field @
(3.2, @, D -n@, =0 d@, 28, O ="A@, &, Qu, 2.

For pe &(c) fixed, the collection of all admissible strain tensors, i.e., the
subspace @, of all symmetric tensors satisfying (3.1); at p, is such that

3.3) D=0y for p=x+¢nx) and for all {e[—¢, €].
As customary when internal frictionless constraints on possible motions

prevail, I shall split the stress field S into a reactive part S® and an active part
S“ such that

(8.4), S=S8® 4 §&
(3.4), S®(p) e (D)) S@(p)em,
(8.4), S9(p) = C(P)IE(u(p))]

with C(p) a linear, symmetric transformation of ®,. Moreover, I shall assume
that the form of C(p) reflect the maximal material symmetry compatible with
the constraints, i.e. (cf. [15]), that

(3.4)4 Cp) :=2i1(p) + 1°G(p) ® *G(p)

where ji, A are two constant material moduli and 1(p) is the identical transforma-
tion of @,. In words, (8.4) prescribe that & (c) is made of a transversely isotropic
linearly elastic material such as to comply with the internal kinematical
constraints expressed by (3.1).

The stored-energy functional associated with the elastic state {u, E, S} in
G(e) is

3.5) Si= [édu, 6(p):=-%'E(u(P)) - EOIEw®)]

[7G]

® ILe., S® may be represented as

3
§®= Zsé?’%(n®gi+gi®n).
i=1
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with the use of (2.16) and (3.2) one has

(3.6) @, w)y= [%ds,.

J
The total energy functional for thin elastic shells is obtained by addition of an
appropriate loading potential to functional (8.6); field and boundary equations for
the unknown fields # and w on o then follow along completely standard
variational procedures.

To sum up, the method of internal constraints is based on the geometrical
assumption that &(c) is a shell-like region; the kinematical assumption that
possible strain fields obey (3.1); and the constitutive assumption that the
material comprising & (e) is transversely isotropic: all together those assum-
ptions integrate an explicit declaration of thinness for a shell-like body occupying
& (c) in one of its natural reference placements; that such a body respond
elastically is a contingent fact, but linearity is a key feature.

4 - The scaling method

In the succinet and simplified version I shall give here the method consists of
two steps: first, both the data and the solution are rescaled; secondly, the energy
functional is required to stay bounded above under rescaling (7).

As to the data, let a shell-like region &(c) be made of a linearly elastic
unconstrained isotropic material described by the constitutive law

4.1) S = CIE@)] C:=20+2G®G >0 2u+32>0

where y, A are the Lamé moduli and 1 is the identical transformation of the space
of symmetric tensors. The Lamé moduli are assumed to be such that

4.2) wle) = 8_3(l Ae) = 3 ®;
the domain &(¢) is mapped one-to-one onto
(4.3) G:={pe &lp=x+nXx) xe J, zel-1, 11}
() For a full presentation of the scaling method as applied to plates vid. e.g. 3.

() As in the former section, for brevity I here omit to spell out the rescaling of loading
data.
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a shell-like region of fized thickness modelled on a copy of J" and parametrized
by

4.4) F=z (=1, 2) =¢"1¢.
It follows from (4.3) and (4.4) that

4.5) ple)=x+ep—%)

and thus
(4.6) gle)=e. te(g.— &) gi(e) =gs=n;

the dependence on ¢ of contravariant basis, metric tensor ete. are equally easy to
derive.

As to the solution, notice preliminarly that it follows from (2.18), (3.1), that
4.7 2E;:=2E - g;® g;=1u;;+ iz — u-(gi;+ g5 .
For simplicity I shall restrict myself here to considering such situations that
4.8) Ug o K Uy g Uy Y K (U3 + Us ) (e=1, 2 not summed) ().

Consequently, (4.7) yield

2 5= Uy g+ Up — Uy G (g + G5.)
(4.9)
2Ea3 = uay3 + 7’{’3,9: E33 = u313 *

I shall then rescale the displacement field as follows
(4.10) u(@, 2, G o=@, 2, Vg +u@, 2, Hn.

() In an extended presentation of the scaling method one might replace assumptions
(4.8) by taking the position vector in &(e) as follows (cf. [6])

Pple) = x(e) + en(x(s)) x(e) = 250, + 232, 2D i;

where coordinates 2* and basis vectors i, are cartesian orthogonal.
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Passing now to rendering the dependence on e of the energy functionalt
explicit, I begin to recall the expression of the stored energy density associated
with (4.1)

(4.11) 2:(E) = 2uE - E + ME - G)*.
Notice now that, in view of (4.6) and the like, (4.9) yield

4.12) E 4(e) = cE 4+ O(s) E &) =FE_4 Ep(e)=c1Ey;

where

28 o=, 5+ Ty, — 1, 8- (8,5 + &)
(4.13)

2E ;3:= 1,3+ U, Eyi=1g3.
Moreover,
(4.14) ad? = dZ + O(?) .

With (4.11)-(4.14) it follows from (2.16) that

(4.15) ole) =t f oy(B)dg + &72 ) f oo(B) dZ + ) j oy (B)dZ + O(e)

where

(4.16);  20y(E):=23[(INE)* + (IR Eg)? + 21N 2B 10)") + A By + [2 E )’
(4.16), 205(E) 1= 4G[ (B 13)? + 2B )?] + 2X(IM By + [2 Eg) Egy

(4.16), 264(E) := (22 + N)(E ).

I now introduce the crucial assumption that the energy functional stay
bounded above under rescaling, i.e., I require that

4.17) lim *o(e) < + o0,
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As (4.1); prevail, (4.17) implies that
4.18) E33=E23=E13=0§

but, in view of (4.7), (4.8) and (4.12), (4.18) is equivalent to (3.1): the rescaling
method yields precisely the kinematical restrictions that are the starting point of
the constraint method.

5 - Conclusions

A simplified version of the rescaling method has been shown to be sufficient
“to «justify», in the terminology of Ciarlet and coworkers, the classical Kirchhoff-
Love representation of the displacement field in a shell-like region. Actually, in
its full strength the scaling method has an even broader scope: the method
serves to legitimate well-known linear and nonlinear equations for plates and
shells (Germaine-Lagrange; von Kérman; Marguerre-von Kdrman) as special
consequences of the general equations of three-dimensional elasticity, conse-
quences that are arrived at by means of rather sophisticated techniques of
asymptotic analysis (*). One may well wish to have a mechanical rationale for the
various scaling choices made for data and solution, and their somewhat
miraculous effects. Grounds have been given here for asserting that, at least for
linear problems in the mechanics of structures derived from three-dimensional
linear elasticity, such a rationale is provided by the constraint method.
I believe that one may safely conclude that the scaling method offers an
analytical legitimation of the method of internal constraints, whereas the latter
lends mechanical significance to the former.

References
(1] F. BouRQUIN and P. G. CIARLET, Modeling and justification of eigenvalue
problems for junctions between elastic structures, J. Funct. Anal. 87 (1989),
392-427.

(*) The idea of scaling works also for rod problems and, with care, for modelling
Junctions between elastic bodies of different «dimensions», such as blocks, plates, rods
ete. [5] [1]. Conceivably, the method of internal constraints works as well in the same
circumstances (vid. e.g. {8] for an application of the constraint method to derive rod
equations).



[11]

(2]
[3]

[4]

(5]

(6]
(7]
[8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]
[16]

[17]

A.

p.

CONSTRAINT AND SCALING METHODS TO DERIVE SHELL THEORY.., 83

L. Caucuy, Sur Péquilibre et le mouvement d'une plaque solide, Exercices
de mathématique 3 (1828), 328-355.

G. CIARLET:[s]; A Justification of the von Kdrmdn equations, Arch. Rational
Mech. Anal. 73 (1980), 349-389; [o], Recent progresses in the two-dimensional
approximation of three-dimensional plate models in nonlinear elasticit; , Pp.
3-19 of Numerical approximation of partial differential equations, E. L.
Ortiz Ed., North-Holland, 1987.

- G. CIARLET and P. DESTUYNDER: [o]i A justification of the two-dimensional

linear plate model, J. Mécanique 18 (1979), 315-344; [o], A Justification of o
nonlinear model in plate theory, Comp. Methods Appl. Mech. Engrg. 17/18
(1979), 227-258,

. G. CIARLET, H. LE DRET and R. NZENGWA, Junctions between three-

dimensional and two-dimensional linearly elastic structures, J. Math. Pures
Appl. 68 (1989), 261-295.

. G. CIARLET and J. C. PaumiEr, 4 Justification of the Marguerre-von

Kdrmdn equations, Comp. Mech. 1 (1986), 177-202.

. G. CIARLET and P. PoD10-GUIDUGLY, On the equations of thin plates:

constraint versus scaling methods, Forthcoming, 1990.

- Davi, Su un modello monodimensionale di corpo elastico allungato, pp. 137-

140, Vol. I, of Atti IX Congr. AIMETA, 1989,

- P. Do Carmo, Differential geometry of curves and surfaces, Prentice-Hall,

1976.

. KIRCHHOFF, Uber dus Gleichgewicht und die Bewegung einer elastischen

Scheibe, J. reine angew. Math. 40 (1850), 51-88.

M. LEMBO, The membranal and flexural equations of thin elastic plates deduced

exactly from the three-dimensional theory, Meccanica 24 (1989), 93-97.

- LEMBO and P. Pop1o-GuIpuGLI: [e]; Plate theory as an exact consequence of

three-dimensional elasticity (submitted), 1989; [e]e Dinamica lLineare dei
gusct elastici sottili, AIMETA 90, Pisa, Oct. 2-5, 1990.

. M. NAGHDI, The theory of shells and plates, pp. 425-640 of Handbuch der

Physik VIa/g, Springer-Verlag, 1972,

. Popio-GuipueLr: [l An exact derivation of the thin plate equation, J.

Elasticity 22 (1989), 121-188; [o], The linear theory of elastic plates and shells,
(in preparation, 1988).

M. VIANELLO and Pop10-GUIDUGLI, The representation problem of con-
strained linear elasticity (in Preparation, 1988).

D. PoISsoN, Mémoire sur Véquilibre et le mouvement des corps élastiques,
Mém. Acad. Sci. Paris 8 (1829), 357-570.

. TRUESDELL and R. A. TOUPIN, The classical field theories, Handbuch der

Physik 11171, Springer-Verlag, 1960.

EE R






