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DIEGO ROCCATO and EPIFANIO VIRGA (%)

Drops of nematic liquid crystals floating on a liquid (*%)

A TRISTANO MANACORDA per il suo 70° compleanno

1 - Introduction

In Kléman’s book [4] there is a picture, apparently shot by P. Piéranski,
which shows drops of nematic liquid crystals floating on gelatine (cf. plate III of
p. XVI). We were fascinated by the shape of those drops. They appeared to us as
balls bearing a crater underneath the plane of buoyancy. It is the purpose of this
paper to explain such a shape.

The main outcomes of the work presented here have been shortly reported
without proof in a paper by Virga [10]. We refer to Section 5 of [10] for a detailed
mathematical setting of the problem and the class of shapes within which we look
for minimizers of the free energy.

The plan of the paper is as follows. In 1 we specify the bulk free energy and
the surface tension of the floating drops. For the former we adopt Frank’s
formula (see [2]). For the latter we adopt Rapini-Papoular’s formula (see [1] and
also [9]) expressed in terms of a dimensionless parameter w, which, for a given
substrate, is a function of the temperature. In 2 we lay assumptions that simplify
the variational problem and permit us to solve in 3 the equilibrium equations.
The stable shapes of the drops correspond to the solutions of the equilibrium
equations that minimize the free energy. In 4 we determine the stable shapes of
the drops for all values of  and we find a bifurcation with exchange of stability at
w=1. In 5 we explore some features of the stable shapes corresponding to very

(*) Indirizzo: Dipartimento di Matematica, Universita, I-27100 Pavia.
(**) Ricevuto: 1-1I-1990.
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large values of w. Although these shapes are unlikely to be observed, we have
paid attention to them to check the consistency of our analysis.

1 - Energy functional

Let @8 be the region of space occupied by a drop of nematic liquid crystal. The
orientation of the optical axis in the liquid erystal is described by the unit vector
n. According to the theory of Oseen [7] and Frank [2], the bulk free energy of the
drop is the functional

(1.1) Gl B, nl= [ a(n, Vn)

@
where the function ¢ is given by the classical formula (see [2])
(1.2) o(n, Vn) = ky(div n)? + ky(n - curl n)? + kgln A curl nf?

+ (kg + kg)(tr(Vn): — (div n)?).
In (2) the coefficients k., ks, ks and k, are material moduli depending on the
temperature (which is taken as constant throughout this paper).

When the drop that occupies &8 is in contact with an isotropic fluid, the free
energy of the interface between the two fluids is the functional

(1~3) g;ntedace[Jy nl= J"IxU(Il . V)

where J is the surface of contact and v is the outer unit normal to &3. It is
customary to call 4 the angle between n and v, often referred to as the tilt angle,
and to employ the following formula for w (see e.g. [9])

(1.4) w(cos &) = wy + W, cos® 3 + w; cos? A
where w,, w; and w, are material moduli depending on both the temperature and
the nature of the fluids in contact. For simplicity in this paper we set w, = 0 and

w; = wWy. Thus (4) reduces to

(1.5) wl(cos 8) = wy(l + w cos®H)
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with w,> 0 and > — 1. This is the well-known formula of Rapini and Papoular
that has been recently confirmed by some experiments (cf. e.g. [6] and [8]).

The drop we consider in this paper is in contact with two isotropic fluids:
namely, a liquid and a gas above it. We denote by J* and -, respectively, the
emerging boundary and the submerged boundary of the drop. The former is the
interface between the liquid crystal and the gas while the latter is the interface
between the liquid crystal and the liquid. Thus the total free energy of the drop
is given by

(1.6) F1AB, nl= Ful B, nl+ Tl B, 9] where
1.7 Frantacd B, 8= fwi(1l+ o™ cos?d) + [wy(l+ o™ cos?d).
N S

The moduli wg, »* and w;, »~ pertain, respectively, to the emerging and
submerged boundaries of the drop. When a pair (8, n) minimizes &, we briefly
say that 98 is a stable shape and that n is a stable orientation.

For the problem we are concerned with, liquid erystals can be taken as
incompressible fluids. Hence the volume of the drop is prescribed. A further
constraint comes from the law of buoyancy, which prescribes the volume of the
submerged part.

In the scheme described so far, the problem of finding both the stable shape
and the stable orientation is still too hard to solve. We put aside the purpose of
finding the stable orientation and we confine ourselves to seek the shape, once
the orientation has been somehow prescribed.

Furthermore, as pointed out in Sect. 3 of [10], for many liquid crystals the
surface free energy prevails over the bulk free energy. In fact, Fyee ~ WR? and
%ulkﬁlﬁR, where R is the linear dimension of the drop and w, k are,
respectively, the order of magnitude of the surface and bulk material moduli.
Hence

lq;urface

»>1 if R«
‘C/—’;mlk

B I??‘i

The latter inequality is often verified: for MBBA at room temperature, for
example, k/ib ~ 1078 em (cf. [3] and [5]). Thus from now on we neglect Fryy in the
total free energy.

In 2 we set up the preliminaries that enable us to find approximate stable
shapes of the drop.
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2 - Variational problem

For many nematic liquid crystals there is much evidence (cf. [4], p. 57) that
the homeotropic anchoring condition holds at the emerging boundary of the drop
whenever the gas is air: =0 on J'*. If the volume of the submerged part is
much smaller than the total volume, one expects the emerging boundary to be
spherical and the stable orientation to be the radial field n = e,, often referred to
as a hedgehog. We call ¢8, the ball whose boundary contains '* and whose
center is the singular point of n.

The problem of minimizing the total free energy of the drop reduces to: Fiind
the surface J~ that minimizes

@1 Finartacel S, I = Jwg (L + 0™ cos®)
subject to

2.2) vol($B) = B>0

(2.3) vol(E8™) =p~ B~ >0

where vol denotes the volume measure and 9B~ is the submerged part of B.

We now describe the special class of surfaces ™ in which we look for a
solution of this problem. We take J°~ to be symmetric about e,, the vertical axis
passing through the center of ¢8,. We assume that the intersection of J™~ and
any plane containing e, is represented by a function o(¢). The co-ordinates (o, ¢)
are illustrated in Figure 1, which represents a section of the drop.
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Now both go, the radius of 98, and ¢,, the angle where J~ and J™* touch
each other, are regarded as prescribed. They are to be used later to fulfill the
constaints (2) and (8). The function g(p) can easily be expressed in terms of the
tilt angle &

@.4) o(0) = g0 expl— f tg9(2)dz].

As shown in Fig. 1, we take the surface J°~ to be spherical for gp<¢<g¢,. In
other words, 4(p) is equal to 0 for < ¢ <g¢; and it is a function of class C* for
0< ¢ <g. Such a choice should not be restrictive whenever the surface moduli
wi and wy do not differ too much. Note that () need not be continuous: it may
suffer a jump at o = ;. So doing we allow J™~ to possess an edge, thoug we do
not account for any energy distribution along it. If ¢; =0 then 4=0 and the
corresponding surface J~ is part of a sphere. If ;>0 and d(p)>0, J~
represent a bump outside 9B,; if, on the contrary, 4(p) <0, J~ represents a
crater inside 98,.

We employ the change of variables

(2.5) )= [ tgaaz.
By (5), (4) can be rewritten as

. o€ ¥ for 0sop=xg
2.6) elg) =

fo for p;Se<g.

By use of (6), (1) becomes a functional of ¢ that depends on ¢,

o1 1 2
(27) ‘7[?71, ¢] = 2779% 'wo(f g2 1+tot (? (¢))

[1+ (' ()1

sinpde

+ (1 + w)(cos g, — €S ¢g))

where we have replaced wy and ™ by w, and w, respectively, to avoid clutter.

The admissible shapes of the drop are described by the pairs (1, ¢). An
equilibrium shape corresponds to a pair that makes & stationary. A stable shape
corresponds to a pair that minimizes &. Thus our variational problem is: Find
o1 €[0, 9ol and ¢ of class C*0, ¢,) that minimizes F subject to

@.8) $(e)=0.
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In 3 we go through the mathematical analysis that is needed to open the way to
the numerical solution of this problem.

3 - Equilibrium equations
If the pair (¢, ¢) represents an equilibrium shape of the drop, then Flo;, ¢]
is stationary with respect to the variations of both ¢, and ¢. By computing these

variations we are led to the equilibrium equations of &:

1+ o+ (' (pn)?

@D T+@eyr o0
o 1=+ (@' (@) .
3.2) 115013 (e%@ ﬁ% ¢'(p)sing) =0
— ' 2
- d (o Lm0t GQF

& TrEer * e

1+o+@'@)F .

4 2726 [1 " (¢/(¢))2]1/2 Sing = 0 in ]0, §91[ .

Equation (1), which results from the variation of ¢,, constrains the value of ¢'(¢,);
equation (2) is the natural boundary condition for ¢’ at ¢ =0. For ¢ of class C*
both ¢ and ¢’ are bounded near 0, and so equation (2) is always satisfied. By use
of the change of variables

3.4) r=1go t=tgd=¢

equations (1) and (3) become, respectively,

1+ w+t¥r)
(35) W——(l+w)=0
2 + @uw+ 1t + (1l — w +t?
3.6) t'=—1+t 27(1+ w+ Qw YED + (1l — w+ t2) in 10, =

1+ 72 W1l —w+ Cw+ 1)t

where 7, =tg e, and the function ¢:[0, -,]—R is of class C.
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Let h be the function defined by

_l4w+it?
3.7) Wty =" g~ o).

The graph of £ is plotted in Figure 2. When —1<w =<1, h vanishes only at 0.
When w>1, h vanishes at —£, 0, ¢ and it is minimum at —t, and %, being

(3.8) t=(u?— 1)1 ty=(w — 1)12.

Fig. 2.

Thus i(r;) is uniquely determined when —1<w<1, while it may take three
different values when > 1. The role played by ¢, will be clear in the following.

Now, for every o> — 1, we seek 7, =0 and a solution of (6) such that #(<,) be
prescribed according to (5). Of course, 7;=0 and #(r;) =0 represent a trivial
solution in the class we employ. The shape of the drop corresponding to such a
solution is the ball ¢3,.

If —1<w<—%, the half-plane S = {(z, t) eR¥}r=0} splits into several
regions in each of which the sign of ¢’ is constant, as Figure 3 illustrates for
w=—0.75.

Along the lines of Y7 defined by the equations =0, t= t, and t = — f, where

3.9) f=(2=Lyw
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t' becomes unbounded. It is easily seen that the graph of any solution of (6) can
touch the axis = = 0 only at the origin. A close inspection of Fig. 3 shows that no
solution of (6) passing through any point P, = (r;, 0) can be continued up to = =0,
unless 7, = 0. Thus the ball B, is the only equilibrium shape-of the drop in the
class we employ.

If —i<w=1, there is only one region of A where t' is positive and only one
where it is negative, as is shown in Figure 4 for « = —0.2. The analysis above

~
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Fig. 4.
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still applies, but a new case arises: the solution of (6) passing through a point P,
might approach ¢t = « as r— 0. That this case does not occur follows easily from
the approximate form of (6) when {=<

,_ 1 8
(3.10) = 2w+1 =
The solution of (10) is indeed

) — 2(.1) + 1 1/2
8.11) () (Wlogr+ c)

where ¢ is a constant, and so #(z) may approach o only when - approaches a
positive number. Once again all solutions of (6) passing through any P, cannot be
continued up to +=0, and B, is the only equilibrivm shape of the drop.

If w > 1, the analysis of (6) is more complex. Figure 5 illustrates the regions of
FL" where the sign of ¢’ is constant when w = 5. The solution of (6) can touch the
axis t=0 either at t=0 or at t=x1; (cf. (8)). The points P,, P, and P{
correspond to the three admissible values of i(r;). By repeating the same

@5

Fig. 5.
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arguments as above we show that no solution of (6) passing through either any P;
or any PY can be continued up to = = 0. It remains to consider the solutions of (6)
intersecting the line t = — {. Only one of these solutions can be continued up to
v=0, i.e. that reaching the point (0, —t,). Thus we integrate (6) numerically
starting from this point and call P, the intersection between the graph of such a
solution and the line t = — {. The first co-ordinate of P, , = tg ¢,, gives the only
value of =; that makes & stationary. The corresponding solution of (6) represents
an equilibrium shape B that bears a crater underneath the plane of buoyancy.
We checked the accuracy of the calculation by halving the integration step.
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Fig. 6.

TFigure 6 shows the graph of tg¢, as a function of w. We will prove in 5 that
the line tg ¢, = 1 is indeed an asymptote to the graph of Fig. 6. This will provide a
further, independent check of the computation.

We conclude that when — 1 <w =1 the only equilibrium shape of the drop is
the ball ¢8,, with ¢,>0 and ¢,>0 chosen so as to satisfy (2.2) and (2.8). When
> 1 there are two equilibrium shapes of the drop, namely 8, and 9. By (4).,
the latter can be represented through a function 8. It follows from (8), that &
satisfies

(3.12) 8(0) = — arctg(w — 1)*2.

It is understood that ¢, and g, are chosen so as to satisfy (2.2) and (2.3).
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B possesses a sharp edge; it can be regarded as a close approximation of the
smooth shape one expects when appropriate distributions of energy arise along
the edges.

4 - Stable shapes

We see from Fig. 6 that ¢, approaches 0 as » approaches 1. Thus ¢8, and B
represent, in a sense, the branches of a- bifurcation occurring at & = 1. To figure
out which of the two shapes is stable, we estimate the energy of both. We denote
by &, and F the energy of B, and %, respectively. Since ¢, is sufficiently small
for all values of w (cf. Fig. 6), to estimate & we may replace & by the function

80)  for 0<g<4
4.1) #(p) = .
0 otherwise.

This amounts to replace the crater of 9§ by another whose profile is an are of
logarithmic spiral. An easy computation shows that

4.2) Fo— F =2mhwn Vo #gw) — 1) + o

where the function ¢ is defined by

4.3) glw)y=2F1
2Vo
14
2.0
o i
1.5 I /
—
1.0
H 15 w

Fig. 7.



58 D. ROCCATO and E. VIRGA [12]

The graph of g is plotted in Figure 7. Since g(w) > 1 for all w > 1, we conclude that
F< F. Thus & is the stable shape of the drop when w> 1.

At first glance the crater of ¢4 looks like a cone. Figures 8 and 9 illustrate
such a shape for o =2 and w=10, respectively. The angle y' is the semi-
amplitude of the cone and the segment QP is its apothem.
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At a closer inspection, the crater of ¢8 differs slightly from a cone, as is
shown in Figure 10, where the scale unit of the vertical axis is sufficiently larger
than that of the horizontal axis.

It follows from (8.12) that the angle y” is such that y' + y" = arcsin 1/\,/0—).
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Fig. 10.

5 - Asymptotic stable shapes

In this section we study the solution of (3.6) that represents the stable shape
9% when o becomes very large. Our main purpose here is to check the
consistency of the analysis carried out in the previous sections. If w>> 1, equation
(3.6) may be replaced by

[ 1 42 l 3 _
(6.1) t —~—-—-—-——27(1+T2) (4=t +wt t)
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inthestrip+=20, —w<it<s— \/Z(cf. eq. (3.8)). By use of the change of variables

(5.2) s=1t
w
we give (1) the form

1

1 1
(5.3) ' T T nl+D)

2+ —Lg)
w

inthestripr=0, - 1ss<s— 1/\/3. An easy computation shows that (8) may also
be written as

_8(—s1)(s—sy)

i =
5-4) w 27(1+ )

where

(G.5) s, )= — 2+ @2+ %)VZ s, £)= — 20— (A2 + %)W-.

Let 8>0 and &,>48 be given. We denote by s, any negative and non-
increasing solution to (4) of class C! in [&, &1 It follows from (4) that

(5.6) Solw, 1) <8, (0)<0 for all &<r<é and o>1.
If s, is such that

(6.7 lim lma:xls,f,[ =0

w® o) (39 o)
then, by using (5.6) and taking the limit as w— o in (5.4), we arrive at
(5.8) 1”15{01 (8.(7) — 8o, ) =0 for all <7<4.

Since s, approaches the function s, = — 4¢ when w— «, we conclude from (5.8)
that

6.9 1}3} s (t)=—4z

uniformly in all closed intervals of the positive real line. In particular, if (5.7)
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holds,

. 1,_ 4.

lal’_-)n;l Sw( 4 ) - 1 ’

this proves that the line tg¢, =% is an asymptote to the graph of Fig. 6.

We have indeed found numerical solutions s, of (5.4) that satisfy (5.7) and
5,(0) = — 1/\/;)—. One can see from Figure 11 how these solutions get close to the
locus s’ =0 (whose equation is s = sy(w, 7)) when w-— .

n
i)

HE
"

é{l_.

solution

e LB

We finally note that, by (6.3), s,(0) = —2 whenever s,(0) = — 1/\/;, for all
w>1. Thus the hypothesis that §>0 cannot be removed from the above

analysis.

Conclusion

We predict an instability phenomenon for the shape of a drop of nematic
liquid crystal floating on an isotropic liquid. For suitable values of the anchoring
energy the stable shape bears a crater underneath the plane of buoyancy. This
might provide a further way to explore the dependence of the anchoring energy
on the temperature and the material. To our knowledge, however, experiments
to this end have not yet been carried out.
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Abstract

We predict the equilibrium shapes of a drop of nematic liquid erystal floating on a
liguid. Under plausible assumptions, we reduce the free energy to a functional that
depends on a dimensionless parameter w related to the temperature. We find that when
—1<w=1 the only equilibrium shape of the drop is a ball. When o> 1 there are two
equilibrium shapes, namely a ball and a ball bearing o crater underneath the plane of
bouyancy. The latter shape minimizes the free energy. The size of the crater depends on o,
and it vanishes when o = 1. Thus o bifurcation with exchange of stability occurs at this

point.






