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Boundary regularity for weighted quasi-minima (**)

Alla memoria di ANTONIO MAMBRIANI

Introduction

In their paper [3] Di Benedetto and Trudinger established the Harnack
inequality for all functions belonging to a De Giorgi class.

They also proved that the quasi-minima related to certain variational
integrals belong to the previous classes. So the Harnack inequality holds for
quasi-minima.

In this paper we deal with weighted quasi-minima.

In 1 we prove that the Di Benedetto and Trudinger result can be extended to
the weighted quasi-minima provided that weighted De Giorgi classes are
introduced.

In 2 we are concerned with boundary behaviour of weighted quasi-minima.

To this purpose we want underline the relevance of prove Harnack
inequality, not only for @-minima, but also and particularly for functions in De
Giorgi classes. In fact, in 2, following [12];, we use the Harnack inequality for
functions in De Giorgi classes obtained in 1, to prove a regularity criterion for Q-
minima. The result that we obtain is

w(B,{(wo) — Q)

>0, then u(x) is continuous at x,.
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Applying again Harnack inequality for functions in De Giorgi classes we will
state in a subsequent paper a Wiener-type criterion.

We observe that the Harnack inequality for weighted quasi-minima have
been obtained by Modica [7] with weights in the A, classes of Mouckenhoupt for
any p>1 (for convenience we treat we treat only the case p=2).

But Modica doesn’t treat with De Giorgi classes and his method is different of
that of [3]. The method of [3] is followed by Scornazzani [10] who obtains the
Harnack inequality for quasi-minima of non-uniformly degenerating functionals.
The results of 1 are therefore a particular case of [10]. We choosed to expound
that for sake of completeness and, moreover, our proof is indipendent. Precisely
we are interested to functionals with not only second order terms and we take
care of the best constants for which the stated estimates are valable.

1 - Let 2 be an open set. We consider functionals of the form
1.1 J@, Q)= [f(x, u, Vu)dzx

where f(x, u, p) is a Caratheodory function, namely measurable in « for every
(z, p) and continuous in (2, p) for almost all x € Q. Moreover the function f
satisfies the following conditions

[, 2, p)

1.2) [p|? — bl - g(=) < e

< ulpl®+ blzf* + g(a)

where u <1, b e Lp(RY), g € LYQ, w), ¢>N. The weight w(x) belongs to the A,
class of Muckenhoupt [8], that is

1.3) sgp(lé—“f w)(ﬁsf Ly<c

where B denote an arbitrary ball of RY.

The spaces HY., w), H(., w), L*(., w) are the usual weighted Sobolev
spaces as in [9]. On this subject we recall an imbedding result due to Fabes,
Kenig and Serapioni [4].

Proposition 1. There are positive constants ¢ and & such that, for any ball
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B cRY and for all ¢ e C§(B),

( o*wdx)”* < C(diam B)( |Vo|2wda)'?

1
wB 3 (B)f

where 2<s< + &=

N-1
The following property of A, weights is specially helpful.

Proposition 2 [1]. If we A,, then there exists some positive constants
& =2, &<1, ¢, ¢, such that

E|., _wE&) _ |E|

" <@ <[5

>

for any measurable set E of i and any ball B > E. (Here we are using w(E) to
denote [w(x)dx and |E| to denote the Lebesgue measure of E).
E

Using the terminology of Giaquinta and Giusti [5]; we give the following

Def. 1. We call a function % in HL(Q, w) a sub @ minimum (super
Q-minimum) for J if @ =1 and

(1.4) Ju, B)ysQJ(u + ¢, K)

for every ¢<0(=0) in H*(Q, w) with suppp=KcQ.

A Q-minimum for J is both a sub and super @-minimum.
Instead of proving directly the Harnack inequality for quasi minima, we

prefer make a digression to provide the Harnack inequality for a more general
class of functions. (This is also the way gone in [3]) This will be applied in 2.

Def. 2. A weighted De Giorgi class DG3(Q, w) is defined to consist of all
functions w in HL.(Q, w) such that, for any ball Br = Bg(y) cQ, «€(0, 1), k=0,
the following inequality holds

1.5 [V -k Pws<y{ ﬁ?ﬁ; [ 1 — By Pw + G2 + R k)P w(Af )2}

where y, %, o, ¢ are non negative constants, e<1~—22, a=N¢2 and
Aifr=Bpn[(w—k)* =01
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If % belongs contemporarily to the classes DG3(Q, w) and DG;(Q, w), then
we will say that u e DGy(Q, w).

The concepts of @-minima and De Giorgi classes are linked together in the
following

Proposition 8. Let w in H,(Q, w) be a sub (super) Q-minimum for J.
Then ue DGF(Q, w) (DG;5(Q, w)) with constants 2/2 +e=1—1/q, ¥ =|lg
Y depend@ng on Q5 2] ”b”LfSc(Q,w)'

Li(@, )2

Proof. By use of the well known hole-filling device and Lemma 1.1 of [5];
we easily obtain

Lo [ lw— By Pw+ (6 + gll) w(AL )

B,{ [V -k Pws Y{m(l C R 8

if » is a sub @Q-minimum for J, Bp=Bp(y) cQ, c€(0, 1), k=0. The case of a
super @-minimum is similar.

Remark. The Harnack inequality for functions in a weighted De Giorgi
class will be proved in Theorem 3 as a direct consequence of the following two
Theorems 1 and 2. The Corollary 1 and 2 translate the results of Theorems 1 and
2 for the particular case of sub and super @-minima. Corollary 3 represents the
Harnack inequality for the guasi-minima.

Theorem 1. Let u in DG5(Q, w), Br = Bgr(y) c Q. Then, for any « (0, 1),
p>0,

1.6) supu* < C(1— o) Fe{( f (WP w)"? + xR}
R Bp
where C=C(N, v, ¢, p). (Here we are using [vw to denote 1 [ vw).
. B w(BR) Bg

Proof. Following [6], as adapted by [3] (Lemma 2.1) we can prove that, for
% in DGF(Q, w), Br=Bg(y) cQ and any o€ (0, 1),

(1.7 s;%)u‘—“ < (—1—:6-;-)-;5 {(BJC (w*) w)'? + xR}

where C=C(N, v, «).
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We observe that (1.7) is obtained making use of Proposition 1 and 2. An
interpolation argument allow us to conclude the Theorem 1.

Corollary 1. Let u be a sub Q-minimum for J, Br = Bp(y) c Q. Then, for
every ¢€(0, 1), p>0, we have

(1.8) supu < C( £ WP w)'” + yR*)
R B :

where:  C=CW, p, ¢, @, lgly [blser & 2=l =21~ 11~ 2.
We state a preliminary Lemma, before proving Theorem 2.

Lemma 1. Let 0e(0, 1) fixed be and let u=0, ueDGQ, w),
By=B(y) cQ. If, for a certain ¢€ (0, 1), w(u = ow(B,), B, = Rg(y), then there
exists a positive integers s* such that w(u <u + 2710 By) < 0w(By)* with

s*¥=8*(\N, v, 6, & d=1+8&12-12+12N)=1- 42N >0

p=infu By,= Bz,;(’!/) .

Proof. Taking a particular s* to be fixed later, we may assume that x <27°
for s*>s>1. By hypothesis, we have (see also Proposition 2)

(1.9) wB,—[u<u+2-N=Cow(By) Vs*>s>1.

We observe now that HY(B) c H**B, w) for any ball B c Q. Applying a Lemma
due to De Giorgi [2](*) and Proposition 2, we have

_ ) B|Bs
1.10 279 A 4]} N < \Y/
(1.10) |Agsa] B Tu<pt2] AJ_A{“| u|
w(Bs) \
=( 1 Vul<C v
B —neprz D ai,Ved=Ce [ v

() «Let we WH(B,) and [>k. Then

Y
(- k)[['u,< k] ﬁB,.[l_a/N)$E'\\‘B[u—<l]‘ A;r ]V’LL]

where 8 depends only on N and A, = [k<u<l]hBr>>.
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where: By=DBg, A;=Ajq Ki=p+27° 8=1,2, ..., u= igf %, and hence,
using (1.9) and Proposition 2,

w(By)

am s
1.1y 275w A )M < 27— B

]1 (1/N) ] As+ 1Iﬁ‘z(l—(l/N))

?/U(BZ) ]1 (yN)( J- lvu])o«z )

IB lcz Ag—Ast)

<CPp~7

On the other hand, from Def. 2, with =0 (veplacing u by u + xR

[ V@ — k) Pw< C{2 2 w(Af o) + (K P w(Af, )*2+) hence
By
(112) f qu' < C( f !V(’M, —_ (P‘ + 2—3))—|2w)112( J‘ ;_];)_)1/2
Ag—Agsy By Ag—Ags1

=C( f—)"zw(A e

Ag—Agsl

provided s <s*.
We observe that w(A4,.;) <w(Af, ) and then, from (1.11) and (1.12),

w(BIZ) )1 (l/N)

w(Am) < (( J' _)azl2 w(B )°2/2+1/N( ‘

Ag—Age1

By summation from s=1 to s=s*~1

lBZI&zw(BZ)HM - 1+8,(12-1/2) SIN d
whs) < Cw(Bz)‘?ﬂZ(SaK — 2)| By |21~ = Cw(By)™ B oV < Cw(By)*.
The Lemma 1 is so proved.

Theorem 2. Let u in DGF(Q, w) non negative, Br = Br(y) c Q. Then there
exists p>0, p=pWN, vy, ¢), such that for any ¢, v€(0, 1), we have

(1.13) ( fwru)'? < C(infu + xR°)
B.r -

where C=CWN, v, ¢, o, 7).



(71 BOUNDARY REGULARITY FOR WEIGHTED QUASI-MINIMA 69

Proof. Following [3] (Proposition 3.1), we can prove that, if u=0,
e DGF(Q, w), Birl)cQ and, for some 8e(0, 1), w(u=1]n Bg)=dw(Bpg),
then we have

(1.14) inf w2 — yR*

where A is a positive constant, A=AV, ¢, 7, 9.
(1.14) is a consequence of the Lemma 1. To prove (1.14) we consider now the
sequences

B,=B

fn

on=1+2"" bo=p+211+27" n=0,1,2, ...

By hypothesis we have w(B,— Az, . )= Cw(B,.).

niPn+i

As before we apply Def. 2 over the balls B,.; and B, for the levels &,
De Giorgi Lemma (cf. () over the ball B,,, for the levels k,>k,.;, and
Proposition 2. We obtain

IAn+1|1—1/N < C{w(An)llz + w(An)lli+;/2}( J‘ _Z];-)_)I/Z < C[Bnl {1 + w(An)l/§+e/2—1/2} .
Ay

We have [A,1|" < |4, "N < Cw(A,)"™ and then
|A sl < CIBo (A1 + w(A,)E+2-12) So

w(Bn-i—l)
|Bn+1]£2

(1.15) WA ) <C | A1l < C(B) w(A)#2 {1 + w(A, VEre-12y

We want to prove that, unless we extract a subsequence,
(1.16) w(A,)—»0 as n—0.

We can suppose that w(B,—A,)<w(B,) (n=0,1,2,...) because other-
wise w(4,)=0 for every = sufficiently large, and (1.16) follows. If

wB,—A)=01A- %)w(Bn) for every n sufficiently large, then w(4,) < % w(B,) |

and (1.16) follows. Hence, we will suppose there exists a sequence {n;} such that
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W,y ~ A,) < (L= 2)w(B,) (7=0, 1,2, ...) and then

1.17) w(Anj)B%w(an) §i=0,1,2, ...
. . . w(A,)
Substituting (1.17) in (1.15) and setting Y, = By we therefore have
2.

Y,n<CWYL"  7e(0, 1)  b>1

and we conclude, from Lemma 1 as in [3], [6], that ¥,,— 0 as j— + .
The proof of (1.14) and Theorem 2 follow as in [3] (cf. 303).

We observe that the Krylov and Safonov Lemma, as adapted by Trudinger
[11] must be used with respect to the measure w(x)dwx instead of du.

Corollary 2. Let u be a mon mnegative sub Q-minimum for J,
Br=Bgr(y)cQ. Then there exists p>0, p=pW\N, Q, 1, ¢, |9l Bll=1oc) SUUCK
that, for any o, 7€(0, 1) we have

(1.18) ( fwrw)r< C(inf u + xR*)
B.p R

where C=C(, “, 4, Q, ”g“q, “b”w,low g, T

Theorem 3. Let u in DG5(Q, w) non negative, Br = Br(y) c Q. Then, for
any g€ (0, 1),

(1.19) SUp% < C(iglfu + xR
R R
where C=C(N, v, ¢ o).

Corollary 3. Let u be a non negative Q-minimum for J, Br = Br(y) cQ.
Then for any o€ (0, 1),

(1.20) supy < C(inf u + xR
B.p B:r

where C=C(N; &, 4, Q’ ”g”q7 ”b”w,loc; o-)'
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2 . Boundary behaviour of quasi-minima
In this section we follow the outline of Ziemer [12];.

Let Q ¢ RY an open bounded set and let 8 € HR”, w) such that g/(RY — Q) is
continuous.

Def. 3. If ueHL(Q, w), 2,32 and L e R, we say that
@.1) wxg) <L weakly

if, for every k> L there is an >0 such that n(u—k)* € H}(Q, w) whenever
n € C§(B(%)). The condition

2.2) u(we)=L  weakly

is defined analogously and wu(x))=L if both (2.1) and (2.2) hold. If
u—pBe H{Q, w), then u(x) = p(x) weakly for each x e dQ.

Theorem 4. Let ue HL(Q, w) be a sub @-minimum for J such that
u—pBe HYQ, w). Suppose x,€9Q and ulxy) <L weakly. If

2.3) A= lir£1 sup u{x)>L
then
2.4) lim o fu(@) — Al w(x) =0.

Bzg)

Proof. LetA>k>L be, and u; = (u— k)" on Q, u, =0 otherwise. Let >0
so small that nu; € H}Q, w) wheanever e Cy(B,(xy). We define

wr(®) = sup{ulx) ¢ € Bxy)} .
We observe that

2.5) there exists a positive constant I'=T(k) such that u,(r) is bounded
above by I" for r— 0.
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Then, for any 0 <h<pu(r), let  v(@) = u(®) —ux(x) and ¢ = n(v — k)~ where
71 € Cg (Bas(20) IEPES] n=1 on B(x,, 2tr) O<t<s<l.

We observe that v= 0 and ¢ € H}(Q, w). Following the method of [12], (Theorem
3.1) one can proves that v is an element of the weighted De Giorgi class
DGz (@, w). Therefore, from Theorem 2, there exists p >0 such that

(2.6) (v <C jnf v+7*< Cl) ~wlrd) + 77— 0

Bypa(ag)

as r—0. Then [ vw—0, that is [ (" —w)w—0 as r—0, where
Brpolo) Brpfzg)

u(r) = sup{u(x):x € B.(xy)} and u(x) is prolonged by g(x) out of Q.
Then (2.4) follows.

Remarks. We observe also that v =g, in B(x,) — Q, and then, from (2.5)
and (2.6),

w(B,(x,) — Q)

wBT) —0 asr—0

2.7

Notice that also the analogous to Theorem 4 for % a super @-minimum holds.

Theorem 5. Let ue HL(Q, w) be a super @-minimum for J such that
u—pBe HYQ, w). Suppose xy€ 3Q and u(xy) =L weakly. If

2.8) A= lirzrl gﬁ u(x) <L

then

2.9) lim §f |u(x) — A w(@x)=0.
70 Bytzg)

We suppose now that u € H}(Q, w) is a @-minimum. For g e H(RY, w) such
that (u—8) e H{(Q, w) and x, € 3Q we deduce from Theorems 4 and 5 that, if
either

lim 15Up wx) =A>py) or liminfulx)=x<p(xy)

zeQ zeQ



[11] BOUNDARY REGULARITY FOR WEIGHTED QUASI-MINIMA 73

then

lim § lux) — Ajw(@)=0 or hm f lux) — 2| wx)=0.

? B 0 By
It follows that it is impossible to have

2= liminfu(x) <fl@y) <limsupul(x)=A.
2—xh 220
Then u(x) is either upper or lower semicontinuous at x,. Moreover, if

(2.10) lim supw

LS00 Ba)

then (2.7) fails; therefore (2.3) and (2.8) fail too, that is «(x) is continuous at x,.
We have so proved the following

Theorem 6. Let ue HL(Q, w) be a Q-minimum for J such that
u—Be HYQ, w). Suppose x, € 3Q. If (2.10) holds, then u(x) is continuous at x,.
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Abstract

We prove the Harnack inequality for functions belonging to weighted De Giorgi
classes and apply this result to derive a regularity criterion at the boundary for weighted
quasi-minima.
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