SEVER SILVESTRU DRAGOMIR (*)

On best approximation in the sense of Lumer and applications (**)

1 - Introduction

Let E be a linear space over real or complex number field K. A mapping [,] of $E \times E$ into K is a semi-inner product in the sense of Lumer or L-semi-inner product on E, for short, if the following conditions (P1)-(P4) are satisfied (see for example [6] and [3]):

- (P1) $[x, x] \ge 0$ for all $x \in E$ and [x, x] = 0 implies x = 0;
- (P2) $[\lambda x, y] = \lambda [x, y]$ and $[x, \lambda y] = \overline{\lambda} [x, y]$ for all $\lambda \in K$ and $x, y \in E$;
- (P3) [x+y, z] = [x, z] + [y, z] for all $x, y, z \in E$;
- (P4) $|[x, y]|^2 \le [x, x][y, y]$ for all $x, y \in E$.

It is easy to see that the mapping $E\ni x\mapsto [x,\ x]^{1/2}\in \mathbb{R}_+$ is a norm on E and if E is a normed space, then every L-semi-inner product on E which generates its norm is of the form $[x,\ y]=\langle \tilde{J}(y),\ x\rangle$ for all $x,\ y\in E$, where \tilde{J} is a section of normalized dual mapping [9]. It is also known that a normed linear space E is smooth iff there exists a unique L-semi-inner product which generates its norm or if and only if there exists a continuous L-semi-inner product which generates

^(*) Address: Trandafirilor 60, Bl. 34, Sc. D, Ap. 9, R-1600 Băile Herculane, Jud. Caraș-Severin.

^(**) Ricevuto: 17-X-1989.

the norm, i.e., a L-semi-inner product satisfying condition (see [3])

$$\lim_{t\to 0} \operatorname{Re}[y, x+ty] = \operatorname{Re}[y, x] \quad \text{ for all } x, y \in E.$$

Let two elements in E and [,] a L-semi-inner product on E which generates the norm. The element x is said to be Lumer-orthogonal over y or L-orthogonal over y, for short, if [y, x] = 0. We denote this fact by xLy $[2]_{1,2}$. For some properties of L-semi-inner products, L-orthogonality, representation of continuous linear functionals in terms of semi-inner product we send to $[2]_{1,2}$, [3], [7], [9] and [11].

2 - Characterizations of best approximation element in the sense of Lumer

Now, we recall some concepts and results in best approximation theory that will be used in the sequel.

Let E be a normed space and x, y two elements in E. The vector x is called orthogonal in the sense of Birkhoff over y if $||x + \lambda y|| \ge ||x||$ for all $\lambda \in K$. We denote this $x \perp_B y$.

If G is a nondense linear subspace in E and $\mathscr{L}_G(x_0) := \{g_0 \in G, ||x_0 - g_0|| = \inf_{g \in G} ||g - x_0||\}$, denotes the set of best approximation element referring to $x_0 \in E \setminus \bar{G}$ in G, then the following simple characterization lemma in terms of Birkhoff orthogonality holds (see Lemma 1.14 from [10]).

Lemma 1. Let E, G, x_0 be as above and $g_0 \in G$. Then $g_0 \in \mathscr{L}_G(x_0)$ if and only if $x_0 - g_0 \perp_B G$.

For other characterizations of best approximation element in normed spaces see [10] and [2]₂.

The following result is also valid (see [2]₂, Lemma 1.1).

Lemma 2. Let E be a smooth normed linear space and x, y two elements in E. Then xLy if and only if $x \perp_B y$.

In virtue of this fact we can introduce the following concept.

Def. 1. Let E be a normed linear space, [,] be a L-semi-inner product on E which generates its norm, G a nondense linear subspace of E, $x_0 \in E \setminus \tilde{G}$ and

 $g_0 \in G$. The vector g_0 is called the best approximation element of x_0 in G in the sense of Lumer relative to semi-inner product [,], or L-best approximation element of x_0 , for short, if $x_0 - g_0 LG$.

Proposition 1. Let E, [,], G, x_0 and g_0 be as above and denote $\mathscr{L}_G^L(x_0)$ the set of L-best approximation elements referring to x_0 in G, then $\mathscr{L}_G^L(x_0) \subseteq \mathscr{L}_G(x_0)$. If, in addition, we suppose that E is smooth, then $\mathscr{L}_G^L(x_0) = \mathscr{L}_G(x_0)$.

Proof. Let $g_0 \in \mathscr{L}_G^L(x_0)$. Then $[g, x_0 - g_0] = 0$ for all $g \in G$. On the other hand, we have

$$||x_0 - g_0||^2 = [x_0 - g_0, \ x_0 - g_0] = [x_0, \ x_0 - g_0] = [x_0 - g, \ x_0 - g_0]$$

$$\leq ||x_0 - g|| \, ||x_0 - g_0|| \quad \text{for all } g \in G$$

what implies $||x_0 - g_0|| \le ||x_0 - g||$ for all $g \in G$, i.e., $g_0 \in \mathscr{L}_G(x_0)$. The second part of proposition follows by Lemma 1 and Lemma 2.

Let G be a linear subspace and denote

$$G^L := \{ w \in E | wLg \quad \text{ for all } g \in G \}$$
.

It is easy to see that $O \in G^L$, $G \cap G^L = \{0\}$ and $\alpha \in K$, $x \in G^L$ imply $\alpha x \in G^L$.

Proposition 2. Let E be a normed linear space, [,] be a L-semi-inner product on it, G be a nondense linear subspace in E, $x_0 \in E \setminus \bar{G}$ and $g_0 \in G$. Then $g_0 \in \mathscr{L}^L_G(x_0)$ if and only if there exists an element $w_0 \in G^L$ such that

$$(1) x_0 = g_0 + w_0.$$

The proof is obvious by the definition of L-best approximation and we omit the details.

From the above proposition we have the next

Corollary. Let E, [,], G and x_0 be as in Proposition 2. Then the following statements are equivalent:

(i) $\mathscr{L}_{G}^{L}(x_{0})$ contains at least one [at most one (a unique)] element;

(ii) there exists at least one [at most one (a unique)] element $g_0 \in G$ and at least one [at most one (a unique)] $w_0 \in G^L$ such that (1) holds.

Remark 1. If E is a smooth normed linear space then $g_0 \in \mathcal{L}_G(x_0)$ iff there exists $w_0 \in G^L$ such that (1) holds.

The following result is important in the sequel.

Proposition 3. Let E, [,] be as above and f be a nonzero continuous linear functional on E, $x_0 \in E \setminus \text{Ker}(f)$ and $g_0 \in \text{Ker}(f)$. Then $g_0 \in \mathscr{L}^L_{\text{Ker}(f)}(x_0)$ if and only if the following representation holds

(2)
$$f(x) = ||f|| [x, \lambda_0(x_0 - g_0)/||x_0 - g_0||]$$

for all $x \in E$ where $\lambda_0 := \overline{f(x_0)}/|f(x_0)|$.

Proof. Let $g_0 \in \mathscr{B}^L_{\mathrm{Ker}(f)}(x_0)$ and put $w_0 := x_0 - g_0 \neq 0$. Then $w_0 \in \mathrm{Ker}(f)^L$. Since $f(x) w_0 - f(w_0) x \in \mathrm{Ker}(f)$ for all $x \in E$, hence $[f(x) w_0 - f(w_0) x, w_0] = 0$ what implies $f(x) = [x, \overline{f(x_0)}(x_0 - g_0)/||x_0 - g_0||^2]$ for all $x \in E$ and $||f|| = |f(x_0)|/||x_0 - g_0||$, then (2) holds. Conversely, if (2) is valid, then $x_0 - g_0 L \mathrm{Ker}(f)$, i.e., $g_0 \in \mathscr{B}^L_{\mathrm{Ker}(f)}(x_0)$.

Corollary. Let f and x_0 , be as above. Then the following statements are equivalent:

- (i) $\mathscr{L}^{L}_{\mathrm{Ker}(f)}(x_0)$ contains at least one [at most one (a unique)] element;
- (ii) there exists at least one [at most one (a unique)] element $g_0 \in \text{Ker}(f)$ such that the representation (2) holds.

Remark 2. If E is smooth, then $g_0 \in \mathcal{L}_{\text{Ker}(f)}(x_0)$ if and only if the representation (2) holds.

By the use of Proposition 3 we can prove the second characterization of *L*-best approximation element.

Proposition 4. Let G be a closed linear subspace in E, [,] be a L-semi-inner product which generates its norm, $x_0 \in E \setminus G$ and $g_0 \in G$. Then $g_0 \in \mathscr{L}_G^L(x_0)$

if and only if for all functional $f \in (G \oplus \operatorname{Sp}(x_0))^*$ such that $\operatorname{Ker}(f) = G$, then the following representation holds

(3)
$$f(x) = ||f||_{G \oplus \operatorname{Sp}(x_0)} [x, \ \lambda_0(x_0 - g_0) / ||x_0 - g_0||]$$

for all $x \in G \oplus \operatorname{Sp}(x_0)$, where λ_0 is as above.

The following result also holds.

Corollary. Let G and x_0 be as above. Then $\mathscr{L}_G^L(x_0)$ contains at least one [at most one (a unique)] element if and only if for all $f \in (G \oplus \operatorname{Sp}(x_0))^*$ such that $\operatorname{Ker}(f) = G$ there exists at least one [at most one (a unique)] element $g_0 \in G$ such that (3) holds.

Remark 3. If E is smooth, then $g_0 \in \mathscr{L}_G(x_0)$ iff the representation (3) is valid.

${\bf 3}$ - Characterizations of semitchebychefian, proximinal and tchebychefian subspaces in the sense of Lumer

Firstly, we recall these concepts in the classic sense.

A linear subspace $G, G \neq E$, is called *proximinal* [semitchebychefian (tchebychefian)] in E if for every $x_0 \in E$ the set $\mathcal{L}_G(x_0)$ contains at least one [at most one (a unique)] element.

Def. 2. Let E be a normed linear space and [,] be a L-semi-inner product which generates its norm. The linear subspace G, $G \neq E$, is called *proximinal* [semitchebychefian (tchebychefian)] in the sense of Lumer relative to [,] if $\mathscr{L}_{C}^{L}(x_{0})$ contains at least one [at most one (a unique)] element for all x_{0} in E.

The following theorem of characterization holds.

Theorem 1. Let G be a closed linear subspace in E, [,] be a L-semi-inner product on it which generates the norm. Then G is semitchebychefian [proximinal (tchebychefian)] in the sense of Lumer if and only if for all $x \in E$ there exists at most one [at least one (a unique)] element $x' \in G$ and at most one [at least one

(a unique)] element $x'' \in G^L$ such that

$$(4) x = x' + x''$$

and we denote this $E = G \oplus G^{L}[E = G + G^{L}(E = G \oplus G^{L})].$

The proof is obvious by the definitions of semitchebychefian, proximinal and tchebychefian linear subspaces in Lumer's sense and from Corollary of Proposition 2. We omit the details.

Remark 4. If E is smooth then G is semitchebychefian [proximinal (tchebychefian)] iff $E = G \boxplus G^L[E = G + G^L(E = G \oplus G^L)]$.

It is known that a finite-dimensional linear subspace in a normed linear space is proximinal. We shall improve this result.

Proposition 5. Let E be a normed space and [,] be a L-semi-inner product which generates its norm. Then every finite-dimensional linear subspace in it is proximinal in the sense of Lumer.

Proof. Let G_n be a *n*-dimensional linear subspace in E and $x_0 \in E \setminus G_n$. Put $G_{n+1} = G_n \oplus \operatorname{Sp}(x_0)$. Then G_n can be ragarded as a hyperplane in G_{n+1} .

On the other hand, let $\{x_2, ..., x_{n+1}\}$ be a base in G_n and $x_1 \in G_{n+1} \setminus G_n$ such that $\{x_1, x_2, ..., x_{n+1}\}$ is also a base in G_{n+1} . We construct the vectors

$$e_1 = x_1/||x_1||$$
 $e_2 = x_2 - [x_2, e_1]e_1, ..., e_{n+1} = x_{n+1} - \sum_{i=1}^n [x_{n+1}, e_i]e_i.$

It is easy to see that

$$[e_2, e_1] = [e_3, e_1] = \dots = [e_{n+1}, e_1] = 0$$

and since

$$x_1 = ||x_1|| e_1$$
 $x_2 = [x_2, e_1] e_1 + e_2 \dots$ $x_{n+1} = \sum_{i=1}^n [x_{n+1}, e_1] e_i + e_{n+1}$

we have $\{e_1, e_2, ..., e_{n+1}\}$ is a base in G_{n+1} and $\{e_2, ..., e_{n+1}\}$ is also a base in G_n . Then $[u, e_1] = 0$ for all $u \in G_n$ and since $e_1 = \lambda_0 x_0 + u_0$ with $\lambda_0 \in K \setminus \{0\}$ and $u_0 \in G_n$, we obtain: $[u, x_0 - v_0] = 0$ for all $u \in G_n$, where $v_0 := -\frac{1}{\lambda_0} u_0 \in G_n$, i.e., $x_0 - v_0 L G_n$ what is equivalent to $v_0 \in \mathscr{L}_G^L(x_0)$ and the proposition is proven.

Consequences: I. Let E be a normed linear space, [,] be a L-semi-inner product on it which generates the norm and G be a finite-dimensional linear subspace in it. Then

$$E = G + G^L$$

II. Let L be a smooth (and strict convex) normed space and G be its linear subspace. If $S_G := \{g \in G | ||g|| \le 1\}$ is weakly sequentially compact in E then the following decomposition holds

(5)
$$E = G + G^{L}(E = G \oplus G^{L}).$$

If E is reflexive (and strict convex) then for all closed linear subspace G in E the decomposition (5) is valid (see also $[2]_2$).

The proof of first statement follows by Klee's theorem (see [5] or [10], Corollary 2.1) and by the above theorem. The second assertion is obvious.

III. Let E be a normed linear space and suppose that E^* endowed with the canonical norm is smooth (and strict convex) normed space. If F is a linear subspace in E^* and F is $\sigma(E^*, E)$ -closed or $S_F := \{h \in F | \|h\| \le 1\}$ is compact in $\sigma(E^*, E)$ or S_F is weak* sequentially compact in E^* , then the following decomposition holds

(6)
$$E^* = F + F^L$$
 $(E^* = F \oplus F^L)$.

The proof follows by Phelps' theorems (see [8], p. 239 or [10], Corollary 2.5 and Theorem 2.2) by Klee's theorem (see [5] or [10], Theorem 2.3) and by Theorem 1 for the smooth case (see also [2]₂).

The following result establishes a connection between proximinal [semitche-bychefian (tchebychefian)] linear subspace in the sense of Lumer and the representation of continuous linear functional on a normed linear space in terms of L-semi-inner products.

Theorem 2. Let f be a nonzero continuous linear functional on normed space E and [,] be a L-semi-inner product which generates its norm. Then the following statements are equivalent:

- (i) Ker(f) is proximinal [semitchebychefian (tchebychefian)] in the sense of Lumer:
- (ii) there exists at least one [at most one (a unique)] element $u_f \in E$, $||u_f|| = 1$ such that the following representation holds

(7)
$$f(x) = ||f|| [x, u_f]$$
 for all $x \in E$.

Firstly, we shall prove the following lemma what is important in themselves too.

Lemma 3. Let H be a closed linear hyperplane containing the null element and [,] be a L-semi-inner product which generates the norm of E. Then H is proximinal in the sense of Lumer if and only if there exists a nonzero element u in X such that uLH.

Proof. If H is proximinal in the sense of Lumer and $x_0 \in E \setminus H$, then there exists an element $g_0 \in H$ such that $g_0 \in \mathcal{L}_H^L(x_0)$ and putting $u := x_0 - g_0$ we have uLH and $u \neq 0$.

Conversely, assume that $x_0 \in E \setminus H$, $u \in E$, uLH and $u \neq 0$ and let f be a nonzero continuous linear functional on X such that H = Ker(f). If we choose $g_0 := x_0 - f(x_0)/f(u)u$ $(f(u) \neq 0$ because $u \notin H$) we have $g_0 \in \text{Ker}(f)$ and since

$$[y, x_0 - g_0] = (\overline{f(x_0)/f(u)})[y, u] = 0$$
 for all $y \in H$

we deduce $g_0 \in \mathscr{L}^L_H(x_0)$, i.e., H is proximinal in the sense of Lumer and the lemma is proved.

Proof of the Theorem 2. (i) \Rightarrow (ii).(a). Let $\operatorname{Ker}(f)$ be proximinal in the sense of Lumer. Then by Lemma 3 there exists $w_0 \in E \setminus \operatorname{Ker}(f)$ such that $w_0 L \operatorname{Ker}(f)$. By an argument similar to that in the proof of Proposition 3 we have

$$f(x) = [x, \overline{f(w_0)} w_0 / ||w_0||^2]$$
 for all $x \in E$ $||f|| = |f(w_0)| / ||w_0||$.

Now, let $\lambda_0 := \overline{f(w_0)}/|f(w_0)| \in K$ and put $u_f := \lambda_0 w_0/||w_0||$ then we obtain representation (7).

(ii) \Rightarrow (i).(a). Suppose that $u_f \in E$, $||u_f|| = 1$ verifies (7). Then $u_f L \operatorname{Ker}(f)$ and by Lemma 3 it follows that $\operatorname{Ker}(f)$ is proximinal in the sense of Lumer.

(i) \Rightarrow (ii).(b). Assume that $\operatorname{Ker}(f)$ is semitchebychefian in the sense of Lumer and suppose, by absurd, that there exists two distinct elements u_f , $v_f \in E$, $||u_f|| = ||v_f|| = 1$ such that they satisfy (10). Then u_f , $v_f \in \operatorname{Ker}(f)^L$. Now, let $x \in E \setminus \operatorname{Ker}(f)$ and put

$$y_0 := x - f(x) u_f / f(u_f)$$
 $y'_0 := x - f(x) v_f / f(v_f)$.

Then $f(y_0) = f(y_0') = 0$, i.e., $y_0, y_0' \in \text{Ker}(f)$.

On the other hand, for all $y \in \text{Ker}(f)$ we have

$$[y, x-y_0] = (\overline{f(x)/f(u_f)})[y, u_f] = 0$$

and a similar relation for y_0' . Consequently, $x-y_0$, $x-y_0'$ $L \operatorname{Ker}(f)$, i.e., y_0 , $y_0' \in \mathscr{L}_{\operatorname{Ker}(f)}^L(x)$. Now, if we assume that $y_0 = y_0'$ we derive $u_f/f(u_f) = v_f/f(v_f)$ and since $f(u_f) = f(v_f) = ||f||$ one gets $u_f = v_f$. In conclusion, $y_0 \neq y_0'$ and since y_0 , $y_0' \in \mathscr{L}_{\operatorname{Ker}(f)}^L(x)$ we obtain a contradiction to the fact that $\operatorname{Ker}(f)$ is semitchebychefian in the sense of Lumer and the implication is proven.

(ii) \Rightarrow (i).(b). Assume that (7) holds for a unique element $u_f \in E$, $||u_f|| = 1$ and suppose, by absurd, that there exists $x_0 \in E \setminus \text{Ker}(f)$ and two distinct elements g_0 and g'_0 in $\mathscr{D}^L_{\text{Ker}(f)}(x_0)$. As above, we obtain

$$f(x) = [x, \ \overline{f(x_0)}(x_0 - g_0) / \|x_0 - g_0\|^2] \qquad x \in E \qquad \qquad \|f\| = |f(x_0)| / \|x_0 - g_0\|^2$$

and a similar representation for g_0' . Put

$$u_{f} := \overline{f(x_{0})}(x_{0} - g_{0})/(|f(x_{0})||x_{0} - g_{0}||) \qquad v_{f} := \overline{f(x_{0})}(x_{0} - g_{0}')/(|f(x_{0})||x_{0} - g_{0}'||).$$

Then $||u_f|| = ||v_f|| = 1$ and u_f , v_f satisfy (7). Now, if we assume that $u_f = v_f$, we derive $(x_0 - g_0)/||x_0 - g_0|| = (x_0 - g_0')/||x_0 - g_0'||$ and since $||x_0 - g_0|| = |f(x_0)|/||f||$ $= ||x_0 - g_0'||$ we obtain $g_0 = g_0'$. Consequently, there exists two distinct elements u_f , $v_f \in E$, $||u_f|| = ||v_f|| = 1$ and they satisfy (7), what produce a contradiction and the proof is finished.

(i) \Leftrightarrow (ii).(c). The statement: Ker(f) is tchebychefian in Lumer's sense if and

only if there exists a unique element $u_f \in E$, $||u_f|| = 1$ such that (7) holds, follows by the above arguments.

The next corollary contains a characterization of proximinal [semitchebychefian (tchebychefian)] linear subspaces in the sense of Lumer in normed linear spaces in terms of continuous linear functionals.

Corollary. Let G be a closed linear subspace in normed linear space E, $G \neq E$, and [,] be a L-semi-inner product which generates its norm. Then the following statements are equivalent:

- (i) G is proximinal [semitchebychefian (tchebychefian)] in the sense of Lumer;
- (ii) for all $x_0 \in E \setminus G$ and for any $f \in (G \oplus \operatorname{Sp}(x_0))^*$ such that $\operatorname{Ker}(f) = G$, there exists at least one [at most one (a unique)] element $u_{x_0,f} \in G \oplus \operatorname{Sp}(x_0)$, $||u_{x_0,f}|| = 1$ with the property: $f(x) = ||f||_{G \oplus \operatorname{Sp}(x_0)}[x, u_{x_0,f}]$ for all $x \in F \oplus \operatorname{Sp}(x_0)$.

The proof follows by the previous theorem for the normed linear space $E_{x_0} := G \oplus \operatorname{Sp}(x_0)$. We omit the details.

The following consequences are interesting in themselves too.

Consequences: I. Let E be a normed space, [,] be a L-semi-inner product which generates its norm and G be a finite-dimensional linear subspace in E. Then for all nonzero continuous linear functional f on E there exists at least one element $u_{G,f} \in G$, $||u_{G,f}|| = 1$ such that

$$f(x) = ||f|| [x, u_{G,f}]$$
 for all $x \in G$.

II. Let E be a smooth (and strict convex) normed space and f be a nonzero continuous linear functional on it. If $S_{\text{Ker}(f)} = \{h \in \text{Ker}(f) | ||h|| \le 1\}$ is weakly sequentially compact in E, then there exists an (a unique) element $u_f \in E$, $||u_f|| = 1$ such that (7) holds.

Finally, if we assume that E is reflexive (and strict convex) then for all $f \in E^* \setminus \{0\}$ there exists an (a unique) element $u_f \in E$, $||u_f|| = 1$ such that (7) holds (see also $[2]_2$).

The proof of first statement follows by Klee's Theorem (see [5] or Corollary 3.1 from [10]) and by the above theorem. The second statement is obvious.

III. Let E be a normed linear space and suppose that E^* endowed with the canonical norm is smooth (and strict convex). If $\Phi \in E^{**} \setminus \{0\}$ satisfies the

conditions $\operatorname{Ker}(\Phi)$ is $\sigma(E^*, E)$ -closed or $S_{\operatorname{Ker}(f)}$ is compact in $\sigma(E^*, E)$ or $S_{\operatorname{Ker}(f)}$ is weak* sequentially compact in E^* , then there exists a (a unique) functional $f_{\Phi} \in E^*$, $\|f_{\Phi}\| = 1$ such that the following representation holds

$$\Phi(f) = \|\Phi\| [f, f_{\Phi}]^* \quad \text{for all } f \in E^*$$

where [,]* is the unique semi-inner product which generates the norm of E^* (see also [2]₂).

References

- [1] M. M. DAY, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313-317.
- [2] S. S. Dragomir: [•]₁ Representation of continuous linear functionals on smooth reflexive Banach spaces, L'Anal. Num. et la Théor. de L'Approx. 16 (1987), 19-28; [•]₂ Representation of continuous linear functionals on smooth normed linear spaces, ibid. 17 (1988), 125-132.
- [3] J. R. GILES, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), 436-446.
- [4] R. A. HIRSCHFELD, On best approximation in normed vector spaces, Nieuw Arch. Wisk. 6 (1958), 41-51.
- [5] V. KLEE, The support property of a convex set in a linear normed space, Duke Math. J. 15 (1948), 767-772.
- [6] G. LUMER, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.
- [7] P. L. Papini, Un'osservazione sui prodotti semi-scalari negli spazi di Banach, Boll. Un. Math. Ital. 6 (1969), 686-689.
- [8] R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
- [9] I. ROSCA, Semi-produits scalaires et représentation du type Riesz pour les fonctionnelles linéaires et bornées sur les espaces normés, C.R. Acad. Sci. Paris 283 (1976), 79-81.
- [10] I. SINGER, Best approximation in normed linear spaces by elements of linear subspaces (Romanian), Ed. Acad. R.S.R., Bucuresti 1967.
- [11] R. A. TAPIA, A characterization of inner product spaces, Proc. Amer. Math. Soc. 41 (1973), 569-574.

Résumé

Dans cet article on introduit la notionne de la meilleure approximation dans le sense de Lumer et on donne quelques caractérisations et applications.
