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GISELE FISCHER SERVI (¥)

Finite axiomatizability in bimodal calculi (*¥)

Introduction

A bimodal language is determined by a set of propositional letters, the usual
set of propositional connectives and two modal operators, say L, and L,. By a
bimodal logic we understand any system containing a standard version of
classical propositional logic and a set of axiom schemes concérning Ly and Ly (M.

Since many of the results below apply to logics having at least two
independent modal operators, Intensional and Pragmatic Logic (see [6]) can be
considered here as cases in point. Epistemic logic also is basically bimodal («It is
known that», «It is believed that») and becomes plurimodal when the person that
knows or believes is brought into the formalization as an index for a modal
operator (see [4]). By the same token, Dynamic Logie (or the logic of programs)
can be viewed as a significant extension of a bimodal logic containing only either
two program letters or one program letter and one program operator, say the
iterative operator (see [7];). More standard but less well-known examples of
bimodal logic are the Logic of viewpoints and the S4+85 Fitting Logic
combining time and logical necessity (see [3]). Another example of bimodal logic
is the (S4, %)-C system, where = stands for any classical normal logic. These
logics have been introduced in [2];, [2]; and are instrumental for studying
intuitionistic modal logic.

Now one can easily be led to think that the theory of simultaneous modal
operators is a simple extension of the theory of single modal operators: it may
seem that studying two modalities is very much like studying each one

(*) Indirizzo: Dipartimento di Filosofia, Facoltd di Lettere, Universitad, Parma,
Italia.
(**) Lavoro eseguito con contribute dei fondi M.P.I. 40%. — Ricevuto: 27-XI-1989.
() The terminology is somewhat different from that used in {2]; and [2]5, where a
bimodal logic was defined as satisfying certain connecting axioms.
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separately. That such is not the case is exemplified by the complexity of
completeness and decidability proofs in Dynamic Logic (see [7],). Moreover, not
all metatheoretical properties carry over from the monomedal to the plurimodal
case. The purpose of this paper is to show, in fact, that such properties as having
a finite number of distinet modalities and finite axiomatizability do not always
hold for bimodal logics even when they hold for each monomodal logic when
taken separately.

A common feature of the bimodal and plurimodal logies mentioned above is
that the behavior of the two (or perhaps more) modal operators is desecribed by
the traditional modal systems (usually S4 or S5) (). A discriminating property
for these logics is the presence or absence of conditions expressing some
relationship between the primitive modal concepts. These conditions, which we
shall call connecting axioms, are of various nature and appear both in the Fitting
logic and the (S4, #)-C systems. On the other hand, Pragmatic, Intensional,
Dynamic logic and the Logic of viewpoints have no such connecting axioms.

Hence, in this paper we shall study systems in which at least one of the
operators is S4 and compare results when some connecting conditions are added.

1 - Number of distinct modalities

First let us recall that a modality is any sequence of zero or more monadic
operators. Hence in the language of bimodal logic, a modality is a sequence of 1
(negation), L, (first necessity operator), L, (second necessity operator), M, (first
possibility operator) and M, (second possibility operator). A modality is said to
be positive if it contains no negation sign; a modality is in standard form if it is
either positive or a negation of a positive one. In classical modal logic, L; and M,
(as well as L, and M) are interdefinable, so that any modality can be expressed
in standard form. Let us assume from now on that all modalities are expressed in
standard form. Furthermore we call length of a modality the number of
operators which occur in it and given a modality &, let 8" denote the modality
congisting of n occurrences of ® (for n=0, 8" A is simply A). Last, two
modalities It and I are said to be equivalent in a system S if, for every wif. A,
the two formulae IMA and NA are equivalent in S.

() For the axioms of 4 and S5, refer to the standard versions presented in [1] (p. 4
and p. 10).
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i Tt is a well known fact that S4 and S5 have a finite number of non equivalent

“modalities. Yet the bimodal system which combines S4 with itself or with S5
without adding any connecting conditions has an infinite number of modalities.
To see this let us define (S4, =) as the bimodal logic such that L, is an S4 modality
and L, is of strength =, where = is any normal monomodal calculus. In particular,
we well be concerned with (S4, S4) and (S4, S5)(®). Clearly an (S4, S4) model is
a quadruple S=(S, R,, R, v) where S is a non-empty set, E, and K, are two
reflexive and transitive relations on S and v is a truth function on formulas
satisfying the usual modal conditions. In particular we have

€] v A, s)=1 iff (4, sH=1 for all s’ such that sR,s’

2) vl A, s)=1 iff w(A, s’)=1 for all s’ such that sk,s’.

An (S4, S5) model is an (S4, S4) model with B, symmetrical. It is easy to see
that the bimodal logic (S4, S4) — i.e. S4 axiom schemes and rules on L; and L, —
is complete with respect to (S4, S4) models. Obviously the same holds for
(S4, S5) logic with respect to (S4, S5) models.

Using these ‘definitions we prove

Proposition 1. The (S4, S4) logic and the (S4, S5) logic have an infinite
number of non-equivalent modalities.

Proof. We will prove that there is a modality & such that for any atomic
formula A,

@ if m#*p then K™A < {7 A is not an (S4, Sb5) theorem.
Clearly it is sufficient to show
(ii) KA Q1A is an (S4, S4) theorem, but
(i) 8T A- QA is not an (S4, S5) theorem.
Fc-)r, suppose that (i) and (i) hold but for some m, p e N, with m<p,

iv) 8mA QP A is an (S4, S5) theorem.
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Then #A— Q8™ A is also an (S4, S5) theorem and by using (i) and the
transitivity of implication we can obtain the following (S4, S5) theorems

(v) KPA-QmA, GPA— K™MA, .., SPASRPIA.

The last element in the sequence (v) contradicts (iii) so (iv) cannot hold for any
m, peN.

Now define 84 to be M, M, A. 1t is obvious that in this case (ii) holds. To see
that (iii) is also the case, consider the following (S4, S5) infinite counter model:
let S={ay, by, a1, by, ...}. Let R, and R, be the reflexive closures of
{(@ns1, ) =0} and {(b,, a,): n=0} U {(a,, b,): w=0} respectively

R, R,

R
a0<fr>bo<——a1¢>b1(—la/2<:$‘b26-"...

Diagram 1

Suppose now that v(A4, ag)=1 but v(4, b)=0 and for all %+#0, both
(4, a,) =0 and (4, b,)=0. Then it is easy to check that v(8K4, a,) =1 but
v(RA4, a))=0. For, v(M, A, ap)=1; hence v(M,M,A, b)=1 and ultimately
(M, M, M; A, a))=1. But R, is reflexive, so (884, a,)=1. On the other
hand, (M, 4, a;)=0 and thus v(R4, a,)=0. In fact an inductive argument
shows that for all n#0, v(§*A— "4, a,) =0.

It is not unreasonable to expect that if we add to the above bimodal systems
some conditions connecting the two modal operators, then some combinations of
operators might be reducible. We proceed to show that in the (S4, *)-C logics
this is not always the case.

Let us recall that the (S84, S4)-C [(S4, S5)-C resp.] logic (see [2],) extends
(S4, S4) [(S4, S5)] with the following connecting axioms

(3) M2L1A—)L1M2A
(4) Ll LgA—) L2L1A; or, equivalently, MzMIA% M1 MgA .

Remark 1. Conditions (8) and (4) are equivalent in (S4, S5)-C, for the
following wff.’s are theorems of the system

MZLIA—>M2L1M2A MngA‘%MleLgMgA.
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Then using (4) we have Myl A— MoL, Ly M;A and so MpLiA— Ly LM, A
which ultimately yields (3). Use the same type of ideas to prove that (3) implies
(4) (see also [2]y). '

We first establish

Lemma 1. Let both Q, U range over {L, M}. Then for any wff. A, the
following are theorems of (S4, S5)-C

(i) Qng Uz.A(-éLl UzA ’ (ii) Q2M1 U2A(—>M1 UgA

Proof. Put @ =M. Using (3), we have that ML, U, A— LM, U, A is an
(84, 85)-C theorem. But U, and @, are of strength S5, so @, L, UyA— L U A.
The if part of (i) is immediate. Now let @ = L. Note that starting from (4), we
have L L,U,A— LyL,U,A. Since L, [M.] is an S5 operator, we derive
LUy A— Q2L U, A. The only if part of (i) is obvious. Passing to negations
yields (ii).

Proposition 2. (84, S5)-C has a finite number of non equivalent positive
“modalities, viz. any positive modality can be reduced to an equivalent sequence
having the form R, Q,U,, where Ry and U, range over the T irreducible positive
modalities in S4 and Q, ranges over the 3 irreducible positive modalities in S5.
Moreover, each modality can be reduced to one of length at most 8.

Proof. Note first that the maximum length of irreducible modalities in S4
and S5 is 8 and 1 respectively, so that the maximum length of B, Q, U, is 7. Now,
given any positive modality &, call ®' the modality obtained from & by using all
reduction laws of S4 [S5] on combinations of L, and M, [L, and M,]. We show by
induction on the number of initial operators in & that Proposition 2 holds. For
Q' of length 1 the result is obvious. Suppose that result holds for every modality
of length m and let & be of length m + 1, say & = Z&", with Z a single modal
operator. By the inductive hypothesis, & is equivalent to R; @, U; hence &' is
equivalent to ZR, Q. U,. Suppose now that Z = Z, is either L, or M;; then using
the S4 reduction laws, ZR, can be substituted by an irreducible combination of L,
and M,, say T,. Hence ' is equivalent to 71 @,S; and has length n<T7.

Suppose on the other hand that Z = Z, is either L, or M, and that R, is

“some sequence Yi..Y% of L; and M, with k<3. Now Z,R,Q.U; is
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Z, Y1 ... YiQ,Uy; starting from Y¥ apply Lemma 1, k—1 times, to obtain
@) Z,Y1Q: Y1 ... @YiQU.

Then starting from Z,Y1Q., apply repeatedly Lemma 1 to modality (i) and
obtain

(i) Yi...Y5Q,U,.
But (ii) is none other than R, Q,U,.

Corollary 1. The Fitting logic S4+ S5 has a finite number of distinct
modalities.

Proof. Recall that the Fitting logic is a bimodal logic determined by an S4
operator L, and an S5 operator L, with the following connecting axiom

®) C LeA—LjA.

But from (5) we can infer Ly A— L, L, A and ultimately L; Ly, A— L, L, A. So (3)
as well as (4) (see Remark 1) hold in the Fitting logic.

Remark 2. The property ascribed to (S4, S5)-C by Proposition 2 also
applies to the system which differs from (S4, S5)-C by lacking the two
necessitation rules, since both in the proof of Proposition 2 and in that of Lemma
1, only axiom schemes are used.

Given any =, the connecting conditions of (S4, %)-C are not always sufficient
to reduce modalities to a finite number. To see this we first prove

Lemma 2. Let & =M, LiM;L,. Then for any wff. A, we have that
K™ A— QA is a theorem of (S4, SH)-C. '

Proof. We only need to prove that R84 — K4 is an (S4, S4)-C theorem,
so start with the obvious L, RA — M, L, M, L, A; since M, is of strength S4, by (4)
obtain M,L,RA— M, M,L,M,L,A. Now apply (3) to this formula and get
MyL, ®RA— MLy MM, Ly A, which in turn yields, first M,L, R4 — KA and
then its immediate consequence L, M, L, 8A — KA. Now apply M, on both sides



N AN

Co

bo

N
e

[7] FINITE AXIOMATIZABILITY IN BIMODAL CALCULI 277

of the last implication and the desired result follows from the characteristic S4
axiom on M.
Our aim is to prove that for some formula A4,

(6) @11A_> @1:+1A

is not a theorem of (S4, S4)-C, if & is defined as in Lemma 2. To do this we use a
semantic argument. So we first recall that in [2], (S4, S4)-C was shown to be
complete with respect to S4-double models, which were defined as follows:
8=(S, Ri, R,, v)is an S4-double model (S4-d.m.) if S is an (S4, S4) model and
for every s, t, ueS

@) if SRyt and tR,u then there is w e S such that sR;w and wRyu
) if sR,t and sR,u then there is we S with tR;w and uR,w.

Let us now construct an S4-d.m. in which (6) fails to be valid. Consider the
infinite set

S={x0; Mo, A1, Qgy ..., bO) bb b27"" Cp, C1, Coy "-}

and for each n>0 let

(9) bn+1 RZ bn (10) Q1 Rl bn RZ Ay, (11) (1 RZ Cp Rl Ay
and let
(12) boRz Lo CLORZ Xy .

Furthermore let R, and R, be the smallest reflexive and transitive relations on S
satisfying (9) to (12). The following diagram gives an account of the structure of
(S, R,, R») (omitting loops and transitive closures for the purpose of readability)

1 113 112 C n
/Cl‘,\\ / ‘\a /sz\\ /Cz+1xa /CZ+2\ /2+3Ra /
a a n oy, Yon " . .
IR / 2\ /2\ /2+1\ 2+2‘,\\ a2+3§ 2+4\
<~ b, < <= by, <~ bon+1 <~ bon+2 <= bon+s <~
— for R1
o = for R,

Diagram 2
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It is easy to check that conditions (7) and (8) are satisfied; so consider a truth
valuation v such that for some atomic wff. A and for every n=0,
w4, x)=0=v(4, b,)and v(4, a,)=1=v(4, ¢,). ThenS=(S, R;, R, v)isan
S4-d.m.

Lemma 8. Let & be as in Lemma 2. Then v(RA, ¢,) =0.
Proof. Note that v(M,L,A, ay) =0, so
V(L Mo Lo A, ag) =0=2v(L My L, A, ¢p).
Hence v(RA4, ¢p) =0.
In order to show that (6) is not valid in S, we also prove

Lemma 4. Let & be as above. For every n=0 the following are true

(13)n 'U(LleLz RnA, b2n+1) =1 (14)11 ,v('@n—HA, a2n+2) =1
(15)n /U(@TH-ZA; a21z+2) = 0 (16)n v(ﬁn%-lA’ 02n+2) =1
a0, VKR™2A, Cope2) =0

Proof. By induction on n. As the proof develops we shall frequently use,
without explicit mention, conditions (9)-(12). In order to follow the steps of the
proof, it is therefore advisable to refer to Diagram 2. Consider first » = 0. Then
(13), holds, since v(LpA, co) =1=v(M,L,A, b)), so v, ML, A, b)=1. But
then

@ URA, ar)=1

and (14), is proved. Moreover by using Lemma 8 we obtain v(L, R84, )
=L RA, ) =v(L; KA, b)) =0, therefore

(ii) 'U(MZLZ @A, bl) =0.
Then we have

(ill) ’U(Ll M2 L2 \QA, bl) =0= 'U(Ll Mng -@A, ag)
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and conclude v(8&%A, a,) = 0. So, (15), is proved. To prove (16),, just note that
oM RA, ¢)=1 by (@), so w84, ¢=1. TFinally @i implies
WLy My Ly 8A, cy) =0 which, together with (iii), yields v(RRA, ¢) =0.

Assume now (13),~(17),); we set to prove (13),.,-(17),..1. Because of (16), we
have

ULy «QMIA, CZn+2) =1=v(MyL, 8" A, by,.s)

80 VL Mp Ly 8™ A, byis) =1, ie. (18),4; is proved. Note that (14),.,, i.e.
VR A, ayeq) =1, is an immediate consequence of (13),,;. Furthermore (17),
implies V(L R™FA, Coni2) =0=0(L Q™2 A, agy43) = VI, 82 A, bopes).  So
V(Mo Ly 872 A, by,ys) =0, hence

(iv) V(L My Ly ™2 A, byyig) = VI MLy 82 A, apye4)
=v(Ly ML, ‘@HZA, Cons+a) =0.

From (iv) we infer both v(8"*34, as,.) =0 and v(®"*3 4, cp.s) =0, so that
(15),+1 and (17),,, are proved.

To obtain (16),41, use (14),41 to yield v(M; KR™2A, Cours) = V(R2A, Coprs)
=1, concluding the proof of lemma.

We can now establish

Proposition 3. (S4, S4)-C has an infinite number of mon equivalent
modalities.

Proof. Because (84, S4)-C is complete with respect to §4-d.m.’s Lemma 4
shows that there is a modality ® and a wff. A such that for every n= 0,
8" A— &1 A is not an (4, S4)-C theorem. On the other hand, by Lemma 2, we
have that for every n>0, §*'A— & A is a theorem of (S4, S4)-C. Reasoning
as in Proposition 1, we have that if p # m, then R A <> 8" A4 is not an (4, S4)-C
theorem and so &7 is not equivalent to ™.

A finite number of distinet modalities is often required for the successful use
of the filtration method (see [6]). It is also closely connected with the property of
finite axiomatizability. We recall that a propositional calculus S is said to be
Jinitely axiomatizable (f.a.) if there is a finite set of schemas {A,, ..., A,} such
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that -~ A4; (=1, ..., n) and every theorem of S can be derived from 4,, ..., A,
with MP only. For instance, modal calculi containing the necessitation rule are
not necessarily finitely axiomatizable. It is well known that S4 and S5 are f.a.,
while T is not (see [5]). Since in the proofs of these facts the number of
irreducible modalities of a specifiec system plays a crucial role, Lemmon, in [5],
has been led to conjecture the following

Lemmon conjecture. Any system having a finite number of irreducible
modalities is finitely axiomatizable.

To our knowledge this conjecture has not been either proved or disproved.
The next result about (S4, S5)-C and the Fitting Logic provides other examples
in favour of the Lemmon conjecture.

We first define the system B5 as containing: the set X of the axioms of
(84, S5)-C, theset Y= {fA: Ae X, & afinite sequence of alternate L, and L},
and closed with respect to MP.

Lemma 5. The system B5 is deductively equivalent to (S4, S5)-C.

Proof. Clearly we only need to show that
@) each element in Y is derivable in (S4, S5)-C
(i) one can derive in B5 both necessitation rules.

As for (i), if A € Y, then it can be obtained by successive applications of both
necessitation rules of (84, S5)-C. Suppose-then that A =L, B with B a theorem
of B5. Let us proceed by induction on the length of proofs in B5. If B is an axiom
then result is obvious. So suppose that B is obtained by MP from the two B5
theorems C and C— B. From the inductive hypothesis we have that L, C and
Ly(C— B) are derivable in B5, which using an §4 axiom provides L,C— L, B.
Hence, L, B is a theorem of B5. The case A =L,B is analogous.

Now consider the logic C5 defined as the set of wif.’s which contains X, the
set Y'={L,L,L;A: AeX} and which is closed with respect to MP.

Proposition 4. The system (S4, S5)-C and the Fitting Logic are finitely
axiomatizable.

Proof. Note that C5 is equivalent to B5, since by Remark 2 every element
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of Yis equivalént to an element of Y’. Therefore C5 is equivalent to (S4, S§5)-C
and has the desired properties. To see that the Fitting Logic is also finitely
axiomatizable, proceed as above and as in Corollary 1.

Here finite axiomatizability and a finite number of non equivalent modalities
g0 together. Surprisingly, we can show that (S4, S4)-C, although characterized
by an infinite number of modalities, is also finitely axiomatizable. To do this, we
first define the system B4 determined by the set V={A: A is an axiom of
(S4, S4)-C}, the set W= {fA: AeV and & is a sequence of alternate L, and L}
and MP. For reasons analogous to those in Lemma 5, B4 is deductively
equivalent to (S4, S4)-C. Now define another system C4 as having MP as the
only inference rule and the following axioms:

(18 LlA—A 19 L,A—A
(20) L,L,B 21) L,L,L,B

where A is any wff. and B any axiom in (S4, S4)-C. In order to show that B4 and
C4 are deductively equivalent, we first prove

Lemma 6. Suppose R is a sequence of alternate L, and L, operators of
length>2. For any wff. A, either

(i) @A > L1 LzA or (ii) @A > L1 Lz Ll A
is derivable in C4.

Proof. We proceed by induction on the length n of §. Let n=3; then
either

(iii) SA=L,L,1,A or (iv) QSA=L,L,L,A.
We only need to prove result for (iv). Using (4), we obtain the C4 theorem
L LyLoA—LyL1 Ly A and by (18), (19) and (20) obtain (i).

Now let the length of & be 7+ 1 and suppose that Lemma 6 holds for any
modality & made up of » alternate L, and L, operators. Then either

(v) SA=R8'L,A or (vi) KRA=Q'L,A.
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We thus have that one of the following is a C4 theorem

(i) SAoelL,L,L;A (vil) RAeL L, [,L;A

(¥ SAoL LA ®  SAoLiLLA.

Cases (vii) and (x) are equivalent to (ii) and (i) respectively (use (18)-(20)). As for
(viii), by (4) and (18)-(20) we have first that L, LyA— Ly L, L, L, A is a theorem,
from which L, L, Ly A— L, L, L, Ly A is also such. The other implication in (viii) is
obvious, thus concluding the proof.

Lemma 7. For any wff. A, if A is derivable in C4 then so are LA and
Ly A.

Proof. By induction on the length of proofs in C4. Suppose first that A is
(18). Then L,L;A is a theorem of C4, and so are L,L,A—IL,A and
LiL,LzA— L A. Hence L; and L, A are C4 theorems. Similarly if A is (19).

If A is (20), A is equivalent to L;A; furthermore by Lemma 6, L,A is
equivalent to either (20) or (21). Hence both L; A and L, A are derivable in C4.

If A is (21), using again Lemma 4, we have that both L; A and L, A are
equivalent to either (20) or (21).

If A is obtained by MP from B and B— A, then by the inductive hypothesis

@ LB  and L{(B—A)
are derivable in C4. But

(i) Li(B—A)— (4 B—LA)
is an axiom of (S4, S4)-C, so L, L, (ii) is derivable in C4. By using (18) and (19) we
conclude that (ii) is also a theorem of C4. Hence from (i) and (ii) we infer L, A.
Analogously we prove that L, A is derivable in C4, when A is obtained by MP as

above.

The next proposition gives us an interesting counterexample for the converse
of Lemmon’s conjecture. '

Lemma 8 The system B4 18 deductively equivalent to (S4, S4)-C.
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Proof. Using Lemma 7, proceed as in the analogous proof of Lemma 5.

Proposition 5. The system (S4, S4)-C is finitely axiomatizable.

Proof. We obtain result by showing that B4 and C4 are deductively
equivalent. Obviously C4 ¢ B4. Now let A € V; using (18), (19) and (20) we derive
Ain C4. If AeW, then A= 8B, with B eV. Suppose that the length of & is
greater than 2; then by Lemma 6, 8B is derivable in C4. On the other hand if the
length of & is less than or equal to 2, then in all possible cases, by (18)-(21), 8&B is
derivable in C4. Using Lemma 8, we can then conclude that C4 is deductively
equivalent to (84, S4)-C and has the required properties.

The next results indicate that the connecting axioms play a decisive role in
obtaining finite axiomatizability; we show in fact that the logic (S4, S4) is not
f.a., hereby providing another example in favour of the Lemmon conjecture. To
do this, we shall make essential use of the following

Tarski theorem. Let S be any system. Then a sufficient and necessary
condition for S to not be finitely axiomatizable is that there be an infinity of
systems Sy, S1, ...y Sy, ... Such that for all n, S, cSps1, S, #8 and S = U S..

neN

We begin by considering the system D4 obtained from (S4, S4) by
substituting both necessitation rules of that system with

22) from A infer L,L,A

23) from A-»>B infer IL,A—-LB.
Clearly,

Lemma 9. The system D4 is deductively equivalent to (S4, S4).

Proof. That D4 ¢ (S4, S4) is obvious. To show the converse, we suppose
that A is a D4 theorem; using (22) we infer L; L, A, so L, A is derivable in D4. On
the other hand, by (23) the formula L; L, A— L, A is a theorem of D4, s0o LA is
also derivable.
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Define now the system D to be as D4 except for substituting (22) with

(24) from A--»B infer L,[,A—-L,L;B

Then construct an infinite sequence of systems Dy, D, ..., D,, ... where D, has
MP as the only inference rule and with the following set of axioms (n e N)

a,={A: is a theorem of D} u {(LyLy)"T}

T being a propositional tautology. Finally, set @ = U d, and let D. be the

neN

corresponding system. We show that D.. = D4 and that D, # D4, for each n.
First let us prove

Lemma 10. If A is atheorem of D4, then for somen e N, (L L)"T—Aisa
theorem of D.

Proof. By induction on the length of proofs in D4. If A is in axiom, then for
alln e N, (L; L))" T — A is a theorem in D. Suppose that A = L, L, B is obtained by
(22) from a D4 theorem B. Then by the inductive hypothesis there is # € N such
that (L, Ly)"T— B is a theorem of D. By (24), we have (I, Ly)""'T— A is a
theorem of D. Suppose now that A = (L, B— L, C) is obtained by (28) from the
D4 theorem B— C; then by inductive hypothesis there is 7 e N such that
(L1 L)' T — (B—> () is a theorem of D. But (23) is also a rule in D, so by using S4
axioms and rules on L; we conclude the D theorem (L, Ly)"T — (IyB— L, C).

Lemma 11. For each neN, D,cD,.,; moreover D, = D4.

Proof. By using an axiom of (84, S4) we readily obtain D,cD,,,. Let Abe
derived in D4. Then by Lemma 7, for some n € N, (L, L) T —> A is a theorem in D
and thus an axiom of D,. By MP, A is a theorem of D, and hence one of D... On
the other hand, let A be an axiom of D... If A € D, then A e D4. If, for some =,
A= (L Ly)"T, then by (22) A is again a D4 theorem.

Next we verify that for each n € N, D,, # D,.,. To do this we define a sequence
My, ..., M, of structures with I, = (M,, RY, R}) where M, = {by, a1, b1, Qp,
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by, ..., @y, b,} and
(25) b;Rla, (z=1)

(26) a1 R% b; (t=0)

b= —... b= bj<=.. b, <=a,<D,
Diagram 3
Furthermore, let R}, R} be the smallest reflexive and transitive relations on

M, — {bo} and M, respectively, satisfying both (25) and (26). Now let v be a truth
function on I , such that

27 v([, A, 8) satisfies (1) for all se M, — {bg}
@8) ‘ o1 A, by)=0
29 (A, 8) satisfies (2) for all seM,.

Let A be a wff. and » e N. We say that 9, is nice for A if v(A, a,) =1, for
every truth function v satisfying (27)-(29). We say that A is valid in I, if
v(4, s)=1, for every such truth function v and every s e M,.

Lemma 12. If A is a theorem of D and neN, then A is valid in IN,.

Proof. We only show that (24) is valid in 91T, (n € N). So take a structure 9%,
defined as above and suppose that v(B—C, s)=1, for all seM,. Suppose
furthermore v(L;L,B, b)=1, where bjeM, and j#0. Then v(,B, b)
=1=v.B, a) and so v(B, b)=v{B, a)=v(B, b_;)=1. By the inductive
hypothesis we infer

® wC, b)=1 i  v(C, =1 (m) w(C, a)=1. _
Using (ii) and (iii) we first conclude

(IV) 'U(Lz C, a;j) =1
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and hence v(L, L, C, a;) =1. Furthermore by (i), v(L,C, b;) =1 which with (iv)
yields o(,L,C, bp=1. We conclude the proof by noting that
WLy Ly B— L Ly C, by) = 1. :

We now prove that, for every n, the system D, can be characterized by IT,.

Proposition 6. For every wff. A, if A is a theorem of D, then I, is wice
for A. :

Proof. It is sufficient to prove that i, is nice for the axioms of D, and
niceness is preserved by MP. Then suppose first that A is a theorem of D; by
Lemma 12, A is valid in I, and so v(4, a,)=1 for every v. Now let
A=, L)"T. For 0<j<mn, it is easy to see, by induction on j, that
V(I LY T, b)=1=v(LhLYT, a1, for every v on-M,. So

WLy L)™' T, byey) =1=0((Ly1 L) 7'T, an).
By (26), we can infer v(Lo(Ly Lo)"*T, a,)=1 and so v((L, Ly)"T, a,)=1.

To show that the system D, is distinet from D,,;, we establish

Proposition 7. For all neN, I, is not nice for (Ly L)™' T.

Proof. It is immediate to check, by induction on j, that, for each j with
0<j=n,

® (L, Lz)iT, bj_l) =0

since (28) yields (i) for j = 1 and the inductive step is obvious. From (i) and (26)
we infer v(Ly(L; L))" T, a,)=0 and ultimately v((L; L))" T, a,)=0.

Corollary 2. For each neN, D,#D..
Proof. By Lemma 11, Proposition 6 and Proposition 7.
Corollary 3. The system (S84, S4) is not finitely axiomatizable.

Proof. By Lemma 9, Lemma 11, Corollary 2 and Tarski’s theorem.
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A similar argument shows that

Corollary 4. The system (S4, Sb) is not finitely axiomatizable.
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Sunto

Sistemi che contengono due o pir modalita distinte (calcoli bimodali e calcoli
plurimodali) compaiono negli ambiti pi diversi: in Teoria della computazione, in
Linguistica e in Logica matematica vera e propria. Una metateoria concernente la classe
delle logiche (bi- ) pluri-modali non & stata sufficientemente sviluppata; il presente
lavoro avanza in questa direzione, misurandosi rispetto ad una congettura di Lemmon
che riguarda il numero di modalita, mon equivalenti di un sistema e la sua finita
assiomatizzabilita.






