MARIUSZ STARTEK and DOMINIK SZYNAL (*)

On a metric defined on the space of probability measures (**)

1 - Introduction

Let S be a separable metric space and \mathcal{J} the Borel σ -field of subsets of S. We denote by \mathscr{D} the space of all probability measures on (S, \mathcal{J}) with defective measures, i.e. $P \in \mathscr{D}$ iff $P(S) \leq 1$. Examples of defective measures are encountered in renewal theory, in a theory of physical measurement $[4]_1$ or in the theory of probabilistic metric spaces [3].

It is known that weak convergence of a sequence $\{P_n, n \ge 1\}$ of probability measures is equivalent to the convergence in the Prokhorov distance. However, this statement is not still true for a sequence $\{P_n, n \ge 1\}$ of measures of the larger class \mathscr{Q} . In $[4]_2$ it has been introduced a distance between distribution functions (not in the probabilistic sense) such that the convergence in that distance is equivalent to the weak convergence of a sequence $\{F_n, n \ge 1\}$ of distribution functions on R. The aim of this note is to extend this result to measures on metric spaces. To do this we need to modify the distance introduced in $[4]_2$ in such way which is suitable to that extension.

2 - A distance between distribution functions

We shall see that the modified distance $d_{\mathcal{F}}$ of $[4]_2$ can be used to extend the results of 2 to measures defined on a metric space.

^(*) Indirizzo degli AA.: M. STARTEK, Instytut Matematyki i Fizyki, Politechnika Rzeszowska, ul.W. Pola 2, PL-35-959 Rzeszów; D. SZYNAL, Instytut Matematyki UMCS, ul. Nowotki 10, PL-20-031 Lublin.

^(**) Ricevuto: 2-VIII-1989.

Let \mathcal{F} be a set of functions $F: \mathbb{R}^* \to [0, 1]$ such that:

- (i) F is non-decreasing, i.e. x < y implies $F(x) \le F(y)$;
- (ii) F is continuous on the right on \mathbb{R} : F(x+0) = F(x);
- (iii) $F(-\infty) = 0 \le \lim_{x \to \infty} F(x);$
- (iv) $F(+\infty) = 1 \ge \lim_{x \to \infty} F(x)$.

Here $\mathbb{R}^* = \mathbb{R} \cup \{-\infty, +\infty\}.$

We say that a sequence $\{F_n, n \ge 1\} \subset \mathcal{F}$ converges weakly to the function $F \in \mathcal{F}, F_n \Rightarrow F$, if for every bounded and continuous function $f: \mathbb{R}^* \to \mathbb{R}$

$$\lim_{n\to\infty} \int_{\mathbb{R}^*} f(x) \, \mathrm{d}F_n(x) = \int_{\mathbb{R}^*} f(x) \, \mathrm{d}F(x) \, .$$

Let D be a countable and dense subset of R, $D^* = D \cup \{-\infty, +\infty\}$. We introduce the functions $\varphi_{abr}: \mathbb{R}^* \to [0, 1]$, $a, b \in D^*$, a < b, r > 0, $r \in \mathbb{Q}$, \mathbb{Q} is the set of rational numbers, by

$$\varphi_{abr}(x) = \begin{array}{ccc} (x - a + r)/r & & x \in [a - r, \ a) \\ 1 & & x \in [a, \ b] \\ (b + r - x)/r & & x \in (b, \ b + r] \\ 0 & & x \in \mathbb{R}^* \backslash [a - r, \ b + r] \end{array}$$

where $[-\infty, -\infty) = (+\infty, +\infty] := \emptyset$. The bounded continuous functions φ_{abr} are the set standard approximations of the indicators.

The set $\{\varphi_{abr}: a, b \in D^*, a < b, 0 < r < \infty, r \in \mathbb{Q}\}$ is countable and can be enumerated as $\{f_1^D, f_2^D, \ldots\}$.

Now we define a function $d_{\mathscr{F}}^{\mathbb{D}}$ on $\mathscr{F} \times \mathscr{F}$ as follows

$$d^D_{\mathscr{F}}(F,\ G) = \sum_{k=1}^\infty 2^{-k} \big| \int\limits_{\mathbb{R}^*} f^D_k \,\mathrm{d}F - \int\limits_{\mathbb{R}^*} f^D_k \,\mathrm{d}G \big| \qquad \quad F,\ G \in \mathscr{F}.$$

Lemma 1. The function $d_{\mathcal{F}}^{D}: \mathcal{F} \times \mathcal{F} \to \mathbb{R}_{+}$ is a metric.

Proof. By the definition $d^D_{\mathscr{F}}$ we have $d^D_{\mathscr{F}}(F, G) = 0$ iff F = G and $d^D_{\mathscr{F}}(F, G) = d^D_{\mathscr{F}}(G, F)$ for all $F, G \in \mathscr{F}$.

Let now F, G, $H \in \mathcal{F}$. Then

$$\begin{split} d_{\mathscr{F}}^{D}(F,\ H) &= \sum_{k=1}^{\infty} 2^{-k} \big| \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}F - \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}H \big| \\ &= \sum_{k=1}^{\infty} 2^{-k} \big| \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}F - \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}G + \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}G - \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}H \big| \\ &\leq \sum_{k=1}^{\infty} 2^{-k} \big(\big| \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}F - \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}G \big| + \big| \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}G - \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}H \big|) \\ &= \sum_{k=1}^{\infty} 2^{-k} \big| \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}F - \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}G \big| + \sum_{k=1}^{\infty} 2^{-k} \big| \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}G - \int_{\mathbb{R}^{*}} f_{k}^{D} \, \mathrm{d}H \big| \\ &= d_{\mathscr{F}}^{D}(F,\ G) + d_{\mathscr{F}}^{D}(G,\ H) \end{split}$$

which completes the proof.

Now we prove that the convergence in the distance $d_{\mathcal{F}}^D$ is independent of a choice of $D \subset \mathbb{R}$.

Proposition 1. Let D, E be two any given dense and countable subsets of \mathbb{R} , $D^* = D \cup \{-\infty, +\infty\}$, $E^* = E \cup \{-\infty, +\infty\}$ and $\{F_n, n \ge 1\}$ be a sequence of functions of \mathscr{F} . The convergence F_n to F in the metric $d^D_{\mathscr{F}}$ is equivalent to the convergence in the metric $d^E_{\mathscr{F}}$.

Proof. Let $d_{\mathcal{F}}^{\mathcal{D}}(F_n, F) \to 0, n \to \infty$. Then

(1)
$$\left| \int_{\mathbb{R}^*} \varphi_{pqr} \, \mathrm{d}F_n - \int_{\mathbb{R}^*} \varphi_{pqr} \, \mathrm{d}F \right| \to 0 \qquad n \to \infty$$

for every $p, q \in D^*, r \in Q$. Write

$$\delta(p,\ q,\ r,\ n) := |\int\limits_{-\infty}^{\infty} \varphi_{pqr} \, \mathrm{d}F_n - \int\limits_{-\infty}^{\infty} \varphi_{pqr} \, \mathrm{d}F|$$

and let $a, b \in E^*$, $\varepsilon > 0$. We note that there exist $c, d \in D^*$ such that

$$|\varphi_{abr}(x) - \varphi_{cdr}(x)| \le \varepsilon/2$$
 $x \in \mathbb{R}^*$.

Hence

$$\left| \int\limits_{\mathbb{R}^*} \varphi_{abr} \, \mathrm{d}F_n - \int\limits_{\mathbb{R}^*} \varphi_{cdr} \, \mathrm{d}F_n \right| \leqslant \varepsilon/2 \qquad \quad \left| \int\limits_{\mathbb{R}^*} \varphi_{abr} \, \mathrm{d}F - \int\limits_{\mathbb{R}^*} \varphi_{cdr} \, \mathrm{d}F \right| \leqslant \varepsilon/2 \; .$$

Therefore, $|\delta(a, b, r, n) - \delta(c, d, r, n)| \le \varepsilon$, so, by (1), $\delta(a, b, r, n) \to 0$, $n \to \infty$, for every $a, b \in E^*$, or

$$|\iint_{\mathbb{R}^*} f_k^E \, \mathrm{d} F_n - \iint_{\mathbb{R}^*} f_k^E \, \mathrm{d} F| \to 0 \qquad \qquad n \to \infty \qquad \qquad \text{for every } k \in \mathbb{N} \, .$$

Moreover, we have

$$\left| \int_{\mathbb{R}^*} f_k^E \, \mathrm{d}F_n - \int_{\mathbb{R}^*} f_k^E \, \mathrm{d}F \right| \le 2 \qquad k \in \mathbb{N} \qquad n \in \mathbb{N}$$

which imply

$$\lim_{n\to\infty} d_{\mathcal{F}}^E(F_n,\ F) = \lim_{n\to\infty} \sum_{k=1}^{\infty} 2^{-k} \Big| \int\limits_{\mathbb{R}^*} f_k^E \, \mathrm{d}F_n - \int\limits_{\mathbb{R}^*} f_k^E \, \mathrm{d}F \Big| = 0$$

and, by symmetry of D and E, completes the proof of Proposition 1.

Theorem 1. The weak convergence of a sequence $\{F_n, n \ge 1\}$ of functions of \mathscr{F} is equivalent to the convergence in the distance $d_{\mathscr{F}}^D$, i.e. $F_n \Rightarrow F$ iff $d_{\mathscr{F}}^D(F_n, F) \to 0, n \to \infty$, for any countable and dense subset D of continuity points of F.

Proof. Choose $a, b \in D^*$, and q < (b-a)/2. Let $\delta(a, b, r, n) = |\int_{\mathbb{R}^*} \varphi_{abr} dF_n - \int_{\mathbb{R}^*} \varphi_{abr} dF|$. If $d^D_{\mathscr{S}}(F_n, F) \to 0$, $n \to \infty$, then $\delta(a, b, r, n) \to 0$, $n \to \infty$, for every a, b and r < q, so

$$\lim_{n\to\infty} \int_{\mathbb{R}^*} \varphi_{abr} \, \mathrm{d}F_n = \int_{\mathbb{R}^*} \varphi_{abr} \, \mathrm{d}F.$$

Suppose that $a \neq -\infty$ and $b \neq +\infty$. Then we have

$$\limsup_{n\to\infty} \left(F_n(b) - F_n(a-)\right) \leq \limsup_{n\to\infty} \int_{\mathbb{R}^*} \varphi_{abr} \, \mathrm{d}F_n = \int_{\mathbb{R}^*} \varphi_{abr} \, \mathrm{d}F \leq F(b+r) - F(a-r) \, .$$

Letting $r \rightarrow 0$ we get

(2)
$$\limsup (F_n(b) - F_n(a-)) \leq F(b) - F(a-).$$

Taking $p \in (r/2, r]$ such that $a + p \in D$ and $b - p \in D$ we have

$$\begin{split} \liminf_{n\to\infty} \left(F_n(b) - F_n(a-)\right) \geqslant \liminf_{n\to\infty} \int\limits_{\mathbb{R}^*} \varphi_{a+p,\,b-p,\,r/2} \,\mathrm{d}F_n &= \int\limits_{\mathbb{R}^*} \varphi_{a+p,\,b-p,\,r/2} \,\mathrm{d}F \\ \geqslant F(b-p) - F(a+p) \geqslant F(b-r) - F(a+r) \,. \end{split}$$

Then letting $r \rightarrow 0$, we have

$$\liminf_{n} (F_n(b) - F_n(a-)) \geqslant F(b-) - F(a+).$$

Taking into account that a, b are continuity points of F we get

(3)
$$\liminf_{a \in \mathbb{R}} (F_n(b) - F_n(a-)) \ge F(b) - F(a-).$$

If $a = -\infty$ then a + r = a = a -, so (2) and (3) are also true. Similarly these inequalities are true if $b = +\infty$.

From (2) and (3) we have

$$\limsup_{n\to\infty} (F_n(b) - F_n(a-)) \leq F(b) - F(a-) \leq \liminf_{n\to\infty} (F_n(b) - F(a-)).$$

Thus

$$\lim_{n \to \infty} (F_n(b) - F_n(a - b)) = F(b) - F(a - b)$$

for every $a, b \in D^*$ and so $F_n \Rightarrow F$.

Let now $F_n \Rightarrow F$. Then $\delta(a, b, r, n) \to 0, n \to \infty$, for every $a, b \in D^*$ and $r \in Q$, so

$$\left| \int_{\mathbb{R}^*} f_k^D \, \mathrm{d}F_n - \int_{\mathbb{R}^*} f_k^D \, \mathrm{d}F \right| \to 0 \qquad n \to \infty \qquad k = 1, 2, \dots.$$

Since $\left| \int_{\mathbb{R}^*} f_k^D dF_n - \int_{\mathbb{R}^*} f_k^D dF \right| \le 2$, therefore,

$$\lim_{n\to\infty} d_{\mathcal{F}}^D(F_n, F) = \lim_{n\to\infty} \sum_{k=1}^{\infty} 2^{-k} |\int\limits_{\mathbb{R}^*} f_k^D \, \mathrm{d}F_n - \int\limits_{\mathbb{R}^*} f_k^D \, \mathrm{d}F| = 0$$

which completes the proof.

By virtue of the Proposition 1 we have the following

Corollary 1. The weak convergence of functions of \mathscr{F} is equivalent to the convergence in the distance $d^D_{\mathscr{F}}$ for any dense countable set $D \subset \mathbb{R}$.

3 - A distance in the space \mathscr{Q}

Let \mathscr{K} be the family of the closed ball $K(s_i, r_j)$, where $\{s_1, s_2, ...\}$ is a countable and dense subsets of S and $D = \{r_1, r_2, ...\}$ is a dense sequence of positive numbers. Denote by \mathscr{U} the family containing S and all the finite intersections of $K(s_i, r_j)$. \mathscr{U} is the convergence determining class [1]. The family \mathscr{U} is countable and can be enumerated as $\{U_1, U_2, ...\}$. Let $U_i = \bigcap\limits_{n=1}^N K(s_{in}, r_{in})$, $r \in \mathbb{R}_+$ and $r'_{in} = \max\{0, r_{in} - r\}$. Then we denote $U_{i_r} := \bigcap\limits_{n=1}^N K(s_{in}, r'_{in})$ and $\mathscr{K}_{i_r} := \{K(s_{in}, r'_{in}): n = 1, 2, ..., N\}$. Now we define the functions $g_{ir} : S \to [0, 1]$ as follows

$$g_{ir}(x) = \begin{array}{ccc} 1 & \text{if } x \in U_i \\ 1 - \operatorname{dist}(x, \ U_i)/r & \text{if } \operatorname{dist}(x, \ U_i) \leqslant r \\ 0 & \text{otherwise} \end{array}$$

for $i = 1, 2, \dots$ and $r \in Q_+$.

The set $\{g_i: i=1, 2, ..., r>0, r\in \mathbb{Q}\}$ is countable and can be enumerated as $\{f_1^D, f_2^D, ...\}$.

Define now a function d^D on $\mathscr{L} \times \mathscr{L}$ as follows

(4)
$$d^{D}(P, Q) = \sum_{k=1}^{\infty} 2^{-k} |\int f_{k}^{D} dP - \int f_{k}^{D} dQ|.$$

Lemma 2. The function $d^D \colon \mathscr{L} \times \mathscr{L} \to \mathbb{R}_+$ defined by (4) is a metric.

Proof. The proof is similar to that of Lemma 1.

Proposition 2. Let D, E be two any given dense and countable subsets of \mathbb{R} and $\{P_n, n \geq 1\}$ be a sequence of functions of \mathscr{L} . The convergence P_n to P in the metric d^D is equivalent to the convergence in the metric d^E .

Proof. The proof is similar to that of Proposition 1.

Now we prove the following

Theorem 2. The weak convergence of a sequence $\{P_n, n \ge 1\}$ of measures of $\mathscr L$ is equivalent to the convergence in the distance (4), i.e. $P_n \Rightarrow P$ iff $d^D(P_n, P) \to 0$, $n \to \infty$, for any countable and dense subset D of $\mathbb R_+$ such that $K(s_i, r)$, $r \in D$, $i \in \mathbb N$, is a continuity set of P.

Proof. Choose $U_i \in \mathcal{U}$ and q such that $U_{i_q} \neq \emptyset$. Let $\gamma(i, r, n) := |\int g_{ir} dP_n - \int g_{ir} dP|$. If $d^D(P_n, P) \to 0$, $n \to \infty$, then $\gamma(i, r, n) \to 0$, $n \to \infty$, for every i and r < q, so $\lim_{n \to \infty} \int g_{ir} dP_n = \int g_{ir} dP$.

We have

$$\lim\sup_{n\to\infty}P_n(U_i)\leqslant \lim\sup_{n\to\infty}\int g_{ir}\,\mathrm{d}P_n=\int g_{ir}\,\mathrm{d}P\leqslant P(U_i^r)$$

where $U_i^r = \{x \in S: \operatorname{dist}(x, U_i) < r\}$. Letting $r \to 0$, we get

$$\limsup P_n(U_i) \leq P(U_i).$$

Taking $p \in (r/2, r]$ such that $\mathcal{K}_{i_n} \subset \mathcal{U}$, we have

$$\liminf_{n\to\infty}P_n(U_i)\geqslant \liminf_{n\to\infty}\int g_{i_p n/2}\,\mathrm{d}P_n=\int g_{i_p n/2}\,\mathrm{d}P\geqslant P(U_{i_p})\geqslant P(U_i)\;.$$

Letting $r \to 0$, taking into account that U_i is a continuity set of P and by virtue of the equality $\lim_{i \to 0} U_i = U_i$ we get

$$\liminf_{n\to\infty} P_n(U_i) \ge P(U_i).$$

Thus $\limsup_{n\to\infty} P_n(U_i) \leq P(U_i) \leq \liminf_{n\to\infty} P_n(U_i)$.

Hence $\lim_{n\to\infty} P_n(U_i) = P(U_i)$ for every i and so $P_n \Rightarrow P$.

Let now $P_n \Rightarrow P$. Then $\gamma(i, r, n) \to 0, n \to \infty$, for every i and r, so

$$\left| \int f_k^D dP_n - \int f_k^D dP \right| \to 0$$
 $n \to \infty$ $k = 1, 2, \dots$

Since $|\int f_k^D dP_n - \int f_k^D dP| \le 2$, therefore,

$$\lim_{n\to\infty} d^D(P_n, P) = \lim_{n\to\infty} \sum_{k=1}^{\infty} 2^{-k} |\int f_k^D dP_n - \int f_k^D dP| = 0$$

which completes the proof.

By virtue of the Proposition 2 we have the following

Corollary 2. The weak convergence of measures of \mathcal{L} is equivalent to the convergence in the distance d^D for any dense countable $D \subset \mathbb{R}_+$.

References

- [1] P. BILLINGSLEY, Convergence of probability measures, Wiley, New York, 1968.
- [2] K. R. Parthasarathy, *Probability measures on metric spaces*, Academic Press, 1967.
- [3] B. Schweizer and A. Sklar, *Probabilistic metric spaces*, Elzevier North Holland, New York, 1982.
- [4] C. Sempi: [•]₁ The entropies with error, Rend. Math. (6) 9 (1976), 1-15; [•]₂ On the space of distribution functions, Riv. Mat. Univ. Parma (4) 8 (1982), 243-250.

Summary

See Introduction.

**