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GIOVANNI CIMATTI (¥)

A nonlinear parabolic system (*%)

A TRISTANO MANACORDA per il suo 70° compleanno

1 - Introduction

Let Q be a bounded domain of R? with a regular boundary S of class C2 In this
paper we prove the existence of at least one weak solution in [0, 7] for the
following problem (Phb):

(1.1) V-(o(w) Vo) + Ag, =0 in Qr
(1.2) =0 on Iy
1.3) = D= o(w)|Vol? + Vo - Vg,

1.4) u=0 on I'y

where Qr is the cylinder Q x (0, T), Sr the lateral surface i.e. Sy={(x, t);
xeS, tel0, T1}, and I'r= Sy u {(z, ©); xeQ, t=0}. Moreover gy, t) € C¥(Qr)
and o(u) € C'(R") are given functions such that

(1.5) a=a(u)=oy>0 for all weR.

The interest of problem (Pb) lies in its nonstandard structure and in the
quadratic growth in the gradient. For a related problem we refer to [2].

(*) Indirizzo: Dipartimento di Matematica, Universita, 1-561000 Pisa.
(**) Ricevuto: 3-V-1989.
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The notations for the Sobolev spaces will be those of the book [4]. However
we recall the main definitions.

WQ.), WhH(Qq) and W3Y(Q,) are Hilbert spaces with the following scalar
products and the corresponding generalized derivatives in LAQp)

(U, Vwiogp= [ v+ Vu - Vv)dedt Vo = (Uy,, Usy)
Qr
(W, Vwiiep= J v+ Vu-Vo+uv,)drdt
. Qr
2
(W, Vwiigp= J @+ V- Vo +u 0+ 3 Upy Vo) dedi.
er i1

Vo(Qr) is the Banach space consisting of all elements of W%Qy) having finite the
norm

[ollvaen = supe, pllv@ll, o + V0, ¢; -

W is the space of the elements of L*Qr) with the following generalized
derivatives Vv, v, and Vv, in L¥Qy). With the scalar product

(w, Vw= [ @v+wuv,+Vu Yo+ Vu,- Vo) drdt
Qr

W is an Hilbert space. Finally a dot over the spaces W3(Qq), W3'(Qp), Va(@r)
and W will denote the corresponding subspace of the functions vanishing on Sy.
A weak solution of (Pb) will be a couple (p, %) such that:
(1.6) o — o€ W(Qp) o, 0)= ogx, 0) reQ;
a.m oe Wn L*(Qp [ Ve, Vodedt + [ o) Vo Vodadt=0
Qr Qr

for all v e Wi Qyp);

1.8) we VoQr) — IT (u, w)dt+ fT (Vu, Vw)dt
= - f (po(u) Vo + oVg,, Vw)di

for all w e W'(Qr) such that w(T, 0)=0.
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(u, v) denotes the scalar product in L*(Q). It is easy to verify by integration
by parts that every regular solution of (Pb) is also a weak solution. Vivecersa
every regular solution of (1.6), (1.7) and (1.8) is solution of (Pb). The existence of

a weak solution will be proved in the next two sections using the Faedo-Galerkin
method [3].

2 - Application of the Faedo-Galerkin method

Let ¥i(@) e C5(Q), k=1, 2, ..., be a basis of W)Q) orthonormal with respect
to LAQ). Let ¢"(t)e C¥[0, T1, j=1, 2, ..., n such that

@.1) g/ 0)=0.
Define u'(x, t)= ég}-‘(t) ¥i(x)

and consider the problem
(2.2) "=g, on Sy ", 0)=gx, 0) xeQ

2.3 e W Vel -Vudzdt + [o(u”) Vo Vodadt=0
Qr Qr

for all ve Wi Q).
First of all we establish certain «a priori» estimates for the solutions of (2.2),
(2.3). Put v=¢"— ¢, in (2.3), we have

[ o)V 2 dee + 1d [Ve"Pde = [o(u) Vo - Voo da + [ Vi - Vaede.
3 Q

2 dt, P

Integrating between 0 and ¢ we obtain

[ o(u™)| Vo2 dee dt + —;: [ Ve, DFdx

@

= é— Ve, 0)Pdx + [o(u®) Ve"- Voodadt + [ Vop - Vo, dadt.
2 Q Q
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Integrating by parts in the second integral on the right hand side and then
using the Cauchy-Schwartz inequality we have

@.4) supg, pl|Ve" O)l,0 < C:
(2.5) lle"llwioen < Ce

where the constants C; and C, do not depend on 7.
Choose v = (" — gp); € WE(Qp) in (2.3), we get

[|Veptde = [ Vo} - Voo da + [ a(u™) Vo" - Vgo dw — [ o(u™) Vo™ - Vo de .
ol Q o Q

Recalling (1.5) and (2.4) we obtain
(2.6) supq, l|Veillk, 0 < Cs
@7 [Ville, o =< Cs-
Moreover by the Poincaré inequality, we have
2.8) Vet o, < Cs
where Cs, C4 and C; are constants not depending on 7.

Lemma 2.1. If g/®), j=1,2, .., n, are given functions, problem (2.2),
(2.3) has one and only one solution ¢*(x, t) € C¥Qy).

Dim. First of all we prove the uniqueness. Let a(x, ) eC Y(Qr) satisfy
alx, >0 in Q7. Consider the problem

2.9) e W@Qp d, 0)=0 zeQ

(2.10) [V, Vodzdt+ [aVy-Vodedi=0 for all ve WH(Qp).
Qr Qr
Putting v=¢ in (2.10) we find

falV<p|2dxdt+% [ Ve, TYPdz=0.
Qr Q
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This implies that problem (2.9), (2.10) has only one solution and also the
uniqueness for problem (2.2), (2.3) if the functions g}(¢) are given.
To prove the existence,let us consider the problem

2.11) Ao+ ")V - Vo+o(u)Vo=0 in Qp
(2.12) o =g on I'y
in which we omit the index n.

Problem (2.11) and (2.12) can be restated in equivalent form with the
following system:

(2.13) Ap =1

(2.14) v+ o)y = —q¢'(u)Vu - Vo

(2.15) o =g on Sp
(2.16) (e, 0) = Agy(x, 0) xe.

We integrate (2.14) as a first order equation in t. We find by (2.13) and (2.16)

@.17) Ao, £) = A, DlAeo, D+ [ B, ©)eulx, 9)ds]

=10

where Alx, t)= exp[fl a(ulz, s))ds]
Bz, §)=—d'(u(x, D) u.lz, 1) exp[fta(u(x, sy ds].

We note that A(x, t), Bix, t) are of class C3Qy) by the assumptions made on
97(®). We want to prove that the integrodifferential equation (2.17) with the
boundary condition (2.15), has at least one solution. Let

>={veWpQ), v=g, on Sr, “?)|[W,§-°<QT) <Cs}

where C, is the constant of (2.5). Define the operator ¢ = T(w), T:X— WiQp)
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via the linear problem

(2.18) Aoz, )= A, OlAs, 0)+ [ ﬁ‘,Bi(:c, Dw,(x, <) d]

(219) D= on ST'

The right hand side of (2.17) belongs to WiXQy), therefore problem (2.18),
(2.19) can be solved and we find ¢ e W34Qr). Moreover by (2.5), we have
T(X) ¢ X. Since T is continuous and 7(Z) is compact in W§X(Qy), we can apply the
Schauder fixed point theorem.

Hence there exists a solution in W Qp) of (2.15), (2.17). With the usual
«bootstrap» argument we can regularize the solution and conclude that
o(@, t) e C3Qy).

Remark 2.1. From (2.15) and (2.17) we obtain ¢(x, ) and Ve(x, t) if the
functions g}(¢) are known. On the other hand we can get ¢z, ?) and also Vg(z, 1)
from (2.11) by solving the problem

(2.20) Agy=— o' () V- Vo — o(u) Ao in Qp
(2.21) Pt ™ Dot on ST.

Again only the g}(¢)’s are involved in the right hand side of (2.20).
We want to deduce now that the ¢"'s are a priori bounded in the maximum
norm. We start by studying the following linear problem

(2.22) Ady+ V- (alx, VY =V-F in Qr
(2.23) =0 on I'y.

Lemma 2.2. Let F=(F,, Fy)eC¥Qp and a(x, t) e C¥Qp). Suppose
(2.24) azalx, H=a>0.

Let Yz, t)e CHQy) be a solution of (2.22) and (2.28). We claim that there exists
P >2 such that for all 2<p=<p the following estimate holds

(2.25) IVlp, 0r < ClIF 1o, 0y -

The constant C depends only on ay, a;, p, and Q.
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Proof. It is easy to verify that we may assume @, =1 without loss of
generality. Let us consider the following problem (Pb),

(2.26) AP+ V- [(1 = 2) +rax, H)VeP] =V - F in Qr

2.27 YR =0 on Iy

We denote by C(%, p) the best constant (which may by + ) for which (2.25)
holds true for the solutions of (Pb),, i.e.

940,
(2.28) CQ, p)=su ———
P)= ST T,

We find easily that C(0, p)<+ » for all p=2 and
(2.29) 113;} C, py=C, 2)<1.

One can also verify by direet calculations, that C(1, 2) <+ . Let us consider
in the (2, p)-plane the values (1, p) for which C(2, p)<+ o« and

(2.30) IVellp, 0, < CO, P, op-

If we derive with respect to A equation (2.26), we find again a problem of the type
(Pb), i.e.

(2.31) Ay +V-[((A =2 +2alx, HVL]I=V-[1—alx, VY] ng,
(2.32) g, =0 only.
Therefore we have, with the same constant C(2, p) of (2.30),

@33) (Ve <CO, PIA—0) Vo< CO, P)A — [Vl e,

Put K=1-qay<1. Since i||V7¢/|];,,QTS|IVn,/z,_[Ip,QT we have, recalling (2.29) and
©.32) a

239 L1900, < KC?0, PFlhar-
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Integrating from 2; to A,, with 0, <X, <1, we get by (2.28)
]
(2.35) Clg =CQ, p+K [ C2(, p)da.

Using a comparison theorem for ordinary differential equations we may
obtain an estimate from above for C(%, p) with the solution of the Cauchy
problem

(2.36) gf = K22 2(0)=C(0, 2+9).

2()) is defined in [0, /K C(0, 2+ &)). Since C(0, 2)<1 and K <1 we can find

$>0 so small that /K C(0, 2+ & >1. Put p=2+4. Since C(x, p)=<z(\) it
follows that C(a, p) is defined in [0, 1]. Therefore C(1, Pp) < + o,

Corollary 2.1. Under the same assumptions of Lemma 2.2 we have
2.37) maxly| < ClFll, o,

where C depends only on ay, a;, and Q.

Proof. Let v(zx, t)=¢t(x, 1) and f(x, t)=F —a(z, t)Vy. For all [0, T]
we have '

Avy=V-f in Q v=0 on S.
By standard results [5] we get

oG, Dll,0<Cllfls.a p>2.

Therefore

ligelp, o< Cll Tl e

It follows by Lemma 2.2

IVl a7 + 19l @ < CIF s, .-

By Sobolev’s imbedding theorem [1] we have (2.87) since m =2.
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Putting ¢ =¢"— ¢y we can apply Corollary 2.1 to problem (2.2), (2.3).
Therefore we have

lle"lz=gp < C

where C; depends only on s, o, @r and g,.
Ley us consider the system

(2.40) (ud, )+ (Vu, VI = — (" a(u™) Vo' + ¢" Vof, V) k=1,..,n
where V¢" and Vo} is known via the functions g}(?).

Since (u¥, ¥;) =g} (), system (2.40) with the initial conditions ¢®(0) =0 has
locally one and only one solution. To prove that this solution is defined in [0, T]
and to pass to the limit for n— 0 we need other «a priori» estimate. Let us

multiply the k-th equation of (2.40) by g¥(f) and then sum all of the equations over
k from 1 to n. From the resultant equality integrated with respect to ¢ we obtain

%llu(w, BlEa +[1V2ulf o < sup o™l (@il Vo"lle o, + [Votll 00 - V']l o -
By (2.39), (2.7) and (2.5) we have
(2.41) [y, < Cs.
This in particular implies that the solutions of (2.40) are defined in [0, T7] and
(2;42) [Vaelg, 0, < Cs.

By (2.5), (2.7) we can extract from {¢"} a subsequence, still denoted {¢"}, such
that:

(2.43) ‘ Vo' — Vo weakly in LAQp)
(2.44) oF— o weakly in LXQr)
(2.45) Voi— Vo, weakly in LAQyp
(2.46) "= strongly in LAQn).

By (2.41) and (2.42) we can extract from {u"} a subsequence, still denoted {u"},
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such that
(2.47) wU—su weakly in LAQy)
(2.48) V' —s Vu weakly in LAQ) .

However from (2.41) and (2.42) does not follow immediately the strong
convergence in LAQ) of {u"} which is needed for letting n— o in (2.40).
Therefore we shall use the following version of Rellich’s theorem [1].

Lemma 2.8. Let vz, t) e Vy(Qp) and
(2.49) olrien <
Suppose
2.50) vz, )—>v(x, t)weakly in LAQ) and uniformly with respect to t € [0, T1.

Then it 1is possible to extract from {v"} a subsequence, still denoted {v"}, such
that

(2.51) v strongly in LAQr).

We want to apply Lemma 2.3 to the sequence {u"}. The a priori estimate
(2.49) holds by (2.41). By (2.42) the functions ¢"(f) are uniformly bounded.

If we integrate (2.40) in [¢, ¢+ k] then use (2.39), (2.42), (2.5) and (2.7) we
find

g3t + 1) — gi &) < Cilh] .
Therefore for fixed j and n =j the gj(f) are equicontinuous in [0, T7]. By the usual

diagonal process we can find a subsequence gj~(f) converging to a continuous
function g;(t) for every j=1, 2, ... . Let v(x) e L*Q) and v (x) be a complete

orthonormal system of L*Q). We have v(x) = 5) (v, v v, and
k=1

| fumnz, B —ul, D106 dal <[ —ula (S @, 92

b=5+1

+ lz @, wlgt® — g O] .
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Choosing s sufficiently large and recalling (2.41) the first term in the right
hand side becomes less than 2 preassigned ¢ > 0. By the uniform convergence of
the gi~(f) the second summation can be made less than « for all ¢e[0, 7). This
proves (2.50). Therefore by Lemma 2.8 we can extract from {u"} a subsequence,
still denoted {u"}, such that
(2.52) u"— strongly in LA Qy)
(2.53) (U™~ o(u) strongly in I7(Qp) 1< p<co,
We let n— o in (2.2) and (2.3). By (2.43), (2.45) and (2.53) we have
(2.54) e=¢gy on Sp o@, O)=gyx, 0) 2e0

2.55) oeW [ Vi Vude dt + [ o(u) Ve - Vindas di = 0
Qr Qr

for all we W;_"(QT).

We multiply each equation (2.40) by a regular funetion dj(t) which vanish for
t=T. Summing up over all J from 1 to I<n and integrating the result with
respect to ¢ we get, after an integration by parts,

T T
(2.56) — [ (u*, #Hdt+ § (Vur, vob) de
0 0
T T
= — f (¢7z G(’LL") Vgon, ngg) dt — f (?n V??; V@l) di
0 0

4
where @'z, )= 3 dr(t) ¥(a).
i1 7
We let 7n— o in the left hand side of (2.56) for I fixed using (2.47) and (2.48).

Write
J 6" ) Vg = 00u) V4] - Ve das it
Qr

= Qf (" = 0) o(u™) Vo + (a(u”) — o(u)) oVe" + oa(u)(Ve" — Vo) - Vol de dt

Using (2.46), (2.58) and (2.44) we get

[ " o) V- Vo' de dt— [ oolu) Vo - Vol dasdt
Qr Q
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In a similar way we have
[ 0" Ve - Vol de dt— [ oV, V@' dadt
Qr Qr

by (2.43) and (2.46). Then we arrive at

@57 - [udldwdt+ [Vu VOdedt=— [[esu) Ve + Vel Vo dodt.
Qr Qr Qr

The functions @ are dense in the subspace of WyX(Qy) of the functions which
vanish on t = T. Therefore we obtain (1.8) from (2.57). This completes the proof
of the existence of a weak solution for problem (Pb).
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Sommario

Si studia un sistema nonlineare di due equazioni di tipo parabolico. Viene dato un
teorema di esistenza di soluzioni per il problema misto in un arbitrario intervallo di
tempo.



