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1 - Introduction

In the past few years many generalizations have appeared in literature
concerning the famous Contraction Theorem of Banach, relating to metric
spaces, especially for a single function. Among these a few (in our opinion among
the most interesting) generalize the classic hypothesis d(f(xy), f(@2) <ad(x,, )
(0<a<1) into a contractive type hypothesis in which:

(1) though maintaining as its second member the linear function structure of
typet—at: R - R O=sa<l, Rt= 0 + ), the number of distances within
this increases until d(x;, w,) is involved either with all four possible distances of
x; from f(x;) (¢, h=1, 2) (see for example {3] and [7]), or with all the infinite
distances of the type d(f*(xy), fFixy)) h, i=1, 2, 8, ...)(") (see for example
{512);

(2) its second member is changed into a non-linear function of the type
t—o(t): R*— R*, where ¢ is non decreasing, continuous on the right and such
that o(f) <t if {>0, involving the above mentioned distances in the argument
of o (see for example [4], [6], [9D. ‘

We have been generalizing various results for several years now, both consi-
dering as an ambient space a H-space a special case of which is the ordinary metric
space, and examining two functions rather than one (see for example [2], [8], [1]).

(*) Indirizzo degli AA.: Dipartimento di: Matematica, via Universita 12, 1-43100
Parma. '
(**) This study was carried out as part of the M.P.I. research funds.
() By f™ here we mean fofs...of n times with the convention f°(y) =y.
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The definition o‘f this space is as follows

E is a set and d:F X E— R* satisfies the following properties:
(a) d(x;, x)=0<>x, =2, for every 2, %, € E;

b) d(x,, x) =d(xs, x;) for every x,, %€ E;

(¢) there exist a subset A of N* containing an interval 0 a (a>0), a real
constant =1 and a function ¢: A— R* which is infinitesimal at zero, such that
for every w;, %, Xz€ F, d(x;, ©) € A=d(x,, x3)<old(x;, )]+ vd(xz, x3) (ge-
neralized triangular property, g.t.p.).

On such a H-space, which is a Hausdorff space, it is possible to introduce
topological and completeness notions thereby treating them in the same manner
as ordinary metric spaces. The mapping d however is uniformly continuous if and
only if == 1; and, in general, it is not even continuous. It is obvious that metric
spaces are particular H-spaces with A=R"*, v=1, and ¢ the identity function.

In these spaces we have considered the hypothesis of common generalized
contractivity (above all for two functions) where the left hand side of the
inequality is given the lowest number of the six distances d(f{x.), ful(xr))
(r=1, 2, s=38-7,2; h=1, rAs; k=1, r N3~ h)) compatible with the hi-
ghest number of the nine distances d(x;, x2), d(w;, fi{xw) (@, j, A=1, 2) in the
right hand side. Our study has at times been impeded and at times helped by the

placing of certain coefficients % ; indeed it will be shown in 5.8, that the number

and placing of these very coefficients may or may not contribute to the result
hoped for.

- Here in particular we consider the hypothesis of common generalized
contractivity of a non linear type with at the first member always and only the
two distances d(fi(xy), filxn), d(fi(xy), fa(x)) ® and at second member (in the
argument of o) the infinite distances

Ay, ), d(f¥ Yy, F{FTH ) i=1, 2, h=1, 2, 3, ...

finding fixed point theorems which have, among others, special cases in H-spaces
some of the most significant of which theorems have been already described in
previous works; and in the case of metric spaces for one function only, the
theorems quoted above.

(®) On the appropriateness of this choice see, for instance, [8].



3] ON COMMON CONTRACTIVITY OF NON-LINEAR TYPE 99
2 - Preliminary considerations and lemmas

Let fi, f2:E— E be two applications, ¢: R*— R* a non-decreasing function
for which we have o(f) <t if £ > 0 (%), and two sequences of points for £ : usx) = «,

u () = [L(f17@); f(fT7 ) (r=1, 2, 8, ...); i.e.
D) uw) ==z Un() = f1(Uy—1()) flu,(x)) =1, 2, 3, ...).

For two given points (nof necessarily distinet) x,, x, € E, let us consider the
following l.u.b.’s (assuming them to be finite)

@) &y, ) =sup{d@;, f(fTHx))): j=1, 2 i=1, 2, 3, ...}

@) @y, %) =sup{d(file), LU/T@N): j=1, 2 h, i=1, 2, 3, ...}

and let

@) o, @)=ay, @V n@, @ .
=sup{d(fi (=), f(fT @) =1, 2; b, i=1, 2, 3, ...};

let &x;, o), y(x1, %), ol;, %2) be given respectively by

(B)r Ay, x)=dlwy, x)V(wy, X2V (X2, X2)V Sis, x1) V iy, 1)

Bl y(wy, 22 = yi(@y, X))V yi(®e, o)V 7z, )V i1, %)

(®)3 . w1, o) =3(x;, o)V y(X1, 22)

or by
OGN &y, x)=d®;, ®)V&( 2, %) V%é‘l(wz, w) V &i(aa, 1) V &i(xy, 2,)
)z (), @)= fl(xl; YAY % 71(%2, @)V y1(e, %)V r@y, 1)

(B3 ey, @) =8, 22V y(®y, %)

(® It is obvious that «(0)=0.
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BN awhw»=dmhxavawhxQV%m@%xav&wmxav%&@hwo

Gl @, 1)=1, 2V Ev@e @)V o) Vin@, o)
T T

B)s oy, ) =38y, 2)V y(@y, )

or by

G &y, x) =d(@;, )V lé\l(wu x) V lé\l(xb xg) V lé‘l(wz, %) V &2, 1)
T T T

B  ylxy, x)= %7’1(901, x) V :1:'7’1(%2, %) V%‘Yl(xz, xD) V i@y, ©p)

B play, xg) = &y, %2) V y(%y, ).

Let us now consider the following two hypotheses for common generalized

contractivity

®

)

and observe that

d(fi(®), f2e)) < alp(y, 2))
d(filey), filx) < ole(iz, ©1))
d(fil@y), filxe) <o(é@y, x2))

d(fi(xy), f:(22)) < o((as, 1)

r=1,
r=1,
r=1,
r=1,

L1,

L1,

1,

wly

vl

el

v el

el

(1) &, v, p of (5) and (5)" are symmetric for x, and «,. Therefore with these o
and ¢, (6) and (7) are reduced, both, to only one condition; ¢, v, p of (5)" and (5)"”
are not symmetric in @, and ..

() 4, v, p given by ¢5) are greater than or equal to those given by (5)’, which
in turn are greater than or equal to those given by (5)" and (5)”. Therefore (6)
and (7) with ¢ and ¢ given by (5)" or (5)” obviously yield (6) and (7) with ¢ and ¢
given by (5)’, which in turn yield (6) and (7) with o and ¢ given by (5).
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The following lemma hold.

Lemma 1. If (8) [(D] holds and p and & are of the form (5), or (5)', or (5)",
then with these respective forms we have p(x;, xz) =), %) and (6) coincides
with (7). ’

Lemma 2. If p has the form (5)" and the first in (6) holds, then

yi(21, @) < ol7p(®1, @)
® ‘
y1(y, 1) < ole(®y, 22) 71(%, %) < o(vply, 7).
Proof of Lemma 1. Suppose (6) is true. Taking o and ¢ in the three

forms (5), or (5)', or (5)", the following is true &z;, xp) <p(x;, %2). To prove the’
reciprocal inequality note that

) Uy k-2(T1), Umr5—2(202)) T 0(Un—2(X1), Um—2(22))

k=0,1,2, ... s=1,2,8,... m n=2 8,4, ... @, x€E
ue(x), u,(x) being the first of (1) (it is sufficient to compare the expressions of the
two sides). Then let us identify three cases corresponding to the three forms

called p and ¢, considering first the two cases of symmetry.

I - The case of p and ¢ (symmetric) given by (5). By (6)(*), and (9),
and the non decreasing of s, we have that

(10) ‘ p(Un-1(2y), Ui-1(22))
< o(o(Un-2(®1), Ui-o(®2))) V o(o(Ui-2(@2), Us-2(2))) V olo(ti-o(X2), Un-2(21)))
V o(o(up-2(21), Un-2(x1))) Rk, i=2, 3, 4, ...
which, by the symmetry of o the fact of being el o(t),

Ui—2(22)) < p(Up-o(1), Ui—2(%2)) and p(us—o(2), Up—2(%1)) < p(Up—_2(21), u;—2(%2)) and

(*) Which here, as we have already said, is reduced to a single hypothesis.
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also because ¢ is non decreasing, becomes
an pUp-1(21), Ui—1(22)) < o(o(Up—o(1), Ui—2(2))) h, 1=2, 3, 4, ...
from which also |
(12) p(Up-1(21), Ui—1(@2)) < p(Up-2(0y), U;—o(02)) h,1=2, 3, 4, ...
From which in turn follows that
p(Up-1(®1), Usr(%2)) < p(Un(®1), Ui-1(2)) if 2<hs<t
(), wim1(22)) < (1), uo(2)) if 2si<h
and clearly
13)  plup-1(y), Ui-2(@2)) < o(Uov-o(®1);, Uovi-r(Z2)) with &, i=1.
But since o(uoyp—o(®1), Uovi-n(@2) < p(®;, %) we obtain
o(tn1(®1), Ui—y(2)) < p(1, @) h, i=1.
| Therefore by the first of (1) and (6)
max{d(un®), flui(@))): =1, 2}
< o(p(Up-1(21), Ui—1(22))) < ooy, %) R, i=1
and from (3)
(14) y1{®1, 2) < olo(@y, %2)).
If we now consider p(x,, ) With its expression (5), i.e.
o1, X2) =8(X1, T2V i@y, T2V y1(®e, o) V vz, 1)V viley, 20
for (14) (taking into account that p@, x) =pi(, ) and p(x, y) =pe(y, x)) we have

(15) ey, 22) <@y, x2) V olo(®y, X))V olor(xs, X2)) V olpi(:, 1))
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-from which, since p,(, ¥)<p(x, ¥), because ¢ is non decreasing,
(16) p(X1, X3) <8y, @) V olp(Xy, X));

since this cannot be p(x;, X)) < o(p(xy, ’wz)) ®), (16) gives us p(x;, X) <Xy, %)

II. Case of p and & (symmetric) given by (5)". Using the same
reasoning as in the previous case (%), first (12) is obtained, but with

(10)" p(p1(®1), Uimr(%2))

=< o(p(Up-2(21), Us-a(®2)) V 1 o(o(Ui—2(2), Ui—o(X))) V& (e(i—a(22), Un-2(21)))

T

v %_'U(P(’“h—z(%), Up-2(21))) h, 1=2, 3, 4, ...
and
any p(Up-1(21), Usy(22)
< alp(up-2(21), Ui-2(22))) V%G(TP(uh—Z(xl); U;i—o(%2))) h, 1=2, 3, 4, ...

instead of (10) and (11) (being here simply p(uiﬁz(acz), Uz0(22)) < Tp(Up o)),
Us-2(2)) and p(ey—o(21), Up-2(1)) < Tp(Up,-o(1), ;-2(22))). Then (14) is obtained and,
bearing in mind expression (5)” of p(x;, %), we arrive at

A5 plan, ) <8, 8V ooy, @)V Loloslatn, )V Toler(@s, )
from which, since p(x; ) <7p(z, ¥), and o is non decreasing,
@16y o(@y, %) <&@y, 02) V alo(X:, x2)) V%‘G(Tp(ﬂfh, %))

and then again p(x,, o) <&x;, o).

(®) Unless it is p(;, x2)=0.
(®) Here too (6) is reduced to a single hypothesis.
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III. Case of o and ¢ (non-symmetric) given by (5)'. Using a
reasoning that is practically identical to the above ("), we obtain first

10y . p(Up-1(1), %i1(2))

< o(p(Un-2(201), Ui-2(22))) V %G (o(ui—a(e), Ui—o(2))) V o(o(p—a(21), Up—o(2)))
h, i=2, 8, 4, ...;

then (11)", (12) and (13) (in this case of course with o given by (5)). But since
o(Uova-(T0), Uovi-n()) Sp(®y, o) and p(Uovi-n(®);, Uova-o(@) Sp(ee, ©) (A,
1=1, 2, 3, ...), we obtain
p(Un-1(21), Ui—1(@)) S o1, T2) and
o1 (2), Up—1(21)) < p(@2, 1) h, =1, 2, 3, ...;
therefore, from the first of (1), from (6)(®) and ¢ non decreasing,
max{d(uyey), filui_(@))): r=1, 2}
< o(p(p-1(21), Ui—1(@)) A o(o(i-1(@2), Un-1(1)))
< olp(®;, ) N ole(e, 1)) k, i?yl;
whence, from (3), we obtain immediately
14 11{&1, o) S olo(®r, X)) N olple, 21).

Bearing in mind the expression of o(x;, ;) given by (5)' we obtain

15y p(@, ) < awy, ®2) V alo(ay, wz))V%c(pl(mz, )V oley(@, 1)

(") Bearing in mind that here ¢ is not symmetric and therefore (6) is not reduced to a
single hypothesis.
(® See note ().
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from which, since pi{x, x) <p(x, ¥) A 7p(y, %), and o is non decreasing, we have
(16)" again, and therefore also p(x;, ®) <&, Xo).

Thus the equality (%, x) = &x;, ) with p and ¢ in the forms (5) or (5)' or
(5)" is obtained; therefore, since (6) holds, (7) becomes identical to it.

Suppose now (7) holds. Since ¢ is non decreasing and 8(x;, %) <p(%;, ), (6)
is also true and therefore p(x;, %) =4&(x;, %) holds; therefore since (7) is true (6)
becomes identical to it. ‘

Lemma 1 is thus proved ().

Proof of Lemma 2. Taking p in its (5)" form and considering again the
first of sequences (1) of points of E, if we suppose for sake of brevity

aty, @) = %31@1, ) V %31(902; x2) V %31(5172, @) V éi(wy, @)

we obtain immediately
p(Up-1(®1), Us-1(22))

= d(tp-1(%1), Ui—a(22)) V g(uh—l(xl)’ Uiy (@2)) V y(Wp-1(21), %i-1(22))

' h,i=2, 8, 4, ..., X, B€L;
but from the first of (6) and from a simple comparison we obtain, respectively,
Aup-1(x1), Ui—1(22)) < olo(Up-2(1), ui—o(x2)) and 5(’%—1(901), Ui—1(2)) V y(Up—1(21),
Ui—1(%2)) < Mtp—o(®1), Uimo(®2)) V y(Up-o(2D), Ui-p(X2)) = o(Up-2(21), Ui—o(25)), Whence

1oy~ p(Un-1(21), Ui1(2))

< o(p(Un-2(®1), Uima(2))) V p(Un—o(1), Ui—o(%2)) k, i=2, 3, 4, ....

Therefore (12) as in Lemma 1 [with p given by (5)" of course]. If we procede as in
the above lemma we obtain again (13) and, from this, other three inequalities
(with &, 1=1)

e(Up—1(1), Uii1(%2)) < 7p(21, 22)

() From this Lemma for f, = f; and within the metric spaces we can obtain (6) of [5];.
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eUp-r(1), Ui—1(2)) Sy, ) <oy, @)
o(Un—1(22), Uiy(X2)) < (X, X2) < (1, X2)

which, from the first of (1) and the first of (6) and thereafter from (3), lead to (8).

3 - A converging lemma

Suppose now the space E is complete and the function o is also continuous
from the right: the following holds

Lemma 3. Suppose (6) holds with p in any of its four forms; in this case
however x is taken in E the sequences (1) converge to a single point of E.

Proof. Limiting ourselves to the case of o given by (5) (see 1st and 2nd part
of 2) () and repeating in part the considerations made at the beginning of proof
of Lemma 1, we obtain (11). From (11) written for h—1=1—1=% we find
immediately that if the sequence p(%,(x;), u.(22)) (=0, 1, 2, ...) has all its terms
different from zero, then it is decreasing; therefore from the continuity from the
right of ¢ we have

an 0 Jim p(un(@), ua(22)=0
which, given y = x; = x,, produces, in particular (*Y)
JAm d(uu(y), un(y)=0.

Therefore, from the hypothesis of completeness, we have l,e€E such that
Jlim w,(y) = .

® In the case of noﬁ symmetric p produced by (5)’ or (5)" it is sufficient to consider
either the first or the second of (6) to be true.

(*) Remember that o(u.(®), %)) =sup{d(fi @, (@), [ ual)): =1, 2; k,
121},
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Fix x in E with x #y. For the g.t.p. of (¢) (**, the first of (1) and (6) we obtain
dllo, frua(@)) < gld(ly, Unir@N1+ 2d(Filtn()), Frlual)))
< pld(lo, Uns1(YN] + 7o(ua(y), () r=1, 2;

thence the sequences f{u,(x)) (r=1, 2, n=0, 1, 2, ...) converge to the same
loe E whatever x happens to be: which is what we wanted to prove ().

Remark. If (7) were true with & in any of its four forms, then
(18) Jim o(un (1), un(w2)) =0

would also be true; and clearly the sequences (1) converge to the same point of E.

4 - Theorems of common fixed point

Since E is still complete, the Lu.b.’s (2) and (3) are finite and ¢ is also
continuous from the right, we obtain the following theorems.

Theorem 1. Suppose (6) holds with ¢ in the form (5)'. Then the mappings
f1 and f» have a single common fixed point, which is also the only fixed point

of fi.

Proof. For Lemma 1 we can refer indifferently to (6) or (7) and consider p
or ¢é. Since I, is the common limit of the sequences (1) (see Lemma 3), and
(see (5)")

19) Sunly), lo) = d(uu(lo), lo) V 8i(ully), L)V %31@0, ly)
\ 81_“07 un(lo)) \Y 31(un(lo), un(lo)) n= 0, 1, 2, .

(*) Bear in mind that from a certain % onwards this is d(l,, U@ <a, i.e.
d(ly, Uni(y)) €A, @ and A given in (c) of 1.

(*) Note that if for a certain index ie R U {0}, o(ui®y), ulx,)) =0 was true, then
p(u2;), uy(x2)) from the i-th onwards would be zero: therefore (17) would be obvious.
Furthermore if it was already p(uo(x;), %o(22) =0 we would also have the two sequences
(1) constant (with all terms equal to &, =x,): thus the lemma would be trivial.
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we show that
(20) lim oI, 1) =0.

To this end we observe that:

(1) we have, for (2), (3) and (14)' (*), &i(%.(lo), L) < v1(Uner(lo), o) < olo(@nr(ly),
o)) A a(e(lo, %n1(l)) < 0(o(tn-1(l0), 1)) = o(8tn-1(l), 10); '

(2) from a certain index » onwards we have for the g.t.p. of (¢) and for (1)
above L5, <L sup(pldls, 1,10+ rd,lo), ) G=1, 2 i=1, 2,

8, oo} =2 oldlls, 0] + &), 1)< S oldls, w(lo] + o(atn10o), 1)

(3) clearly we have &(u.(lo), %a(lo)) < un(lo), U.(lo));

(4) we have for (2), from a certain index n onwards, for the g.t.p. of (¢) and for
(3) above &y(ly, un(lo)) < pld(lo, Un(ID] + 7 sUP{AW,(lo), fiUnsia(l))): j =1, 2;i=1,
2, 8, ...} =old(ly, Unlo))]+ 61 ®nl0), un(le)) < old(lo, Unllo))] + 78 (un(lo), Un(lo))-
Therefore from (19) we have

nl_i,IP: Nunlo), lo)

< lim" {0, 1)V [ 2ol 1,000] + 0100, )]

V IoldCe, nllo))] + 70(tnlle), %alle))])

from which (see also (18)) since o+ is continuous from the right,
_ n1_1;r+n: Su,(lo), lo)sc:(nl_l;rp: Su,lp), ). This  implies nlirpi’ M ly), =0,

ie. (20).
But from the expression (2) and (19) of &; and ¢ we find immediately that

d(ZOy f;'(ZO)) = a1(l0: ZO) = Té\(un(lO)y l()) r= 1’ 2

therefore for (20) [, is a fixed point both of f; and fs.
If fi and f; had two distinet common fixed points I, and z both

dll, 2) = d(fi(lo), f(2)) <o(&(le, 2)) r=1, 2

) Place x; =u,_(ly), =1 in (14)'.
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and (see (5)' and (2) knowing that also [, =fi"(ly), 2=11"(z), ie N is true)

o, 2)=d(lo, 2)

would be true; from which d(l,, 2) <s(d(ly, 2)), which is not possible. Therefore
the common fixed point is unique. This point is also the only fixed point of f;; in
fact if y were another fixed point of f; we would have (from (7))

d(y, foly)) = d(fi(y), f(y) <oy, ).

But &y, y)=sup{d(y, (/i@ j=1, 2; i=1, 2, 3, ..} =max{d(y, f(y):
r=1, 2} = d(y, fx(y)) and therefore we would have d(y, fo(¥)) <o(d(y, fol¥)), i.e.
y = fo(y) which is not possible.

The theorem is thus proved.

Theorem 2. Suppose (6) holds with o in the form (5)'. Then the mappings
fi and f> have a single common fixed point, which is also the only fixed point

of fi.

Theorem 3. Suppose (6) holds with p in the form (5)". Then the mappings
fi and f; have a single common fixed point, which is also the only fived point

of fr.

Both theorems follow from Theorem 1, bearing in mind (2) of 2.

Theorem 4. Suppose the first of (6) kolds with p in the form (5)". Then the
mappings f, and f, have a single common fixed point, which is also the only fixed

point of fi.

Proof. Since [, is still the common limit of sequences (1) (see Lerr;ma 3),
and (see (6)") (*)

@D e, W)=dl), WV, ©VIra, Ve, b

VL 1le, WV L8, 00 VI rila, 000DV 8000, ) V riatnle), (1)
' n=0, 1, 2, ...

(%) Since Lemma 1 is not true with p and & in the form (5)” we cannot procede at first
as we did in Theorem 1 where ¢ or & were used indifferently and either (6) or (7) taken.



110 C. SCARAVELLI and P. AZZIMONDI [14]

we show that
(22) ' ﬂl_i}glm p(ua(le), l)=0.

To this end we observe that
@D by @) and (3) and by the first of (8) of Lemma 2(), we obtaln both
jlr‘é\l(un(lo); lo)< Tl(un-— (o), lO)s?G(TP(un—l(lo); l)) and . Yl(un(lo), lo)

S%c@p(unao), lo»,

(2) from a certain index » onwards, by (2), from the g.t.p. of (¢) and from the
first of (6) we have %81(&), lo)s% sup{e(d(y, U (o)) + wdw, (o), fi(fi)):
7i=1,2,1i=1,2,3, ...} S%—cp(d(lo, U(lp))) + sup{o(e(t,_1(lp), u:-1lp))): =1, 2, 3,
.}, le. (since p(ey—3(lo), %i1(l0)) < p(ty-1(ly), lp) V sup{d(u,_,(ly), us1l)): s=1,
2, 8, ...}), and ¢ is non decreaéing, %é‘l(lo, lo)<%¢[d(lo, Un(loD)] + ooty (L),
lo) V sup{d(u,—1(lp), us—(lp)): s=1, 2, 3, ...});

(3 by the third of (8) in Lemma 2 we have immediately %}q(lo, ly)

<L o(apul), W)

(4) clearly, from (5)", &u.(ly), () <p(u,(lp), u, (1)) and vy, (u.(ly),
Un(l0)) < p(alo), Un(lo));

(5) by (2), from a certain index n onwards, from the g.t.p. of (c) and from the
first inequality of (4) above, we have %_—o‘l(lo, un(lo))S%_-g)[d(lo, U (L)1
+supldan(e), fUT@WN: =1, 2 i=1, 2, 8, .}=Teldl, w(W)]
+ i(ulo), un(lo))<-1-s9(d(lo, Un(l0))) + eo(Ualo), Uallo));

6) by (3) of 2 and by (3) above we have —yl(lo, (L)) <= yl(lo, ly)
<2 olzplanl), ).

(%) Where we suppose ;= u,_;(ly), %=1l
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Therefore from (21)

Bm” ouale), lo) < im” [du(lo), 1) v%a@p(un-l(zo)} o)
v éc&p(un(zo), )V (—};qa(d(zo, (1)) + 56 (1t 1(lo), 1o)
V sup{d@ui(l), () s=1, 2, 3, ...})

v ép(d(zo, %a(lo))) + (o), Unllo)) V palle), 1a(lo))]

whence, since ¢ is continuous from the right and ¢ is infinitesimal at zero, and the
sequence u,{lp) (n=0, 1, 2, ...) is a Cauchy-sequence,

1 o(ualle), b <L o(r lm” o(aua(le), 1)V o lim punlo), 1)
which implies nl_i,IP: olu(lp), ly) =0, i.e. (22).
But from the expressions (2) and (21) of & and p it is clear that
d(ly, £ <&y, o)< mp(unl), L) r=1, 2.

Therefore by (22) [, is the fixed point both of f; and fo. Proceeding then exactly
as in Theorem 1() we conclude the proof of Theorem 4.

5 - Remarks and other theorems

5.1 - As we know (see (2), 2), the first of (6) with p in the form (5)" yields the
first of (6) with p in the form (5)'; however Theorem 4 can not be deduced from
Theorem 1 where both the first and second of (6) are requested.

5.2 - Note that Theorem 3 also results directly from Theorem 4.

(*) Bearing in mind of course that o should be kept (in the form (5)"), since it is not
possible to substitute it by ¢ (see also note ().
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5.3 - The four theorems above are true even if o is substituted by ¢ in the
respective common generalized contractivity hypotheses: in the first two
theorems, because of Lemma 1; in the other two because of the trivial inequality
&wy, %) <2, ) and the non decreasing of o. In other words these four
theorems can be reformulated aceording to the hypotheses of common generali-
zed contractivity (7)(*®).

5.4. Theorem 5(*). Suppose

(23) d(fi(xy), f(w2)
< omax{d(w, @), —d(w, £z, Aoy S, j=1,2) 7=1,% o, meE

holds. Then the mappings fi and f have a single fixed point in common, which is
also the single fixed point of both.

Proof. Since, clearly, the argument of ¢ in (23) is less than or equal to ¢
given from (5)", (23) implies (7) with such a &(*); therefore, from Theorem 2, by
5.3, we find immediately that f; and f; have a single fixed point in common,
which is also the only fixed point of f;.

Let y be a fixed point of f5; for this point the following is true

Ay, [iy) = dl (), foly)
<o(max{d(y, fi(): j=1, 2})=o(dly, L.
Therefore f, also has a single fixed point which is the common fixed point with f;.

5.5 - Two other theorems resembling Theorem 5 can be obtained with a few
easy calculations from Theorem 1 and Theorem 3.

(®) In these four theorems, furthermore, the only common fixed point in f; and fo
would also be the only fixed point of f; if we had also &(x,, x)=d(x,, filx.).

(*) Assuming of course the conditions set out at the beginning of 4.

(*) Note the symmetry compared with 2, and x, of the argument of ¢ in (23) similar to
that of ¢ in (5)"; and remember that (7) is reduced to a single hypothesis (see (1), 2).
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5.6 - If the preceding five theorems are rewritten in metric spaces (where the
first four are of course reduced to one only), we see immediately that the first
four generalize, for two functions, the following theorems: 1 of [5],(*), 2 of [6],
and 1 of [9]; whilst all five generalize, still for two functions, the assertions of
Theorem 1 of [4] (note that in metric spaces the hypothesis o;(;, 1) < + o,
which appears in [4], [6] and [9], is equivalent to the hypothesis p;(2;, @2) < + o,
which has been put forward here by us and which appears in [5],(®) also).

5.7 - In theorems of [2],, [2];, [8], and [1], in addition to the hyphoteses of com-
mon generalized contractivity, the limitation &(x;, x;) <+ o« (¥) exist as does,
sometimes, the need that it be d(x;, fi(z) € A or d(x,, fi(x.)) € A (®). If we now
observe that in the H-spaces p)(x;, 1) < + o together with d(x;, x») € A and (23)
implies py(x;, ®z) <+ o for each x;, %, € E (¥) and therefore §(z;, x,)<+ % and
(@1, %) < -0 (*), from Theorem 5 we obtain immediately theorems similar to
those of [2]; and [2]3. More precisely we obtain

Theorem 6. Let fi, fz: E— E be such that for all xy, xs€ E we have
(24) d(fi(zy), (@)

<« max{d(@,, v, —i-d(wi, £, s flwed) i, j=1,2) r=1,2 O<a<l.

If for every x,, 22 € E, o1(wy, %) <+ © and d(x,, %) € A hold, then f, and f> have
only one fized point in common which is also the only fixed point of each.

And so, for a single function, we have

(® Relative to what the Author ecalls the «generalized Banach contraction».

(® The four limitations p)(%;, )<+ 0, g, X)) <+ ®, &x;, )<+ ®, &,
xp) <+ o are actually equivalent in metric spaces.

(®) See observations made at [2]; in relation to theorems of [2], and [2],.

(*) Note that in metric spaces whatever z, y € E are, d(cv, y) e A=R* is always true

(®) This would occur also if in (23) the coefﬁc1ents = d1d not emst

(*) Note that limitation &(x;, 2;) <+ » together wn;h d(z;, ;) €A implies &(x,,
%) < + o without the aid of (23).



114 C. SCARAVELLI and P. AZZIMONDI {18]

Theorem 7. Let us assume a mapping [: E—E. If

(25) d(f(@y), f(@)
< a max{d(@;, @), %—d(xl, S, %d(xz, fl@), dy, fl@e)), diws, f())}

0<a<l, gz, 2) <+ and d@, x) €A for every x,, t2€F
then there is precisely one fixed point for f.

5.8 - The explicit statements of Theorem 6 and Theorem 7 (even if they are
specific cases of Theorem 5) allow us to observe that:

(1) they are similar (in the sense specified in 5.7) respectively to Theorem 6
of [2]; and Theorem 1 of [2], (), coinciding with the latter in metric spaces where
the condition &(x,, #,) <+« (and therefore o (x;, #;) <+ ©: see note (%))
descends directly (¥) from the hypotheses of generalized contractivity of type
(24) or (25), and where Theorem 7 coincides with Theorem 1(a) and (b) of [3] or
with the Theorem in {[7].

(2) the position of the coefficients % [four in (24) and two in (25)] makes the

right hand sides of (24) and (25) symmetric in x; and , as they are already in
" metric spaces.

Therefore we can consider Theorems 6 and 7 as the real natural extension of
the similar metrics quoted in (1) above, in that, if we were to think of going over
the same paths that led us to the generalization of Theorems 1(a) and (b) of [3] or
the theorem of [7] we would start from Theorem 7, first opening to Theorem 6
and Theorem 5 and then to Theorem 2; passing easily thereafter from hypotheses
of linear contractivity to non-linear hypotheses with second members having
either an infinite or a finite number of distances.

In our previous studies however, starting at Theorem 1 of [2], we arrived at
Theorem 6 of [2]; and at the results of [1](*) without succeeding in our intention
of opening further to an infinite number of distances the argument of ¢ in the
common generalized contractivity hypothesis.

(*) See note (®).
(*®) With a similar procedure as that of [2].
(*®) These too generalize Theorem 1 of [4].
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We believe that this different and incomplete result could depend on the «less
fortunate» position of the coefficient % which does not render the right hand side

of the hypothesis symmetric in 2, and in x, already in Theorem 1 of [2], (and so
successively in the others).

All these remarks (which are obviously only possible a posteriori) lead us to
believe not only that «the best» position for the coefficients —}— is that identified

here but also that their number can not be less than two in theorems of type 7,
and less than four in theorems of type 6 and 5 (unless the left hand side of the
hypothesis of generalized contractivity is not considered with other distances
which are not included yet. But this is a field still to be explored).
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Sommario

Vengono dati, in spazi metrici generalizzati, detti H-spazi, teoremi di punto unito
comune per due applicazioni f e f; con ipotesi di contrattivita comune di tipo non lineare.
Tali teoremi generalizzano, fra gli altri, teoremi di Dane$, Hegediis, Kasahara,
Taskovié, relativi ad una sola applicazione in spazi metrici.
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