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1 - Introduction. Interpretation of the language of TAI

A short presentation of the leading ideas of this paper is in [2].

We assume the consistency of ZF. As a consequence of a result of Godel, also
ZF + GCH is consistent, and we place us in this theory in order to construct a
model for our TAI presented in [2]; (), starting from ideas given in [3].

Let HF the (classical) set of all hereditarily finite (classical) sets, let (V, &)
be the ultrapower of (HF, €), in the sense of [1], over some non-trivial suitable
ultrafilter on w. By Los theorem, V is a model for the axiomatic system ZFy,, i.e.
ZF minus the infinity axiom.

Def. 1. (a) Let M, be the set V and consider H#V), the (classical) set of all
subsets of V. Let T={XeAV)|@xeV)(VyeV)yeX={(y, x) e &)}. (b) With
6 €V we denote the equivalence class of the constant function from « to HF,
taking the value @, usually indicated with @%*.

Def. 2. Define, inductively, My=V, M,=(AV)UV)—T=(PM)UMy)~T,
ete., Moy =(PM)UM,)—T; and set M= U M,.
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It can be shown, by induction, that for every n, mew, with n=m, it is
M,cM,,.

Recall from [2]; that the language of TAI is a one-sorted, first language
(without identity) with the symbols: a constant @, two two-place predicates ¢ and
=, three one-place predicates V, Set, Cls and an abstraction operator {......}
which accepts a variable to the left of the stroke and a formula to the right of it.
Elements of M, denoted by lower case Latin letters as x, y, etc. are the intended
interpretations of objects.

The interpretations of the specific symbols of the language of TAI is defined
as follows:

Def. 8. For », yeM, fM=g; xMy if and only if (y¢VAxey or
ye VA(z, y)e &);x=Myif and only if x = y; VM(x) if and only if x € V; SetM(zx) if
and only if @eV or x¢ VA{zeV|zMz} e TA {zlzMa A2z ¢V} is ZF-finite).

Remark 4. We introduce graphically different symbols to stress the
difference between linguistic symbols and set-theoretical ones. If yeV and
x My, we can conclude x € V, since & <V X V. Moreover, if « € (M., — M,) and
Y € My — M,) and x My, then we can conclude that n<p.

Since V is a model for ZFg,, for every 2, €V, then 2 =y if and only if for
every zeM, zMr o zeMy.

Remark that for xe(M—-V) with Set(z), if @={z|lzMxAz¢V}=
={eleMx} -V, then {z|zMx}cV. Hence {zeV]egea}= {2|zcMa}=
= {2|zex} ==, by Def. 8. Therefore x €T, in contradiction with the hypoth-
esis xeM. It follows that for every xeM such that x¢V A Seti(x),
{zlzMxAN2¢ V} Q.

Finally remark that in case x € (M — V) and y € 2, then y e M, since x can be
considered as a subset of some M, thence y e M. '

Def. 5. (a) Define for every xeM, «" = {yeM|yMzx}. (b) Extend the
operation ” to T, setting " ==z for every zeT.
With these notations part of the Def. 3 can be written

SetM(x) if and only if xe VV (@ ¢ VA@ NnV)eTA (@ — V) is ZF-finite).
Now we prove the following

Proposition 6. (a) For every x eV, x €T, in particular, ¢ = D. (b) For
every xe (M —V), 2" e M and x"==x. (c) For every x, yeM, yMa=yex". (d)
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For every te MUT, there is a unique y € M such that x”=y". Moreover if
x 'V, then ye M,. (e) For every z, y, if tcy and ye (M —V), then there is
2z € M such that z°=x. (f) For every n € w and every &, Y1, Yz, .., Yo € MU T),
U Y1, Yor -er Yu} €T if and only if vy, Yo, ..., Yu€V and thereis z €V such
that x=2".

Proof. (a), (b) and (c) are trivial consequences of the Def. 5.

(d) Ifx e My, thenz” <V and x” € T, by (a); moreover &~ = &”. If y € M is such
that «” = y°, then when y € M,, for every z € V, z™y if and only if 2"y and, by
Remark 4, it means x=y. In case yeM,, with p=1, y =y, therefore
x” =y =1y, hence y €T, contradicting the assumption y € M,. In this way we
proved that if & € M, the same z is the unique y € M, such that 2" =y". Let now
be an element of T, it follows ™ = z. By Def. 1, there is y € V such that ¥y~ = .
The previous considerations imply that this y is unique. Suppose now that
y € M,, with p =1, hence, by (b), "= and for everyy e M, y =y =" =2, since
y ¢ Mo, as proved before. The previous cosiderations give the proof for the
second part of the claim.

(e) If xcy and y e M — V), then let » be such that y € (M., — M,); thence
# < M,. There are two cases: £ ¢ V or x = V. In the first, x ¢ T, hence x € M,,;.
In the second, it should be x € M, or x € T. By (d), there is a unique z € M, such
that z”=2. Remark that in both cases this z is unique.

® Let U {yy, Yz --., Yuy €T, then & U{y1, ¥z ..., Ya} <V, hence
Y1, Yo, -, Yn€V and 2"V, therefore " e (M U T). By (d), there is a unique
z € M, such that &”=z". Now if z € M,, then " €T and the claim is proved. If
ze(M,~ M), then by (b), z=2"=x". Hence 2" ¢T; by (a), x¢V; therefore
xe(M—V). It follows, by (b), x=x"=2z. The converse is trivial.

Taking account of Proposition 6 (d) and Def. 1, we can give the following

Def. 7. For xeT, denote by [«] the unique element of V such that for
every zeV, zMx]=zex. '

Proposition 8. (a) For every xzeV, [x]=x. (b) For every xeT,
x =[] .

Proof. (a) and (b) are trivial.
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Proposition 9. For every xeM, SeM@)=Gye V) y cx " A@ —y) is
ZF-finite).

Proof. Let x be such that Set(x), then xeVor x¢ V. In case x eV, it is
2'ce” and ("—x)=¢, therefore (x"—27) is ZF-finite. Otherwise
e VA{zeV|zex} eTA{2lzMxAz¢V} is ZF-finite. It is a2"=x. Let
y=[{zeVigeMa}]; it is ¥y < «"; moreover (x"— ") = {2lzcMxAz¢V} is ZF-
finite. Conversely, suppose (FyeV)y cax A" —y") is ZF-finite). Let
@ —y)={2, 2, ..., .}, it is impossible that {z;, 2,, ..., 2,} =V, otherwise
=y U {2, 2, ..., 2,} €T, and, by Proposition 8 (a), [x]=2, with xeV.
Hence ({z, 23, ..., 2,} —V)#@D. Consider [y" v ({z;, 22, ..., 2.} " V)] it is an
element of V and {zeV|zMa)=[y U ({2, 2, ..., 2.} n V)] €T. Moreover
{zleMxA2¢ V} =z, 2 ..., 2,} — V) and it is ZF-finite, thence, Set(x).

To introduce the interpretations for the predicate Cls and of the abstraction
operator {...|...}, we need some considerations and notations more. In the sequel
we say that the object x € M is a V-set or a class if VM(x) or Cls™(x), respectively.

In the Mathematics of the working mathematician, only a finite«degree of
complexity» is used. We can identify the degree with a sort of rank, assigning to
V-sets the degree 0; to classes (in the sense of A-classes, specified later) the
degree 1; to ordered pair of classes, the degree 3, ...; but we can choose the
degree in a different way. However only a finite degree of complexity is used
actually. Call m, the maximum complexity degree considered, the top. Itisme w
and we can assume > 5. One can consider also more complex specific objects,
but only in a finite number. These ideas suggest the following interpretation

ClsM(z) if and only if (x"—M,) is ZF-finite.

Also formulae may have a «complexity degree», e.g. the number of « {»
nested, or a type of (Quine’s) stratification, for example an increasing function of
the characters y and y defined below, or a measure of the hierarchy: =, or II,.
Denote the degree of the formula ¢ with o(p) and assume that for every o,
o(p)>4. We do not specify what kind of degree we assume here, since the
construetion of the model is independent from the choice we assume. For every
choice of the top m and the function p, satisfying conditions indicated above, we
obtain a model.

Def. 10. For each term 7 and each formula ¢, define two natural numbers y
and x as follows: y(@) = 0 and (@) = 0; v(#) = 0 and x(®) = 0, for every variable &;
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Yred)=vy(@D+y(E) and xrer)=x()+x"); yrzd)=y(@)+y() and
wr =)= x(@) 4+ x(@); Y= =y(z) and xWU() =x(), where Je{V, Set, Cls};
r(0) = v(e) and  x(e)=1+x(p); (e ® ') = v() + v(e") and
o ® o) =14 x(p) +x(p"), where ®e{A, V, —», =} v(Q¥)e)=7y(p) and
w(QWVe)=1+xlp), where Qe{¥, I} y({2|p(@}) =1+ (p(@)  and
x{2le(®)}) = x(o(®)).

The characters y and y are involved in the following

Def. 11. Define, by double induction, for each term 7 and each formula o,
the interpretations ™ and oM, as follows: B =g; &M e M; (v € o' for MMM,
(=M for M=MM ()M for JM(+M) where J € {V, Set, Cls}; (— o)™ for —1 (™);
(P ® oM (p @) for M @™, where ® e {A, V, —, =} (QP) (PN for
(Qx) o™(x), where Q € {V, I} and « is not present in ¢M(¥M); {B|x(®)}M is such
that ({&|e(®)}M)” = {& € Mumin(ueon,m|¢" @)} and « is not present in o™(&™M).

Remark 12. There can be two logically equivalent formulae, eventually
with parameters, o(®) and ¢(®), such that {@|e(®)}M+ {O|UD)IM.

Moreover let o(®@) be a formula, eventually with parameters, and let
{2 € Muineoan,m|e™(@)} € T, then there exists a unique yeV such that
(V2)((z, y) € E=2 € {& € Muniean,m|e™@)}) and in this case {B|a(®)}M =y and
{@/@(@)}M¢ {@Igﬁ(@)}. OtherWise it iS {x EMnﬁn(c(;(Qﬁ)),m)|¢M(w)} = {@'@(@)}M.

2 - Verifications of the Axioms of TAI

The first Axiom of TAI is

Al (VO)(@ = D).
It holds since equality is a reflexive relation.

The second Axiom

A2. (VOYVINS (@) A St (F)— (0= T=(VO)OeP=0:¥)))

requires that two sets are equal if and only if they have the same elements. To
prove it, there are many cases: ¢, yeV,xeVandy ¢V, x, y ¢ V. The first and
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the third are the only possible ones, since the interpretation of = is the equality,
thence conclusion easily follows.

The third axiom
A3. V@) A (Vo) (P ¢ D)

is trivial, since g€V and ¢ = @, by Proposition 6 (a).
The Axioms 4 and 5 are schemas

A4.  For every set-formula ¢(X)
(@) A (VOVY)(e() — o(x %)) — (V%) o(X) -

A5.  For every set-formula o(x)
(3 o) — @EN)(EX) A (VY)Y e X— =1 0(1))

holding for all hereditarily finite sets. By Los theorem, they hold for elements of
V too, as it is proved in [3]. Remark that in formulation of Axiom 4 we use the
symbol %, whose definition is a consequence of the Axiom 12.

Recall Axiom

A6. For every formula o(®), eventually with parameters
Cls ({2]o(2)}) A (VOX(© ¢ {B]p(D)} — 9(0)) .

For every formula ¢(®) the construction of the object {®|p(®)}™ gives an
element of M,.,, since min(g(e(®, ¥y, Fo ..., ¥)),m)=m, hence
({D|e(®IM — M,,) is empty, therefore finite. Moreover if {®|p(®)}M ¢V and
x M{D|p(®)}", then « € (Y€ Muneewn,mle"™®); hence ¢"(x). In case that
{®|o(@)}M eV, by Remark 12, x M{®|o(d)}™, implies ¢™(x).

Before proving the truth in M of the Axiom 7, recall that in [2], is given A(®)
for Cls (@) A(VE)N ¥ @ — V(¥)). Then

Proposition 13. For every xeM, (a) Vy)yMx—yeV) if and only if
xeMy; (b) AMx) if and only if xeM,.
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Proof. (a)Suppose (Vy € M)(y Mx—> 5 € V), then there are two cases:x e V
or x ¢ V. In the first x € M, by definition of M;. In the second, if y M theny € x,
thence x ¢ V. Therefore x € M,, since x € M. The converse is trivial by definitions
and Remark 4.

(b) The interpretation of the predicate A is given by ClsM(@)A
A (Vy)(y Mz — V™M(y), hence AM(x) implies (Vy e M)(y M x— y € V), therefore,
by (a), x € M,. Conversely, by definition of m, (x — M,,) is empty and, of course,
ZF-finite i.e. Cls™(z) holds. Since x € M, there are two cases: xe Vor xcV; in
both, for every y e M, if y<Mx, then ye V.

The next Axiom is
AT. (Vo)V(P) = Set () /\ A(D)).
For x € V, by definitions, Set(x) and « € M;, and, by Proposition 13 (b), AM().
Let now « be such that Set(x) and AM(x). Thence x € M, and there are two cases
xeVorx¢V. In first case the claim is proved. In the second one, by Remark 4,

{z|zMx A2¢ V} is non-empty, then there exists ze(x—V), but this is a
contradiction, by Def. 2.

The Axiom 8 is the following

AS8. (V®)(Set (@) —> Cls (9)) .

To verify it, take x € M such that Set™(x), then, in case x eV, (x—M,,) is
empty. If x¢ VA {2]z<Mx Az ¢V}, is non-empty and ZF-finite, (x — M,,) is ZF-
finite too.

The Axiom 9 does not offer difficulties, since it says that equality on A-objects
is the true equality on the objecs of M), and it is extensional

A9. VOWVDX == (V)X X=Xel)).
Axioms 10 and 11, are
Al0. (VB Count (F)— @NF =D).

All. (YX)(VZ)((Uncount (X) A Uncount (2)) - X=17).
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They are true in the model, as is proved in [3]; here we omit the proof. In the
Axiom 10 it is present the symbol < which has an (obvious) interpretation in M:
forz, yeM, xcMyis for (Vze V)(z e x"— 2z € ¥7). We assume also that letters F
and f, denote functions, but we shall return to these notions after Axiom 12.

The remaining axioms are not present in [4], but their introduction is justified
in [2];.

Before Axiom 12, we can show the following

Proposition 14. (a) For every x, ye M,, x My if and only if x"cy”. (b)
For every x, y e M, there is z € M such that 2" =" U {y} and for every we M, it
is weMz if and only if wMx Vw =My,

Proof. (a) Trivial. Remark only that hypothesis ©, ¥ € M; can’t be omit-
ted: if @, ye (M,—M,) and x+#y, {x}={x} "¢ {y} = {y}, but {z} =M{y}.

(b) The claim is proved by cases and it is divided in two parts: the existence
of a suitable object and the properties of it. Consider ¢, y eV, thenx”u {y} €T,
and, by Proposition 6 (f) and Def. 7, the claim is satisfied assuming
z=[x v {y}]. If eV and ye(M,—M,), with n=1, then x" v {y} <M, but
x’u{y}¢T, otherwise y e M,; therefore Uy} eM, and
(" {y}) =x"u{y}, by Proposition 6 (b). If x e (M,,; —M,) with n=1, and
yeM,, then x"=xcM,, and there is wex such that we¢ M,; therefore
xu{ytcM, and x"uU {y} ¢T, hence x"u {y} e M,.;; and (x"U {y}) =z"uU {y},
-by Proposition 6 (b). Evenif x € M, — M,, hence ™=, itis ™ U {y} ¢ T. Suppose
x” U {y} € T. By Proposition 6 (f), y € V and there is u €V such that x=u". By
Proposition 6 (a), x € T, contradiction. In each case we can choose z € M such that
wez if and only if we &V w e {y}, hence w Mz if and only if weMax V w ="y, by
Def. 5.

Al2. (VOYVP)(Set (@) — AZ)Set ) A (V)02 =00V 0= D)))).

This axiom states the existence of the successor of a given set, indicated with
operation %. The previous proposition gives part of the verification of the axiom.
It remains to prove that the object we obtain is a set. But this is easy,
considering Propositions 9 and 14 (b).

Remark 15. As a consequence of the previous axiom, objects such as
singletons, or pairs can be constructed, in the sense that there are in M objects
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as {x}™, {x, y}™. After Axiom 12 we can use also ordered pairs, defined in
Kuratowski’s style: (x, y)™ is the object {{x}™, {x, y}*}™. The fundamental
properties of these objects hold in M as a consequence of the truth of the Axiom
12 in M; in particular zM{x}™ if and only if z =Mx; 2¢™{x, y}™ if and only if
2z =M or z =My and for ordered pairs: (x, y)™=M{(x’, y')Mif and only if x =Mz’
and y =My’, hold in the model.

Some other properties of singletons, pairs and ordered pairs are presented in
the following

Proposition 16. (a) For every xeM, ({x}™)" = {x}. Moreover, for every
x, zeV, xMz if and only if {x}"Mz. (b) For every x, yeM, ({z, y}M) =
={x, y}. Moreover, for every =z, y, zeV, xMzAyMz if and only if
{x, y}"Mz. () For every x, yeM, {x}M= {2} if and only if x¢M,;
{z, y}"={, y} f and only if w ¢ MoV y ¢ Mo; (x, )™= (x, y) if and only if
x¢My. (@) There is xeM such that {x}M+{yly="x}™. (e) For every
x, yeM, {}™, {z, y}MeM, if and only if x, yeMy; {x}Me Ms— Mir1) if
and only if © € My, — Mi; {», Yy} € (Mie — Miyy) if and only if {=, y} < My
and {x, y} &£ M;. ) For every x, yeM, (x, y)Me M, if and only if x, y € My;
otherwise (x, y)Me (M —My) if and only if xe M—M,) or ye M~ M,). In
particular (x, y)M e (M;— M,) if and only if {x, y} =M, and {x, y} & M,. (g)
For every xeM, SetM({x}™M).

Proof. (a)-(b) The objects {x}M and {x, y}™, respectively, are such that
{z}) =g U {z} and ({z, ¥} ={x}")" U {y}. The remaining part follows
from Def. 5 and Proposition 14.

(¢) The claim is proved by (a), (b) and Proposition 6 (b).

(d) Take x € (M,p41 — M,,), then {x}M = {x}, but {y|ly =Mz} = @, since there
are no elements of Myne@=w,m, €qual to , since min (o(d = ¥), m) < m.

(e) By parts (a) and (c), above, and Propositions 6 (a) and 6 (b), the claim
regarding singletons and pairs is trivial.

(® The first claim is a trivial consequence of (e). Suppose that (x, y)Me
€ My — M) with ie {0, 1}, then by (e), {}Me(M;—M,.) or {z, y}Me
€ (M;— M;_,) or both. Therefore i=1. By new application of point (e), we get
%, y € My, hence (x, y)Me M,, contradiction. Therefore if (%, y)™ ¢ M,, then
(%, y)" e M — M) if and only if xe (M —My) or ye(M—M,) or both. The
previous considerations prove the last claim.

(g) Trivial, by Def. 3.



84 C. MARCHINI [10]

Remark 17. For z, yeV, the sets {x}, {{x}}, {{{=}}}, ..., {=, ¥},
{{z, ¥}}, {{z}, {=, y}} G.e. (x, ¥)) do not belong to M.

Def. 18. For zeM, define &' = {{u, v) e M|{u, v)MMa}.

The following three axioms are trivially verified in the model:

A13. (VOYVEND = ¥)— (Set (¥) = Set (9))
Al4. (VOYVINS = ¥)— (Cls (F) =Cls (9))
Alb. (VOVEND = P)— (A(P) = A(D))

since they require that interpretation of the equality = be substitutive on the
predicates Set, Cls and A.

In the Axioms 17 and 18, the predicate & is used; here we recall from [2];,
that (@), to be read & is Fregean, is V(9)VAQ)V @AY, 2NAP)A
AAE) AP = (¥, X)). Before proving them let us see which relations hold for
elements of M satisfying the interpretation of the predicate &. Some other
properties on operator ¥ are collected together in the following

Proposition 19. (a) For every x e M, F™(x) implies x e Ms. (b) For
every ze M, Rel (2%) and if 2 + @, then 2t € M — M,). (¢) For every ze M, z=2%if
and only if Rel(z) and z (M — My). (d) For every ze M, ()" =2* and, if 2+ 2,
then (2% =2

Proof. (a) For every x e M, F M) is V¥(x) V AM(x) V Ty, 2z € M)AMy) A
AAME) Az =Wy, z)M. By Def. 5 and Proposition 13 (b), & ™(x) can be written
asxeVVeelM,VQy, 2eM(yeM;Aze M, ANx=(y, 2)M). By Proposition 16
@, if y, ze V, then (y, z)™e M,, otherwise, (y, z)™ e M;. Therefore x € M;.

(b) Let z e M belong to M; with =0, 1, 2, 8, then 2° = @, by Proposition 16
); hence, trivially, Rel(z%). Suppose 2'#@; then Rel(z%), by definition.
Moreover there is (, y) €2%, that means (%, ) e M and (x, y)™ 2", by Def.
18. Therefore, by Remark 17 and Proposition 16 (f), (x, y) ¢ M, and « ¢ M, and
y ¢ M,, then (x, y)"= (x, y), by Proposition 16 (c). It follows z ¢ M,, hence
(x, y) ez, therefore 2* 2. By Proposition 6 (e) there exists u € M, such that
u”= 2% In this case we can conclude 2* ¢ V, hence u ¢ M,. By Proposition 6 (b),
u=u"=2% therefore z°e (M — M;) since its elements do not belong to M,.
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(¢) Let ze M, if ze M;, with i=0, 1, 2, 3, then as stated before, 2° = @ and
z €T, hence z# z*. Therefore if z = 2%, it follows 2 e(M — Ms). Trivially if z =25, it
is Rel(z). Conversely, suppose Rel(z) and z € (M — My). For every (x, y) e M,
by Proposition 16 (f) and Remark 17, x € M — M,) and y € (M — M,), therefore,
by Proposition 16 (c), {x, y)"= (=, y). By Def. 3, (z, y) Mz if and only if
(®, y) €z, hence z=12%.

(d) If2* = @, then 2* € T and by Def. 5 (b), (z%)" = 2. If 2* # &, then by (b) and
Proposition 6 (b), (2%)” = z°. The remaining part of the claim is trivial consequence
of (e).

The next Axiom is

Al6. For every formula o(@, Vi, ¥, ..., ¥,
Vo) (ple, ¥y, ¥, ..., V)N F(0)—> 0e {D|o(B, ¥y, Fop ooey T}
For the formula o(®, ¥y, Vs, ..., ¥y, let p=min(e(p(®, ¥y, ¥, ..., ¥u)),m),
it is p>4. Therefore if x, %1, ..., Yo €M and o™®, ¥1, Yz, --r, Y) N F ),

it is weM,, by Proposition 19 (a), and ¢"(x, y1, ¥, ..., ¥a), thence
x e {zeM)|o", Y1, Y2 o, ¥n)}. By Remark 12 and Def. 5, ze™{ze M,

?’M(z’ Y, Yoy --ey y‘n)}M'
Axiom 17 states a substitutivity for Fregean objects.

A17. For every formula o(@, ¥y, ¥, ..., ¥
(VOYVEY(O = T A F(O) N0 {D|p(®, ¥y, ¥op «ovy T}
_>Y/.€{le¢(@7 1Fb WZ; seey Wn)}))
Let (@, ¥y, Vs, ..., ¥ be a formula, and p=min (e(p(@, ¥, Py, .., T, Mm);
it is p>4. Consider =z, ¥, ¥, ..., Yn€M such that z=MyA FMx)A
Az ez e M|e"(z, y1, Y2, ..., Y)}™, by Def. 3, Remark 12 and Proposition 19

(@), it is x=yAzeM;Ae™(&, ¥, Y2, .., Yn). Thence ye{zeM,|o™(z, y1, Y2, ..., Y)};
therefore, ye™{z eM,|o"(2, ¥1, Y2y --er Y)}™

From the truth of the Axioms 1-17 we have

Theorem 20. All the theorems proved in Sections 1-4 of the Chapter I of
[4] are true in M.
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The last axiom is connected with the Axiom of Choice. To verify it we need
some remarks about symbols used in it and their (obvious) interpretations in M.

Def. 21. Given ze M, define:

@) for every we V, (Ma) = {ye VI(y, ©)"e2);

(b) (@M= {y e M|(Fw e V)(y =" (x, %M )™M} ;

© () ={weM|@v, yeMw="(z, )" Ay, x)Me2)};

(d) (dom™(z))” = {x € M|(y e M)z, y)M e2)};

© (Mg"(z))" = {w e M|(Fy e My, )" e2)};

)  ReM(z) if and only if (Yw e 2)(@x, ye M)w =" (z, y)™:

(8) FncM(z) for Re™(2) A (Va, y, w e M)({x, y)M ez Az, w)M e z"— y =Mw);
() for every @, yeM, x €y if and only if (Ywe M)(w e x"— w e y").

Proposition 22. (a) For every ze M,, and every xeV, it is ({Mx) e M,
and (Mx={yeV|{(y, x) ez} If zeM,, then (|Mx)eM,. (b) For every

z € M, Re™(z) implies z € Myorz e (M, — M), orz€ (M~ Ms). (¢c) ForeveryzeM,
RePM((z"O™). If zeM,, then (z"YM)eM, with p<n, hence (z"HMeM. In
particular if 0 <n =<3, then p =0 and if z € (M, — Ms), with n >3, then 3<p =<mn.
Moreover (Z"YOMP=(EH"1={(x, y) e M|{y, x)e2’}. (d) For every zeM,,
(dom™(2)), (mg™(2)) € M, with p <n. In particular if 0<n=<3, then p =0 and if
ze (M, — M), with n>3, then 0<p=mn—2. Moreover if (dom™(z)) ¢ M, (resp.
(mg™(2)) ¢ M), then dom (2f) = (dom™(2))” (resp. rng (z%) = (g% (2))"). (e) For every
zeM, it is () e M, or (™) e (M, — M), with n> 8, moreover Fnc¥((z*)M)
and (Vy € ("W FM(y)). () Forevery z, yeM, €y if and only if v c ¥
in particular x <My, if and only if {x}M&My.

Proof. (a) Take zeM,, then 2°cV. By Proposition 16 (f), for every
(y, x)Mez, itisy, xeV. It follows that (| ™x)” c V. By Proposition 6 (d), there

is a unique ve M, such that v'=(|{Mz)". In case ze€M,, fixed x, the set
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u={wMz|(Az, y e M)(w =" (y, x)MMz} cV and, by comprehension schema,
that holds in V, by %Los theorem, ueT, therefore [{weM2|(3x, yeM)
(w=M(y, x)MMz}] e V. By the replacement schema for V-sets, whose validity
in M is guaranted by Theorem 20, we get (| Mx)e M,.

(b) Let z € M be such that Rel™(z). Since elements of z” are the «ordered pairs»
(%, y)™, by Proposition 16 (), (z, y) e M or (, y)™e (M, — My), with p>2;
hence 2" c 'V or 2" < M,,. It follows that z e M, or z € (M, — M) or ze (M — My).

(c) Let zeM, and let we((z")™), then there are x, ye M such that
w=M(y, )™ with (x, y)™ez2”; thence (x™HY")"'cM; more precisely,
(™HM < M,,. Only two cases are possible: ("Y€ T, or ((z")") ¢ T, in both
we conclude, by Proposition 6 (d) and Def. 2, ((z")M) e M. Therefore it is
Re™((z™H)™). By (b), (™)™ € My, or (™)) € (M, — My), or ((¢™H™) € (M — M). If
(z"YM eM,, then p=0=<mn. If (Y eM,—M,), it is n>0, otherwise
{weMz|(Fz, yeM)(w="(x, y)"Mz} €T, by comprehension schema, that holds
in V, by Los theorem, and by the replacement schema for V-sets, whose validity
in M is guaranted by Theorem 20. We get ((z™")™) € M,. Therefore n= 1. In case
(&™) € (M, — M), with p>3, there exist x, y € M, such that (y, =) e (™H"
with (y, ®) € (M,—; — M,). In this case, by Proposition 16 (f), © € (M, — M) or
yeM,—3—M,y). It follows that the element (x, y)Mez" is in (M, — M),
therefore 3<p=<mn. Now take zeM; if ((z"H™) e M,, then ((z")") = and
2= =(%"Y, since if there exists (u, v) e M with (u, v) €z”, then u ¢ M,,
ve M, and (u, v)M= (u, v). Therefore (v, u) e ((Z™H™) and (v, u) ¢ M,,
thence (™)) = (%)= {(=, v) e M|(y, x) €2’} = @. Let now z be such that
(™H™M) ¢ Ms, then by Proposition 19 (¢), (")) = ((z")Y™). Moreover z*+# &,
otherwise (z")™) € M;, hence (x, y) € ((z"H™) if and only if (y, x) €2}, therefo-
re (") =(H"1= {{z, y) e M|{y, z) ez'}.

(d) Let x € (dom™(z))", then x € M and there is ¥ € M such that (x, y)Mez". It
follows, by Proposition 16 (f), (x, y)™ e M, or {(x, y)™ ¢ M,, therefore x € M, or
x ¢ My. Hence (dom™(2))" = V or (dom™(z))”" ¢ V. In the first case dom™(z) e M,, by
Proposition 6 (d). If (dom™(2))” ¢ V, then there is x € ((dom™(z))" — V) and there is
y € M such that (z, y)Mez2", hence (x, y)™ e (M, ~ M,), with p>2, therefore
z€(My+; — My). In this case, n=p+1 and for every «ordered pair» (x, y)",
xeM,3, hence (domM(z)) cM,; and (domM(z))"¢T. It follows that
domM(2) € M,_.. Suppose dom™(z) ¢ M, then x € domM(z) if and only if there exists y
such that (x, y)™ez"; but x ¢ M, and by Proposition 16 (c), (z, y)¥= (x, y).
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By Proposition 6 (b), z"=z, thence (x, y¥)ez and xedom(z), therefore
dom™(z) = dom (2). The proof for mg™(z) is very similar.

(e) Let z be such that for every xeV, ({Mx)eM,, hence () cV. It

follows by Proposition 6 (d) that ((z*)™) e M,. If there is an x such that
({Mx) e M,, then the element (x, [Mx)™eM;. In this case ((z*)M)" < M, and

(@M ¢ T, hence (&)™) e (M,, — M;), with n>3; moreover it is Fnc™((z*)"). The
remaining part is trivial by definition.

(f) Trivial.
All instruments needed for verification of Axiom 18 are now ready.

A18. (VR)((Rel (R) A A(R)) — (F2)(Cls (@) A Fnc (@) A dom (@)
= dom(R*) A€ R*™)).

Let z€ M be such that Rel™(z) A AM(z). By Proposition 13 (b) and 22 (b), for
every x e M,, it is ({Mx)e M,. Consider now the relation (that is out of the

model M): S= {(u, w) e My X My|3z e V)= ({Mx) A ({Mw)=(|{Mx))}, but

it is easy to show that (u, w) €S if and only if {(u, w)™ e ((z*)™)™HM)", thence
u € dom (S) if and only if % € (dom™(((z*))~1)™)". By the Axiom of Choice there is a
function F' (maybe out of the model) such that dom (F) = dom (S) A F < S. Define
now an element y € M in this way: ¥~ = {(u, w)™|{u, w) € F}. By Proposition 16
), it is ¥y = M;. Remark that if for every (u, w)eF it is ueM,, then
y = {{u, w)|(u, w) e F} € M,, therefore, by Proposition 6 (d), there exists a
unique y € My for which y = {{u, w)™|(u, w) € F}. If there are some elements
(u, w) € F such that we (M, — M), for these u’s, by Proposition 16 (¢), it is
{u, w)M=(u, w) and {(u, w) e M, hence, in this case, ¥~ ¢ V, therefore y” € M,
and ¥~ =y. In both cases, it follows ClsM(y), since (y~— M,,) is empty. Trivially,
by definition, it is Re™(y) and y € (((*)™)"HM. Moreover it is Fnc(y): when
(u, w)Mey and (u, v)Mey", then{u, w) e F and (u, v) € F, therefore w=1v.
Moreover let wue(dom™(z))", therefore wuedom(F) and wuedom(S),
u € ([dom™ (((z*)M)"HM)” and conversely, i.e. (dom™(z))” = (dom™ (((z*)™)")™)", By
Propositions 22 (e), 22 (¢) and 22 (d), and Proposition 6 (d), domM(z)=
= dom™ (((*)™)~H™. '
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We can resume all the results proved before in the following

Theorem 23. (a) The interpretation M is a model for TAIL (b) Every
theorem proved in [4] is true in M.

3 - Induction and prolongation

In each model constructed as in the previous sections, induction and
prolongation properties, extending, respectively, Axioms 4 and 10, can be
proved

Theorem 24. For every formula o(®@, X, X, ..., Xu), eventually with
parameters which are sets, the sentence

?(ﬂ; Xl, X2y ceey Xn) /\ (V@)(SEt (@) /\ ‘P(gj; Xl’ XZ; seey Xn)
- (VW)(P(Q % ¥, %, X, -y Xn)))_) (V@)(Set @)— ?(Qy X1, Xgy «eey Xn))

holds in the model.

Proof. We write simply o(®) instead of o(@, X, Xz, ..., Xu). Suppose
that o(@) A (V&)(Set (D) A o(@)— (VINp(@ % ¥)) is true in the model M, but
there is xeM such that Set(x) and —1¢oM(x). Consider A=
= {n € | card (" — V) = n A Set(x) A =1 o™(x)}; 0 ¢ A, since Axiom 4 holds in M.
If £ ¢V, then card(x”— V)>0, by Remark 4. Let p=min A, then p>0 and
there is « € M such that card (z" — V) =p A Set(®) A 1 oM(@) and {y1, ..., ¥} IS
an enumeration of (x” — V). Suppose that « € (M — M,). The object w= ("N V) is
an element of T, therefore, by Proposition 6 (d), there exists z €V such that
w=2". The object z is such that Set(z) and card (z"— V) =0, thence ¢"(z) by
Axiom 4. If p =1, by Propositions 14 -(b) and 6 (d), there is a unique % € M such
that 4" =2"u{y} with y¢V, and v =x=2"u {y}, that means x=2%y;
therefore ¢™(x). If p>1, applying p — 1 times Proposition 14 (b) to 2, there is
ueM such that «”=2"U {y1, ..., Yp-1}, it is Se™(u), it is u ¢ V and © =u % y,;
moreover unV=z" and card(w —V)=p—1. By definition of p, ¢™(w),
therefore, ¢"(z). In each case we get a contradiction, hence A =@.

The model has another interesting feature regarding prolongation of classes.-
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Proposition 25. For every xeM such that ClsM(x) if there exists ye M
such that Set(y) and x €'y, then there are u, ve M, such that w=x"NV,
v =y "NV for which AMu), VM(v) and u €@ v; moreover (x”— V) is ZF-finite.

Proof. Suppose xeV, it is "<V, thence £V =2x". From hypothesis
that there is y € M such that Set™(y) and « €y, it follows by Proposition 22 (f),
that x” < 97, thence 2"y N V. In case y € V and also in case y ¢ V, there is, by
Propositions 6 (d), v € V satisfying v =y~ n V. Therefore it can be chosen u as x,
obtaining: AM(u), VM(v) and %" cv”; moreover (x”— V) is the empty set.

In case x ¢V, from x €y, by Proposition 22 (), it follows that (x"— V) <
c (y” — V). Therefore (x” — V) is ZF-finite, since (¥~ — V) is ZF-finite. Moreover
£°NnVcy nV; by Propositions 6 (d), there are ue M, and veV such that
w=x'NnV, v"=¢y"nV and u € v, from Proposition 22 (f).
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Sunto

Si presentano modelli per la teoria assiomatica TAI, introdotta in una nota
precedente e si prova la proprietd di consistenza di TAL, relativamente alla teoria
asstomatica degli insiemi ZF.
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