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SEVER SILVESTRU DRAGOMIR (¥)

On best approximation in the sense of Lumer

and applications (*%)

1 - Introduction

Let E be a linear space over real or complex number field X. A mapping [, ] of
E X E into K is a semi-inner product in the sense of Lumer or L-semi-inner
product on E, for short, if the following conditions (P1)-(P4) are satisfied (see for
example [6] and [3]):

P1) [x, x]=0 for all xe £ and [x, x]=0 implies = =0;

P2) [, yl=2lz, y] and [z, Ayl=2Alx, y] for all A€ K and x, y<E;
P3) ’[x+y, Zl=[x, 2]+1y, 2] for all x, y, 2z E;

P4 =, ylP<[z, «lly, y]l for all z, yeE.

It is easy to see that the mapping E » x— [z, x]'*e R, isanormon E and if E
is a normed space, then every L-semi-inner product on E which generates its
norm is of the form [x, y]= (J(y), ) for all #, y € E, where J is a section of
normalized dual mapping [9]. It is also known that a normed linear space F is
smooth iff there exists a unique L-semi-inner product which generates its norm
or if and only if there exists a continuous L-semi-inner product which generates
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the norm, i.e., a L-semi-inner product satisfying condition (see [3])

ImRely, ©+tyl=Rely, «] for all ¢, yck.

Let two elements in E and [, ] a L-semi-inner product on F which generates
the norm. The element x is said to be Lumer-orthogonal over y or L-orthogonal
over y, for short, if [y, x]=0. We denote this fact by xLy [2]; ,. For some
properties of L-semi-inner products, L-orthogonality, representation of conti-
nuous linear functionals in terms of semi-inner product we send to [2]; », [3], [7],
[9] and [11].

2 - Characterizations of best approximation element in the sense of Lumer ‘

Now, we recall some concepts and results in best approximation theory that
will be used in the sequel. _ :

Let E be a normed space and =, ¥ two elements in E. The vector « is called
orthogonal in the sense of Birkhoff over y if [lv + Ayl|=|la]| for all Ae K. We
denote this x Lpy. ' ’

If G is a nondense linear subspace in E and Fu(®o):={g,€ G, |lro— gdl
= inf llg — o]}, denotes the set of best approximation element refering to

xoe EN\ G in G, then the following simple characterization lemma in terms of
Birkhoff orthogonality holds (see Lemma 1.14 from [10]).

Lemma 1. Let E, G, x, be as above and go € G. Then g€ L(xo) if and
Only if mo_go_LBG.

For other characterizations of best approximation element in normed spaces
see [10] and [2],.
The following result is also valid (see {2],, Lemma 1.1).

Lemma 2. Let E be a smooth normed linear space and x, y two elements
wn E. Then xLy if and only if x 1py.

In virtue of this fact we can introduce the following concept.

Def. 1. Let E be a normed linear space, {, ] be a L-semi-inner product on E
which generates its norm, G a nondense linear subspace of E, x,€ E\ G and
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go € G. The vector g, is called the best approximation element of z, in G in the
sense of Lumer relative to semi-inner product [, ], or L-best approxrimation
element of x,, for short, if xy— g, LG.

- Proposition 1. LetE, [,], G, %, and g, be as above and denote Ph(x,) the
set of L-best approximation elements referring to xy in G, then Py ¢ Lelxy).
If, in addition, we suppose that E is smooth, then PLgx,)= PLelwx).

Proof. Let g,e Phx,). Then [g, 2o—go]l =0 for all ge G. On the other
hand, we have

"xo - gouz = {29 — go, %o — gol =[x, %o — gol=1[%o—g, %o — gol
<[lwo—gllllwo—goll  for all ge @

what implies [, — go| <o — g]] for all g € G, i.e., go€ Lelxo).
The second part of proposition follows by Lemma 1 and Lemma 2.

Let G be a linear subspace and denote
Gr:={weE|wLg for all geG}.
It is easy to see that 0 e G*, GNG*={0} and x € K, x € G* imply ax € G
Proposition 2. Let E be a normed linear space, [,] be a L-semi-inner
product on it, G be a nondense linear subspace in K, xoe E \\G and g € G. Then
go € P (xo) if and only if there exists an element w, € G such that

@ Lo =go+ Wp.

The proof is obvious by the definition of L-best approximation and we omit
the details.

From the above proposition we have the next
Corollary. Let E,[,], G and x, be as in Proposition 2. Then the following

statements are equivalent:
(i) Ph(xy) contains at least one [at most one (a unigue)] element;
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(i) there exists at least one [at most one (a unique)] element g,€ G and at
least one [at most one (a unique)] wye G such that (1) holds.

Remark 1. If E is a smooth normed linear space then g, € Ps(x,) iff there
exists wy e G* such that (1) holds.

The following result is important in the sequel.

Proposition 3. Let E, [,] be as above and f be a monzero continuous
linear functional on E, x, € E \ Ker(f) and g, € Ker(f). Then gy € Lhovs (o) if
and only if the following representation holds

@ fl)y= ”f” [, Ao(ao— goX|lwe — gdll]
for all xe E where xo:=F(@o)/| f ()|

Proof. Let go€ Phe(®) and put wy:=wx,—go#0. Then w,e Ker(f)-
Since f(x)wo — f(wo) ¥ € Ker(f) for all xeE, hence [f(x)w,—f(wo)z, wel=0
what implies f(@) =[x, flxo)@o—go)llwo— g1 for all axeE and
Il =|f@)lwo—gd, then (2) holds. Conversely, if (2) is valid, then
%o — go L Ker(f), i.e., go€ Phkop(@o).

Corollary. Let f and x,, be as above. Then the following statements are
equivalent:

() Phor(@o) contains at least one [at most one (a unique)] element,

(i) there exists at least one [at most one (a unique)] element g, € Ker(f) such
that the representation (2) holds.

Remark 2. If E is smooth, then gy € Prexs(®) if and only if the represen-
tation (2) holds.

By the use of Proposition 3 we can prove the second characterization of

L-best approximation element.

Proposition 4. Let G be a closed linear subspace in E, [,] be a L-semi-
inmer product which generates its norm, x,€ E \ G and g, € G. Then g, € Lh(x,)
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if and only if for all functional fe (G @ Sp@y))* such that Ker(f) =G, then the
Jfollowing representation holds

3 f@)=|f ”G@Sp(xo)[x; Ao — go)/llxo ~ gll]
Jor all x € G @ Sp(xy), where X is as above.
The following result also holds.

Corollary. Let G and x, be as above. Then F(x,) contains at least one [at
most one (a unique)] element if and only if for all fe (G @ Sp(xe)* such that
Ker(f) = G there exists at least one [at most one (a unique)] element g, € G such
that (8) holds.

Remark 3. If E is smooth, then gy e ZLy(w) iff the representation (3) is
valid. '

3 - Characterizations of semitchebychefian, proximinal and tchebychefian
subspaces in the sense of Lumer

Firstly, we recall these concepts in the classic sense.

A linear subspace G, G#E, is called proximinal [semitchebychefian
(tchebychefian)] in E if for every x, € E the set Py(x,) contains at least one [at
most one (a unique)] element.

Def. 2. Let E be a normed linear space and [, ] be a L-semi-inner product
which generates its norm. The linear subspace G, G#E, is called proximinal
[semitchebychefion (ichebychefian)] in the sense of Lumer relative to [,] if
P(x,) contains at least one [at most one (a unique)] element for all «, in E.

The following theorem of characterization holds.

Theorem 1. Let G be a closed linear subspace in E, [, ] be a L-semi-inner
product on it which generates the norm. Then G is semitchebychefion [proximi-
nal (tchebychefian)] in the sense of Lumer if and only if for all x € E there exists
at most one [at least one (o unique)] element 2’ € G and at most one [at least one
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(a unique)] element x" € G* such that
) =" +z"
and we denote this E=GHGHE=G+GE=GDGY].

The proof is obvious by the definitions of semitchebychefian, proximinal and
tehebychefian linear subspaces in Lumer’s sense and from Corollary of Proposi-
tion 2. We omit the details.

Remark 4. If £ is smooth then G is semitchebychefian [proximinal
(tchebychefian)] iff £ =GHGHE =G +GHE =G ® GH).

It is known that a finite-dimensional linear subspace in a normed linear space
is proximinal. We shall improve this result.

Proposition 5. Let E be a'mrmed space and [,] be a L—semi-iﬁner
product which generates its norm. Then every finite-dimensional linear
subspace in it is proximinal in the sense of Lumer.

Proof. Let G, be a n-dimensional linear subspace in ¥ and x, € E "\ G,,. Put
Gri1= G, D Sp®y). Then G, can be ragarded as a hyperplane in G,ia.

On the other hand, let {x,, ..., ,.;} be a base in G, and #, € Gp+1 \ G, such
that {x;, g, ..., Z,+1} is also a base in G, ;. We construct the vectors

n
a=zllr) e=x—T[xs eley, ..., 1= Tpe1 — >, [Tnia, €le;.
i=1

It is easy to see that

[ee, e =1les, e1l=...=[€n1, &]=0
and since
Ti=lledles Bwm=[ws, ele+er... Tpu= é [@n11, €1]e;i+ €pay
we have {e,, e, ..., €,,,} is a base in G,,; and {e,, ..., €,4;} is also a base in G,.

Then [u, ¢,]1=0 for all we G, and since e, = Ay xy+u, with 2,€ K\ {0} and
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Uy € (7,,, we obtain: [u, xy—v,]=0 for all u € G,, where vy:= _';;%EGn, ie.,

%y — v LG, what is equivalent to v, € Pk(w,) and the proposition is proven.

Consequences: I. Let £ be a normed linear space, [, ] be a L-semi-inner
product on it which generates the norm and G be a finite-dimensional linear
subspace in it. Then

E=G+G~.

II. Let L be a smooth (and strict convex) normed space and G be its linear
subspace. If Sg:= {g € Gl|lgl| <1} is weakly sequentially compact in E then the
following decomposition holds

®) E=G+GE=GDGY.

If E is reflexive (and strict convex) then for all closed linear subspace G in &
the decomposition (5) is valid (see also [2]y). 7

The proof of first statement follows by Klee’s theorem (see [5] or [10],
Corollary 2.1) and by the above theorem. The second assertion is obvious.

III. Let E be a normed linear space and suppose that E* endowed with the
canonical norm is smooth (and striet convex) normed space. If F' is a linear
subspace in E* and F is o(E*, E)-closed or Sy:= {he F||W<1} is compact in
o(B*, E) or Sp is weak* sequentially compact in E*, then the following
decomposition holds

® E*=F+F~ E*=F®F".

The proof follows by Phelps’ theorems (see [8], p. 239 or [10], Corollary 2.5
and Theorem 2.2) by Klee’s theorem (see [5] or [10], Theorem 2.3) and by
Theorem 1 for the smooth case (see also [2],).

The following result establishes a connection between proximinal [semitche-
bychefian (tchebychefian)] linear subspace in the sense of Lumer and the
representation of continuous linear functional on a normed linear space in terms
of L-semi-inner products. '
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Theorem 2. Let f be a nonzero continuous linear functional on normed
space E and [, ] be a L-semi-inner product which generates its norm. Then the
Jollowing statements are equivalent:

(i) Ker(f) ts proximinal [semitchebychefian (tchebychefian)] in the sense of
Lumer,

(ii) there exists at least one [at most one (a unique)] element use E, |uf =1
such that the following representation holds

(D Ff@=|lf]| [z, ul for all x€E.

Firstly, we shall prove the following lemma what is important in themselves
too.

Lemma 3. Let H be a closed linear hyperplane containing the null
element and [, ] be a L-semi-inner product which generates the norm of E. Then
H is proximinal in the sense of Lumer if and only if there exists a nonzero
element u in X such that uLH.

Proof. If H is proximinal in the sense of Lumer and x, € E \_H, then there
exists an element g, € H such that g, € &%(x,) and putting u := 2, — g, we have
uLH and % #0.

Conversely, assume that ®oe E\H, ueE, uLH and u#0 and let f be a
nonzero continuous linear functional on X such that H = Ker(f). If we choose
go:= o — f(@o)f (w)u (f(w)#0 because u ¢ H) we have g, € Ker(f) and since

[y, %o—gol= (F@)f@)ly, ul=0 for all ye H

we deduce g, € Lh(xy), i.e., H is proximinal in the sense of Lumer and the lemma
is proved.

Proof of the Theorem 2. (@)=>(i).(a). Let Ker(f) be proximinal in
the sense of Lumer. Then by Lemma 3 there exists wy, e E "\ Ker(f) such that
woL Ker(f). By an argument similar to that in the proof of Proposition 3 we
have

f@) =[x, fwo)wollhw?] for all weE A1l = 1f ool ool

Now, let rg:=f(wy)/|f(wy)| €K and put us:i=2wy/[w] then we obtain
representation (7).
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(i) =>(i).(a). Suppose that u-€ E, |lufl=1 verifies (7). Then ;L Ker(f) and
by Lemma 3 it follows that Ker(f) is proximinal in the sense of Lumer.

(i) = (ii).(b). Assume that Ker(f) is semitchebychefian in the sense of
Lumer and suppose, by absurd, that there exists two distinct elements
Uy, vreE, lufl=|lvfl=1 such that they satisfy (10). Then u,, v;€ Ker(f)*. Now,
let « € E\ Ker(f) and put

pi=o—f@ulf)  yoi=v-f@ulfe).

Then f(yo) =f () =0, i.e., yo, ¥ € Ker(f).
On the other hand, for all y € Ker(f) we have

[y, ©—yol = F@F Uy, ul=0

and a similar relation for y;. Consequently, x—y,, © -y LKer(f), ie., ¥,
Yo € Phop(®). Now, if we assume that =1y} we derive uy/f () = vy/f(v) and
since f(u) =f()=|f] one gets uy=wv, In conclusion, y,#y; and since o,
Yo € Phas(a) we obtain a contradiction to the fact that Ker(f) is semitchebyche-
fian in the sense of Lumer and the implication is proven.

(ii) = (@).(b). Assume that (7) holds for a unique element u;e E, |uj|=1 and
suppose, by absurd, that there exists x, € E \ Ker(f) and two distinct elements
9o and g in Phes(xo). As above, we obtain

f@ =1z, fwd@w—golzo—gdfl wek LAl = 1f Geo)l/llvo — gol

and a similar representation for g;. Put

g = F@o)@o — go)/(| F oo — gol)) = F ) (o — go)/(| f wo)lllwo — gl -

Then |lufl=|lvil=1 and w, v satisfy (7). Now, if we assume that u;=wvy,
we derive (o — go|lwo — gl = (%0 ~ go)leto — gill and since [lwo — goll = |f o) Al
=|lz, — g¢l| we obtain g, =gj. Consequently, there exists two distinct elements
u, vreE, |lujl=|vf=1 and they satisfy (7), what produce a contradiction and
the proof is finished.

(i)<>(i).(c). The statement: Ker(f) is tchebychefian in Lumer’s sense if and
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only if there exists a unique element u;€ E, [luj|=1 such that (7) holds, follows
by the above arguments.

The next corollary contains a characterization of proximinal [semitchebyche-
fian (tchebychefian)] linear subspaces in the sense of Lumer in normed linear
spaces in terms of continuous linear functionals.

Corollary. Let G be a closed linear subspace in normed linear space E,
G+#E, and [,] be a L-semi-inner product which generates its norm. Then the
Jollowing statements are equivalent:

(@) G is proximinal [semitchebychefian (fchebychefian)] in the sense of
Lumer;

@) for all xoe E\G and for any fe (G @ Sp(xe)* such that Ker(f)=G,
there exists at least one [at mosktA one (a unique)] element u, ;e G @ Sp(xy),
btz dl = 1 with the property: f(@) =||fllespepl®, Uz7 for all x e F @ Splay).

The proof follows by the previous theorem for the normed linear space
E, =G ® Sp(x,). We omit the details.
The following consequences are interesting in themselves too.

Consequences: I. Let E be a normed space, [,] be a L-semi-inner
product which generates its norm and G be a finite-dimensional linear subspace
in E. Then for all nonzero continuous linear functional f on E there exists at least

-one element ugse G, |lugl=1 such that

F@=|lfll [z, usd for all zeG.

I1. Let E be a smooth (and strict convex) normed space and f be a nonzero
continuous linear functional on it. If Ske,= {ke€Ker(f)| ||b]<1} is weakly
sequentially compact in E, then there exists an (a unique) element ucE,
[ledl =1 such that (7) holds.

Finally, if we assume that & is reflexive (and strict convex) then for all
Sfe E*\ {0} there exists an (a unique) element u, € E, |luj| = 1 such that (7) holds
(see also [2]y).

The proof of first statement follows by Klee’s Theorem (see [5] or Corollary
3.1 from [10]) and by the above theorem. The second statement is obvious.

II1. Let E be a normed linear space and suppose that E* endowed with the
canonical norm is smooth (and strict convex). If @ e E**\ {0} satisfies the
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conditions Ker(®) is o(E*, E)-closed or Sk, is compact in o(E*, E) or Sker(p) 18
weak* sequentially compact in E*, then there exists a (a unique) functional
foeE*, |[fdl=1 such that the following representation holds

o(f) =|e|l [f, fol* for all fe E*

where [, I* is the unique semi-inner product which generates the norm of E* (see
also [2}).
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Résumé

Dans cet article on introduit la notionne de la meillewre approximation dans le sense
. de Lumer et on donne quelques caractérisations et applications.
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