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MARIUSZ STARTEK and DOMINIK SZYNAL *)

On a metric defined on the space of probability measures (**)

1 - Introduction

Let S be a separable metric space and  the Borel o-field of subsets of S. We
denote by <2 the space of all probability measures on (S, J°) with defective
measures, i.e. Pe @ iff P(S)<1. Examples of defective measures are en-
countered in renewal theory, in a theory of physical measurement [4]; or in the
theory of probabilistic metric spaces [3].

It is known that weak convergence of a sequence {P,, n=1} of probability
measures is equivalent to the convergence in the Prokhorov distance. However,
this statement is not still true for a sequence {P,, n=1} of measures of the
larger class 2. In [4); it has been introduced a distance between distribution
functions (not in the probabilistic sense) such that the convergence in that
distance is equivalent to the weak convergence of a sequence {F,, n=1} of
distribution functions on R. The aim of this note is to extend this result to
measures on metric spaces. To do this we need to modify the distance introduced
in [4], in such way which is suitable to that extension.

2 - A distance between distribution functions

We shall see that the modified distance d of [4], can be used to extend the
results of 2 to measures defined on a metrie space.
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ul. Nowotki 10, P1.-20-031 Lublin.
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Let & be a set of functions F: R*— [0, 1] such that:

(i) F is non-decreasing, i.e. x <y implies F(x) < F(y);
(i) F is continuous on the right on R: F(x + 0) = F(x);
(i) F(=o)=0<lim F(x);

(v) F(+«)=1=lm F(x).

Here R¥=RuU {— ®, + o},
We say that a sequence {F,, n=1} c F converges weakly to the function
Fe&, F,=F, if for every bounded and continuous function f R¥*—R

lim [f(@)dFy@)= [f()dF@).

Let D be a countable and dense subset of R, D¥=Du {— o, +x}. We
introduce the functions ou,:R*—[0, 1], a, be D*, a<b, r>0, reQ, Qis the
set of rational numbers, by

(x—a+nrr zefa—r, a)
' . xela, b]
2arl® = e we, b+r]
0 xeR™N\Ja~7r, b+7]

where [— ©, — )= (4 o0, + »]:={, The bounded continuous functions ¢, are
the set standard approximations of the indicators.

The set {gu,:a, beD¥ a<b, 0<r<m, re Q} is countable and can be
enumerated as {f?, %, ...}.

Now we define a function dZ on Fx F as follows
BF, @=3 2" [fRaF - [f2d6]  F, Geo.
k=1 R* R*

Lemma 1. The function d%: F X F—R, is a metric.

Proof. By the definition d2- we have d2(F, G)=0 iff F=G and
do(F, G)=dZ%(G, F) for all F, Ge &.
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Let now F, G, He &. Then

d2(F, H)= 32| [fRaF ~ [fPdH]

£

=227 [fedF— [fRdG+ [f2dG - JreaH

8

<327 [fRdF ~ [fPAG]+| [72dG ~ [fPaH]

/

8

=27 [fRdF ~ [fRdG|+ 327 [fRAG~ [P

dZ(F, @)+ d2(G, H)
which completes the proof.

Now we prove that the convergence in the distance d2- is independent of a
choice of D cR.

Proposition 1. Let D, E be two any given dense and countable subsets of
R, D¥=Du{—o, + o}, E¥=FU{—», +x}and {F,, n=1} be a sequence
of functions of 93 The convergence F,, to F in the metric d2- is equivalent to the
convergence in the metric dz.

Proof. Let d%(F,, F)—0, n—> «. Then

(1) | f;opqr f;opq,.dFl—>0 n—> ©

for every p, ge D* re Q. Write
&p, ¢, v, n):= lRf %qran—R‘f ?pqrdFl

and let a, be E*, ¢>0. We note that there exist ¢, d € D* such that
|@aen(®) — pear(®)] < &/2 © e R*,

Hence

| | pasr dF, — [ ety AF,| < /2 | | paprdF — [ oar AF| < e/2.
R* R* R* R*
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Therefore, |8a, b, r, n)—&c, d, r, n)|<e so, by (1), &a, b, r, n)— 0,
n— o, for every a, be E*, or

| [fEdF,— [fEdF|—0 #—> 00 for every keN.
R‘ R“

Moreover, we have

| f[fEAF,— [fEAF|<2 keN neN
which imply
lim dS(F,, F)=lim 3 2 [fEdF,— [fEdF|=0 °
e T k=1 R* R

and, by symmetry of D-and E, completes the proof of Proposition 1.
Theorem 1. The weak convergence of a sequence {F,, n=1} of functions

of F is equivalent to the convergence in the distance d2, i.e. F,=F v iff

d%(F,, F)—0, n— w, for any countable and dense subset D of continuity points

of F.

Proof. Choose a, beD*, and q<(b—a)/2. Let &a, b, 7, %) =| [ o AF,
— [ ¢ dF|. If d2(F,, F)—0, n—> o, then &a, b, r, n)— 0, n— o, for every

a, band r<gq, so

E_{E‘ I?abran__- f?abrdF-
R‘ R'

Suppose that a# — o and b# + . Then we have

limsup (,(8) ~ Fo@ =) <HEm$up [ o dFo = f ardF <F(b+7)— Fla—1).

Letting >0 we get

@) lim sup (F(b) — F(a =) < F(b) — F(a —).
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Taking p € (r/2, r] such that a+peD and b—peD we have

hl;{_l,}gnf (Fn(b) - Fn(a ~)= lilgl_lnf f Pa+p, b-p, 12 an = f Pa+p, b—p, 112 dr
2Fb—-p)—Fla+p)=Fb—1)—-Fla+7).

Then letting r— 0, we have

liminf(F,(b) — Fula =)= F(b—) - Fla+).
Taking into account that a, b are continuity points of F we get
3 liminf (F,(6) — Fla =) =F(b) ~ F(a —).
Ifa=—o then a+r=a=0a—, so (2) and (3) are also true. Similarly these

inequalities are true if b= + o.
From (2) and (3) we have

limsup (F,(b) — Fa(a —)) < F(b) — F(a —) < lim inf (F,,(0) — F(a -)).
Thus

lim (F,(b) — Fu(a =) = F(b) — Fla —)

for every a, be D* and so F,=F.
Let now F,=F. Then &a, b, v, )—0, n—> o, for every a, be D* and
reQ, so

| [f2dF,— [f2dF|—0 n— © k=1, 2, ...
Since | [fRdF,— [f2dF|<2, therefore,
lim d2(F,,, F)=lim 32 [fPdF,~ [f2dF|=0
k=1 R* R*

which completes the proof.

By virtue of the Proposition 1 we have the following
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Corollary 1. The weak convergence of functions of F is equivalent to the
convergence n the distance d2% for any dense countable set D c R.

3 - A distance in the space &

Let 97" be the family of the closed ball K(s;, 7;), where {s;, Ss, ...} is a
countable and dense subsets of S and D= {7}, 7, ...} is a dense sequence of
positive numbers. Denote by %/ the family containing S and all the finite
intersections of K(s;, ;). % is the convergence determining class [1]. The family

% is countable and can be enumerated as {U,, U,, .} Let U= nrli K(Siny i),
reR, and 7}, =max{0, r,,—r}. Then we denote U,:= ngl K(8iy, 1) and

I, ={K(sy, th):m=1,2, ..., N}. Now we define the functions gwr:S— 1[0, 1]
as follows

1 ifxelU i
gix)y=1—dist(x, U)ir if dist(x, Up)<r
0 otherwise

for i=1,2, ... and € Qs
The set {g;: =1, 2, ..., r>0, reQ} is countable and can be enumerated as

{f?, 12, ..}

Define now a function d? on & x & as follows

@ d’(P, Q)= sz,lz-k!fffdP — [£Pdq|.

Lemma 2. The function d”: & x @R, defined by (4) is a metric.

Proof. The proof is similar to that of Lemma 1.

Proposition 2. Let D, E be two any given dense and countable subsets of
R and {P,, n=1} be a sequence of functions of &. The convergence P, to P in

the metric d° is equivalent to the convergence in the metric df.

Proof. The proof is similar to that of Proposition 1.
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Now we prove the following
Theorem 2. The weak convergence of a sequence {P,, n=1} of measures
of & is equivalent to the convergence in the distance (4), i.e. P,=P iff

d?(P,, P)—0, n— », for any countable and dense subset D of R, such that
K(s;, v, reD, ieN, is a continuity set of P.

Proof. Choose U;e % and g such that U; # 0.
Let (i, », n):=|fg,dP,— [g,dP|. If d°(P,, P)—0, n— o, then
(i, 7, W)—0, n— oo, for every ¢ and r<g¢, so lm {g,-dP, = [ g, dP.

We have

lim sup P,(Uy) <limsup [ g;-dP,, = [ gidP < P(U;)

where Ul= {xe8: dist(x, U)<r}. Letting r— 0, we get

limsup P.(U) < P(U).

Taking p e (v/2, 7] such that % c 9, we have

lirgian (U = lirginff Gigre AP = J Gigr AP = PU,) =PU,).

Letting r— 0, taking into account that U; is a continuity set of P and by virtue of
the equality hrgl U,=U,; we get

lim infP(U) = P(U).
Thus ling_»s;lp P,U)ysPUy)= lir}g inf P (U).

Hence %@Pn(Ui) =P(U;) for every i and so P,=P.

Let now P,=>P. Then y(i, r, n)— 0, n—> o, for every ¢ and 7, so

|ffRapP,— [fRdP|—0 n— ® k=1,2, ...
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Since |[fPdP,— [fPdP|<2, therefore,
lim d*(P,, P)=lim 32/ fPdP,~ [fPdP| =0
e Rt

which completes the proof.
By virtue of the Proposition 2 we have the following

Corollary 2. The weak convergence of measures of R is equivalent to the
convergence in the distance d° for any dense countable D cR,.
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Summary

See Introduction.
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