GIOVANNI CIMATTI (*)

A nonlinear parabolic system (**)

A TRISTANO MANACORDA per il suo 70° compleanno

1 - Introduction

Let Ω be a bounded domain of \mathbb{R}^2 with a regular boundary S of class C^2 . In this paper we prove the existence of at least one weak solution in [0, T] for the following problem (Pb):

(1.1)
$$\nabla \cdot (\sigma(u) \nabla \varphi) + \Delta \varphi_t = 0 \quad \text{in } Q_T$$

$$\varphi = \varphi_0 \qquad \text{on } \Gamma_T$$

(1.3)
$$u_t - \Delta u = \sigma(u) |\nabla_{\varphi}|^2 + \nabla_{\varphi} \cdot \nabla_{\varphi_t}$$

$$(1.4) u = 0 on \Gamma_T$$

where Q_T is the cylinder $\Omega \times (0, T)$, S_T the lateral surface i.e. $S_T = \{(x, t); x \in S, t \in [0, T]\}$, and $\Gamma_T = S_T \cup \{(x, t); x \in \Omega, t = 0\}$. Moreover $\varphi_0(x, t) \in C^3(\bar{Q}_T)$ and $\sigma(u) \in C^1(\mathbb{R}^1)$ are given functions such that

(1.5)
$$\sigma_1 \ge \sigma(u) \ge \sigma_0 > 0$$
 for all $u \in \mathbb{R}^1$.

The interest of problem (Pb) lies in its nonstandard structure and in the quadratic growth in the gradient. For a related problem we refer to [2].

^(*) Indirizzo: Dipartimento di Matematica, Università, I-561000 Pisa.

^(**) Ricevuto: 3-V-1989.

The notations for the Sobolev spaces will be those of the book [4]. However we recall the main definitions.

 $W_2^{1,0}(Q_T)$, $W_2^{1,1}(Q_T)$ and $W_2^{2,1}(Q_T)$ are Hilbert spaces with the following scalar products and the corresponding generalized derivatives in $L^2(Q_T)$

$$\begin{split} &(u,\ v)_{W_{2}^{1,0}(Q_{T})} = \int\limits_{Q_{T}} (uv + \nabla u \cdot \nabla v) \, \mathrm{d}x \, \mathrm{d}t \qquad \quad \nabla u = (u_{x_{1}},\ u_{x_{2}}) \\ &(u,\ v)_{W_{2}^{1,1}(Q_{T})} = \int\limits_{Q_{T}} (uv + \nabla u \cdot \nabla v + u_{t} \, v_{t}) \, \mathrm{d}x \, \mathrm{d}t \\ &(u,\ v)_{W_{2}^{2,1}(Q_{T})} = \int\limits_{Q_{T}} (uv + \nabla u \cdot \nabla v + u_{t} \, v_{t} + \sum_{i,j=1}^{2} u_{x_{i}x_{j}} \, v_{x_{i}x_{j}}) \, \mathrm{d}x \, \mathrm{d}t \, . \end{split}$$

 $V_2(Q_T)$ is the Banach space consisting of all elements of $W_2^{1,0}(Q_T)$ having finite the norm

$$||v||_{V_2(Q_T)} = \sup_{(0,T)} ||v(t)||_{2,\Omega} + ||\nabla v||_{2,Q_T}.$$

W is the space of the elements of $L^2(Q_T)$ with the following generalized derivatives ∇v , v_t and ∇v_t in $L^2(Q_T)$. With the scalar product

$$(u, v)_W = \int\limits_{Q_T} (uv + u_t v_t + \nabla u \cdot \nabla v + \nabla u_t \cdot \nabla v_t) dx dt$$

W is an Hilbert space. Finally a dot over the spaces $W_2^{1,0}(Q_T)$, $W_2^{1,1}(Q_T)$, $V_2(Q_T)$ and W will denote the corresponding subspace of the functions vanishing on S_T .

A weak solution of (Pb) will be a couple (φ, u) such that:

$$(1.6) \varphi - \varphi_0 \in \dot{W}(Q_T) \varphi(x, 0) = \varphi_0(x, 0) x \in \Omega;$$

(1.7)
$$\varphi \in W \cap L^{\infty}(Q_T) \qquad \int_{Q_T} \nabla \varphi_t \cdot \nabla v dx \, dt + \int_{Q_T} \sigma(u) \, \nabla \varphi \cdot \nabla v dx \, dt = 0$$

for all $v \in \dot{W}_{2}^{1,1}(Q_{T});$

(1.8)
$$u \in \dot{V}_{2}(Q_{T}) \qquad -\int_{0}^{T} (u, w_{t}) dt + \int_{0}^{T} (\nabla u, \nabla w) dt$$
$$= -\int_{0}^{T} (\varphi \sigma(u) \nabla \varphi + \varphi \nabla \varphi_{t}, \nabla w) dt$$

for all $w \in \dot{W}_{2}^{1,1}(Q_{T})$ such that w(T, 0) = 0.

(u, v) denotes the scalar product in $L^2(\Omega)$. It is easy to verify by integration by parts that every regular solution of (Pb) is also a weak solution. Vivecersa every regular solution of (1.6), (1.7) and (1.8) is solution of (Pb). The existence of a weak solution will be proved in the next two sections using the Faedo-Galerkin method [3].

2 - Application of the Faedo-Galerkin method

Let $\Psi_k(x) \in C_0^{\infty}(\Omega)$, k = 1, 2, ..., be a basis of $\dot{W}_2^1(\Omega)$ orthonormal with respect to $L^2(\Omega)$. Let $g^n(t) \in C^3[0, T]$, j = 1, 2, ..., n such that

$$(2.1) g_i^n(0) = 0.$$

Define
$$u^n(x, t) = \sum_{j=1}^n g_j^n(t) \, \Psi_j(x)$$

and consider the problem

(2.2)
$$\varphi^n = \varphi_0 \quad \text{on } S_T \qquad \varphi^n(x, 0) = \varphi_0(x, 0) \quad x \in \Omega$$

(2.3)
$$\varphi^n \in W \qquad \int\limits_{Q_T} \nabla \varphi^n_t \cdot \nabla v dx \, dt + \int\limits_{Q_T} \sigma(u^n) \, \nabla \varphi^n \cdot \nabla v \, dx \, dt = 0$$

for all $v \in \dot{W}_{2}^{1,1}(Q_{T})$.

First of all we establish certain «a priori» estimates for the solutions of (2.2), (2.3). Put $v = \varphi^n - \varphi_0$ in (2.3), we have

$$\int\limits_{\Omega}\sigma(u^n)|\nabla\varphi^n|^2\,\mathrm{d}x + \frac{1}{2}\,\frac{\,\mathrm{d}}{\,\mathrm{d}t}\int\limits_{\Omega}|\nabla\varphi^n|^2\,\mathrm{d}x = \int\limits_{\Omega}\sigma(u^n)\,\nabla\varphi^n\cdot\nabla\varphi_0\,\mathrm{d}x + \int\limits_{\Omega}\nabla\varphi_t^n\cdot\nabla\varphi_0\,\mathrm{d}x\,.$$

Integrating between 0 and t we obtain

$$\int_{\Omega} \sigma(u^n) |\nabla \varphi^n|^2 dx dt + \frac{1}{2} \int_{\Omega} |\nabla \varphi^n(x, t)|^2 dx$$

$$= \frac{1}{2} \int\limits_{a} |\nabla \varphi^n(x, 0)|^2 \, \mathrm{d}x + \int\limits_{q_t} \sigma(u^n) \, \nabla \varphi^n \cdot \nabla \varphi_0 \, \mathrm{d}x \, \mathrm{d}t + \int\limits_{q_t} \nabla \varphi^n_t \cdot \nabla \varphi_0 \, \mathrm{d}x \, \mathrm{d}t \, .$$

Integrating by parts in the second integral on the right hand side and then using the Cauchy-Schwartz inequality we have

(2.4)
$$\sup_{(0,T)} \|\nabla \varphi^n(t)\|_{2,\Omega} \leq C_1$$

$$\|\varphi^n\|_{W_2^{1,0}(Q_T)} \le C_2$$

where the constants C_1 and C_2 do not depend on n. Choose $v = (\varphi^n - \varphi_0)_t \in \dot{W}_2^{1,1}(Q_T)$ in (2.3), we get

$$\int_{\Omega} |\nabla \varphi_t^n|^2 dx = \int_{\Omega} \nabla \varphi_t^n \cdot \nabla \varphi_{Ot} dx + \int_{\Omega} \sigma(u^n) \nabla \varphi^n \cdot \nabla \varphi_{0t} dx - \int_{\Omega} \sigma(u^n) \nabla \varphi^n \cdot \nabla \varphi_t^n dx.$$

Recalling (1.5) and (2.4) we obtain

$$\sup_{(0,T)} \lVert \nabla \varphi_t^n \rVert_{2,\Omega} \leq C_3$$

$$\|\nabla_t^n\|_{2,Q_T} \leq C_4.$$

Moreover by the Poincaré inequality, we have

$$\|\nabla \varphi_t^n\|_{2,Q_T} \leqslant C_5$$

where C_3 , C_4 and C_5 are constants not depending on n.

Lemma 2.1. If $g_j^n(t)$, j=1, 2, ..., n, are given functions, problem (2.2), (2.3) has one and only one solution $\varphi^n(x, t) \in C^3(\bar{Q}_T)$.

Dim. First of all we prove the uniqueness. Let $a(x, t) \in C^1(\bar{Q}_T)$ satisfy a(x, t) > 0 in \bar{Q}_T . Consider the problem

(2.9)
$$\psi \in \dot{W}(Q_T) \qquad \psi(x, 0) = 0 \qquad x \in \Omega$$

(2.10)
$$\int_{Q_T} \nabla \psi_t \cdot \nabla v dx dt + \int_{Q_T} a \nabla \psi \cdot \nabla v dx dt = 0 \quad \text{for all } v \in \dot{W}_{2}^{1,1}(Q_T).$$

Putting $v = \psi$ in (2.10) we find

$$\int_{a_{\tau}} a |\nabla \psi|^2 \, \mathrm{d}x \, \mathrm{d}t + \frac{1}{2} \int_{a} |\nabla \psi(x, T)|^2 \, \mathrm{d}x = 0.$$

This implies that problem (2.9), (2.10) has only one solution and also the uniqueness for problem (2.2), (2.3) if the functions $g_i^n(t)$ are given.

To prove the existence, let us consider the problem

(2.11)
$$\Delta \varphi_t + \sigma'(u) \nabla u \cdot \nabla \varphi + \sigma(u) \nabla \varphi = 0 \quad \text{in } Q_T$$

$$\varphi = \varphi_0 \qquad \text{on } \Gamma_T$$

in which we omit the index n.

Problem (2.11) and (2.12) can be restated in equivalent form with the following system:

$$(2.13) \Delta \varphi = v$$

(2.14)
$$v_t + \sigma(u) v = -\sigma'(u) \nabla u \cdot \nabla \varphi$$

$$\varphi = \varphi_0 \qquad \qquad \text{on } S_T$$

$$(2.16) v(x, 0) = \Delta \varphi_0(x, 0) x \in \Omega.$$

We integrate (2.14) as a first order equation in t. We find by (2.13) and (2.16)

(2.17)
$$\Delta \varphi(x, t) = A(x, t) [\Delta \varphi_0(x, t) + \sum_{i=1}^n \int_0^t B_i(x, \tau) \varphi_{x_i}(x, \tau) d\tau]$$

where

$$A(x, t) = \exp\left[\int_{0}^{t} \sigma(u(x, s)) \, \mathrm{d}s\right]$$

$$B_i(x, t) = -\sigma'(u(x, t)) u_{x_i}(x, t) \exp\left[\int_0^t \sigma(u(x, s)) ds\right].$$

We note that A(x, t), $B_i(x, t)$ are of class $C^3(\tilde{Q}_T)$ by the assumptions made on $g_j^n(t)$. We want to prove that the integrodifferential equation (2.17) with the boundary condition (2.15), has at least one solution. Let

$$\sum = \{v \in W_2^{1,0}(Q_t), v = \varphi_0 \text{ on } S_T, \|v\|_{W_2^{1,0}(Q_T)} \le C_2\}$$

where C_2 is the constant of (2.5). Define the operator $\varphi = T(w), \ T: \Sigma \to W_2^{1,0}(Q_T)$

via the linear problem

(2.18)
$$\Delta \varphi(x, t) = A(x, t) [\Delta \varphi_0(x, 0) + \int_0^t \sum_{i=1}^n B_i(x, \tau) w_{x_i}(x, \tau) d\tau]$$

$$(2.19) \varphi = \varphi_0 on S_T.$$

The right hand side of (2.17) belongs to $W_2^{1,1}(Q_T)$, therefore problem (2.18), (2.19) can be solved and we find $\varphi \in W_2^{2,1}(Q_T)$. Moreover by (2.5), we have $T(\Sigma) \subseteq \Sigma$. Since T is continuous and $T(\Sigma)$ is compact in $W_2^{2,1}(Q_T)$, we can apply the Schauder fixed point theorem.

Hence there exists a solution in $W_{\bar{Z}}^{2,1}(Q_T)$ of (2.15), (2.17). With the usual "bootstrap" argument we can regularize the solution and conclude that $\varphi(x, t) \in C^3(\bar{Q}_T)$.

Remark 2.1. From (2.15) and (2.17) we obtain $\varphi(x, t)$ and $\nabla \varphi(x, t)$ if the functions $g_j^n(t)$ are known. On the other hand we can get $\varphi_t(x, t)$ and also $\nabla \varphi_t(x, t)$ from (2.11) by solving the problem

(2.20)
$$\Delta \varphi_t = -\sigma'(u) \nabla u \cdot \nabla \varphi - \sigma(u) \Delta \varphi \quad \text{in } Q_T$$

$$\varphi_t = \varphi_{0t} \qquad \text{on } S_T.$$

Again only the $g_i^n(t)$'s are involved in the right hand side of (2.20).

We want to deduce now that the φ^n 's are a priori bounded in the maximum norm. We start by studying the following linear problem

(2.22)
$$\Delta \psi_t + \nabla \cdot (a(x, t) \nabla \psi) = \nabla \cdot F \quad \text{in } Q_T$$

Lemma 2.2. Let $F = (F_1, F_2) \in C^3(\bar{Q}_T)$ and $a(x, t) \in C^3(\bar{Q}_T)$. Suppose

$$(2.24) a_1 \geqslant a(x, t) \geqslant a_0 > 0.$$

Let $\psi(x, t) \in C^3(\bar{Q}_T)$ be a solution of (2.22) and (2.23). We claim that there exists $\hat{p} > 2$ such that for all $2 \le p \le \hat{p}$ the following estimate holds

The constant C depends only on a_0 , a_1 , p, and Q_T .

Proof. It is easy to verify that we may assume $a_1 = 1$ without loss of generality. Let us consider the following problem (Pb)_{λ}

(2.26)
$$\Delta \psi_t^{(\lambda)} + \nabla \cdot [(1 - \lambda) + \lambda a(x, t) \nabla \varphi^{(\lambda)}] = \nabla \cdot F \quad \text{in } Q_T$$

$$\psi^{(\lambda)} = 0 \qquad \text{on } \Gamma_T.$$

We denote by $C(\lambda, p)$ the best constant (which may by $+\infty$) for which (2.25) holds true for the solutions of $(Pb)_{\lambda}$, i.e.

(2.28)
$$C(\lambda, p) = \sup_{\|F\|_{p,Q_T} \neq 0} \frac{\|\nabla \psi^{(\lambda)}\|_{p,Q_T}}{\|F\|_{p,Q_T}}.$$

We find easily that $C(0, p) < +\infty$ for all $p \ge 2$ and

(2.29)
$$\lim_{p\to 2+} C(0, p) = C(0, 2) \le 1.$$

One can also verify by direct calculations, that $C(1, 2) < + \infty$. Let us consider in the (λ, p) -plane the values (λ, p) for which $C(\lambda, p) < + \infty$ and

If we derive with respect to λ equation (2.26), we find again a problem of the type $(Pb)_{\lambda}$ i.e.

(2.31)
$$\Delta \psi_{t\lambda} + \nabla \cdot [((1-\lambda) + \lambda a(x, t)) \nabla \psi_{\lambda}] = \nabla \cdot [(1-a(x, t)) \nabla \psi] \quad \text{in } Q_t$$

$$\psi_{\lambda} = 0 \qquad \qquad \text{on } \Gamma_{T}.$$

Therefore we have, with the same constant $C(\lambda, p)$ of (2.30),

Put $K=1-a_0<1$. Since $\frac{\mathrm{d}}{\mathrm{d}\lambda}\|\nabla\psi\|_{p,Q_T}\leq \|\nabla\psi_\lambda\|_{p,Q_T}$ we have, recalling (2.29) and (2.32),

$$(2.34) \qquad \frac{\mathrm{d}}{\mathrm{d}\lambda} \|\nabla \psi\|_{p,Q_T} \leq KC^2(\lambda, p) \|F\|_{p,Q_T}.$$

Integrating from λ_1 to λ_2 , with $0 \le \lambda_1 \le \lambda_2 \le 1$, we get by (2.28)

(2.35)
$$C(\lambda_2, p) \leq C(\lambda, p) + K \int_{\lambda_1}^{\lambda_2} C^2(\lambda, p) d\lambda.$$

Using a comparison theorem for ordinary differential equations we may obtain an estimate from above for $C(\lambda, p)$ with the solution of the Cauchy problem

(2.36)
$$\frac{\mathrm{d}z}{\mathrm{d}\lambda} = Kz^2 \qquad z(0) = C(0, 2 + \delta).$$

 $z(\lambda)$ is defined in $[0, 1/K \ C(0, 2+\delta))$. Since $C(0, 2) \le 1$ and K < 1 we can find $\hat{\delta} > 0$ so small that $1/K \ C(0, 2+\hat{\delta}) > 1$. Put $\hat{p} = 2 + \hat{\delta}$. Since $C(\lambda, \hat{p}) \le z(\lambda)$ it follows that $C(\lambda, \hat{p})$ is defined in [0, 1]. Therefore $C(1, \hat{p}) < +\infty$.

Corollary 2.1. Under the same assumptions of Lemma 2.2 we have

$$\max_{\phi_T} |\psi| \le C ||F||_{p, Q_T}$$

where C depends only on a_0 , a_1 , and Q_T .

Proof. Let $v(x, t) = \psi_t(x, t)$ and $f(x, t) = F - a(x, t) \nabla \psi$. For all $t \in [0, T]$ we have

$$\Delta v = \nabla \cdot f$$
 in Ω $v = 0$ on S .

By standard results [5] we get

$$||v(x, t)||_{p,\Omega} \le C||f||_{p,\Omega}$$
 $p > 2$.

Therefore

$$\|\psi_t\|_{p,Q_T} \leq C \|f\|_{p,Q_T}.$$

It follows by Lemma 2.2

$$\|\nabla \psi\|_{p,Q_T} + \|\psi_t\|_{p,Q_T} \le C\|F\|_{p,Q_T}.$$

By Sobolev's imbedding theorem [1] we have (2.37) since m = 2.

Putting $\psi = \varphi^n - \varphi_0$ we can apply Corollary 2.1 to problem (2.2), (2.3). Therefore we have

$$\|\varphi^n\|_{L^{\infty}(Q_T)} \leq C_7$$

where C_7 depends only on σ_0 , σ_1 , Q_T and φ_0 . Ley us consider the system

$$(2.40) (u_t^n, \Psi_k) + (\nabla u^n, \nabla \Psi_k) = -(\varphi^n \sigma(u^n) \nabla \varphi^n + \varphi^n \nabla \varphi_t^n, \nabla \Psi_k) k = 1, \dots, n$$

where $\nabla \varphi^n$ and $\nabla \varphi^n_t$ is known via the functions $g_i^n(t)$.

Since $(u_t^n, \Psi_k) = g_k^{n'}(t)$, system (2.40) with the initial conditions $g^n(0) = 0$ has locally one and only one solution. To prove that this solution is defined in [0, T] and to pass to the limit for $n \to 0$ we need other «a priori» estimate. Let us multiply the k-th equation of (2.40) by $g_t^n(t)$ and then sum all of the equations over k from 1 to n. From the resultant equality integrated with respect to t we obtain

$$\frac{1}{2}\|u(x,\ t)\|_{2,\mathcal{Q}}^2+\|\nabla u\|_{2,\,Q_t}^2\leqslant \sup_{Q_t}|\varphi^n|(\sigma_1\|\nabla\varphi^n\|_{2,\,Q_t}+\|\nabla\varphi_t^n\|_{2,\,Q_t})\cdot\|\nabla u^n\|_{2,\,Q_T}.$$

By (2.39), (2.7) and (2.5) we have

$$||u^n||_{V_0} \le C_8.$$

This in particular implies that the solutions of (2.40) are defined in [0, T] and

$$\|\nabla u^n\|_{2,Q_T} \leq C_9.$$

By (2.5), (2.7) we can extract from $\{\varphi^n\}$ a subsequence, still denoted $\{\varphi^n\}$, such that:

$$(2.43) \nabla \varphi^n \to \nabla \varphi \text{weakly} \text{in } L^2(Q_T)$$

$$(2.44) \varphi_t^n \to \varphi_t \text{weakly} \text{in } L^2(Q_T)$$

$$(2.45) \nabla \varphi_t^n \to \nabla \varphi_t \text{weakly} \text{in } L^2(Q_T)$$

$$(2.46) \varphi^n \to \varphi \text{strongly} \text{in } L^2(Q_T).$$

By (2.41) and (2.42) we can extract from $\{u^n\}$ a subsequence, still denoted $\{u^n\}$,

such that

(2.47)
$$u^n \rightarrow u$$
 weakly in $L^2(Q_T)$

(2.48)
$$\nabla u^n \to \nabla u$$
 weakly in $L^2(Q_T)$.

However from (2.41) and (2.42) does not follow immediately the strong convergence in $L^2(Q_T)$ of $\{u^n\}$ which is needed for letting $n \to \infty$ in (2.40). Therefore we shall use the following version of Rellich's theorem [1].

Lemma 2.3. Let $v^n(x, t) \in V_2(Q_T)$ and

$$||v^n||_{V_2(Q_T)} \le C.$$

Suppose

(2.50) $v^n(x, t) \rightarrow v(x, t)$ weakly in $L^2(\Omega)$ and uniformly with respect to $t \in [0, T]$.

Then it is possible to extract from $\{v^n\}$ a subsequence, still denoted $\{v^n\}$, such that

$$(2.51) v^n \rightarrow v strongly in L^2(Q_T).$$

We want to apply Lemma 2.3 to the sequence $\{u^n\}$. The a priori estimate (2.49) holds by (2.41). By (2.42) the functions $g^n(t)$ are uniformly bounded.

If we integrate (2.40) in [t, t+h] then use (2.39), (2.42), (2.5) and (2.7) we find

$$|g_j^n(t+h) - g_j^n(t)| \le C_k |h|.$$

Therefore for fixed j and $n \ge j$ the $g_j^n(t)$ are equicontinuous in [0, T]. By the usual diagonal process we can find a subsequence $g_j^{n_m}(t)$ converging to a continuous function $g_j(t)$ for every $j=1, 2, \ldots$. Let $v(x) \in L^2(\Omega)$ and $v_k(x)$ be a complete orthonormal system of $L^2(\Omega)$. We have $v(x) = \sum_{k=1}^{\infty} (v, v_k) v_k$ and

$$\begin{split} \left| \int\limits_{\Omega} \left[u^{n_m}(x, t) - u(x, t) \right] v(x) \, dx \right| &\leq \| u^n - u \|_{2\Omega} \left(\sum_{k=s+1}^{\infty} (v, v^k)^2 \right)^{1/2} \\ &+ \left| \sum_{k=1}^{s} (v, v_k) [g_k^{n_m}(t) - g_k(t)] \right|. \end{split}$$

Choosing s sufficiently large and recalling (2.41) the first term in the right hand side becomes less than a preassigned $\varepsilon > 0$. By the uniform convergence of the $g_k^{n_m}(t)$ the second summation can be made less than ε for all $t \in [0, T]$. This proves (2.50). Therefore by Lemma 2.3 we can extract from $\{u^n\}$ a subsequence, still denoted $\{u^n\}$, such that

$$(2.52) u^n \rightarrow \text{strongly} \text{in } L^2(Q_T)$$

(2.53)
$$\sigma(u^n) \to \sigma(u) \quad \text{strongly} \quad \text{in } L^p(Q_T) \quad 1 \leq p < \infty.$$

We let $n \rightarrow \infty$ in (2.2) and (2.3). By (2.43), (2.45) and (2.53) we have

$$(2.54) \hspace{1cm} \varphi = \varphi_0 \quad \text{on} \quad S_T \hspace{1cm} \varphi(x, \ 0) = \varphi_0(x, \ 0) \hspace{1cm} x \in \Omega$$

(2.55)
$$\varphi \in W \qquad \int\limits_{Q_T} \nabla \varphi_t \cdot \nabla w dx \, dt + \int\limits_{Q_T} \sigma(u) \, \nabla \varphi \cdot \nabla w dx \, dt = 0$$

for all $w \in \dot{W}_{2}^{1,1}(Q_{T})$.

We multiply each equation (2.40) by a regular function $d_j^n(t)$ which vanish for t = T. Summing up over all j from 1 to $l \le n$ and integrating the result with respect to t we get, after an integration by parts,

(2.56)
$$-\int_{0}^{T} (u^{n}, \ \Phi_{l}^{l}) dt + \int_{0}^{T} (\nabla u^{n}, \ \nabla \Phi^{l}) dt$$

$$= -\int_{0}^{T} (\varphi^{n} \sigma(u^{n}) \nabla \varphi^{n}, \ \nabla \Phi_{l}^{l}) dt - \int_{0}^{T} (\varphi^{n} \nabla \varphi_{l}^{n}, \ \nabla \Phi^{l}) dt$$

where $\Phi^{l}(x, t) = \sum_{j=1}^{l} d_{j}^{n}(t) \Psi_{j}(x)$.

We let $n \to \infty$ in the left hand side of (2.56) for l fixed using (2.47) and (2.48). Write

$$\int\limits_{Q_T} \left[\varphi^n \, \sigma(u^n) \, \nabla \varphi^n - \varphi \sigma(u) \, \nabla \varphi \right] \cdot \nabla \varPhi^l \, \mathrm{d}x \, \mathrm{d}t$$

$$= \int\limits_{Q_T} \left[\left(\varphi^n - \varphi \right) \sigma(u^n) \, \nabla \varphi^n + \left(\sigma(u^n) - \sigma(u) \right) \varphi \nabla \varphi^n + \varphi \sigma(u) (\nabla \varphi^n - \nabla \varphi) \right] \cdot \nabla \varPhi^l \, \mathrm{d}x \, \mathrm{d}t \, .$$

Using (2.46), (2.53) and (2.44) we get

$$\int\limits_{Q_T} \varphi^n \, \sigma(u^n) \, \nabla \varphi^n \cdot \nabla \Phi^l \, \mathrm{d}x \, \mathrm{d}t \longrightarrow \int\limits_{Q_t} \varphi \sigma(u) \, \nabla \varphi \cdot \nabla \Phi^l \, \mathrm{d}x \, \mathrm{d}t \, .$$

In a similar way we have

$$\int\limits_{Q_T} \varphi^n \, \nabla \varphi^n_t \cdot \nabla \varPhi^l \, \mathrm{d}x \, \mathrm{d}t \to \int\limits_{Q_T} \varphi \nabla \varphi_t \cdot \nabla \varPhi^l \, \mathrm{d}x \, \mathrm{d}t$$

by (2.43) and (2.46). Then we arrive at

$$(2.57) \qquad -\int\limits_{Q_T} u\varPhi^l\,\mathrm{d}x\,\mathrm{d}t + \int\limits_{Q_T} \nabla u \cdot \nabla \varPhi^l\,\mathrm{d}x\,\mathrm{d}t = -\int\limits_{Q_T} \left[\varphi\sigma(u)\,\nabla\varphi + \varphi\nabla\varphi_t\right] \cdot \nabla \varPhi^l\,\mathrm{d}x\,\mathrm{d}t\,.$$

The functions Φ^l are dense in the subspace of $\dot{W}_{2}^{1,1}(Q_T)$ of the functions which vanish on t=T. Therefore we obtain (1.8) from (2.57). This completes the proof of the existence of a weak solution for problem (Pb).

References

- [1] R. A. Adams, Sobolev spaces, Academic Press, 1970.
- [2] G. CIMATTI, Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor, to appear in Ann. Mat. Pura Appl.
- [3] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris, Dunod, 1969.
- [4] O. A. LADYZENSKAJA, V. A. SOLONNIKOV and N. N. URAL'CEVA, *Linear and quasilinear equations of parabolic type*, Translation of Mahematical Monographs, A.M.S., 1968.
- [5] N. G. MEYERS, An L^p-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa, (3), 7 (1963), 189-206.

Sommario

Si studia un sistema nonlineare di due equazioni di tipo parabolico. Viene dato un teorema di esistenza di soluzioni per il problema misto in un arbitrario intervallo di tempo.
