ANNA BENINI (*)

Near-rings on certain groups (**)

1 - Introduction

In $[4]_1$ Clay gives a method for constructing all near-rings on a given additive group.

We shall call *Clay function* of an additive group G a function $F: G \to \operatorname{End}(G)$ such that the multiplication $\cdot\cdot\cdot$ inferred in G is associative, that is $[G,\cdot]$ is a left near-ring.

Now, let $N=A+_{\varphi}B$ be a semidirect sum of additive groups A and B with homomorphism φ . Obviously, by Clay method, every near-ring on N can be constructed but, generally, restrictions of Clay functions on A^0 and 0B are not Clay functions, that is, from a multiplicative view-point, isomorphic images of semidirect summands are not even sub-structures.

Furthermore, for characterizing some classes of near-rings, it is better that such images are one-sided or two-sided ideals of the constructed near-ring or, at least, of its multiplicative semigroup.

For this reason it is necessary to find conditions on Clay functions so that A^0 and 0B are support for given structures, in particular left ideals of the multiplicative semigroup of the near-ring.

A near-ring constructed by one of the last functions is called Φ -sum of A and B and among the near-rings characterizable as Φ -sums, those of Def. 1 and Def. 2 of [1] and as also some geometric exemples of [3], can be seen.

The class of left permutable zero-symmetric near-rings with an idempotent non-zero element is characterizable as Φ -sum too (see [2]) and generally, a near-

^(*) Indirizzo: Dipartimento di Matematica, Facoltà di Ingegneria, V.le Europa 39, I-25060 Brescia.

^(**) Work supported by the Italian M.P.I. - Ricevuto: 10-IV-1989.

ring is a Φ -sum if and only if its additive group is a semidirect sum of the additive groups of a left ideal and a left N-subgroup, respectively.

Subsequently the definition of Λ -sum of near rings is given and such a structure results to be a near-ring.

Finally we can prove that the class of abstract affine near-rings is a particular Λ -sum and then we characterize the respective Clay functions.

2 - Preliminaries

Throughout the paper N stands for a left near-ring.

In general we adhere to the notation and therminology used in [4]₂. In particular a near-ring $N = N_0 + N_c$ with $N_0 \neq \{0\} \neq N_c$ is called *mixed near-ring*, the additive group and the multiplicative semigroup of N are denoted by N^+ and N^- respectively; $S \subseteq N$ is called *ideal* of N^- if $SN \subseteq S$ and $NS \subseteq S$; a subgroup of N^+ which is a left (right) ideal of N^- is called *left* (right) N-subgroup of N.

 N_d denotes the set of distributive elements of N.

 $r(x) = \{\bar{x} \in N/x\bar{x} = 0\}$ is the right annihilator of x and $r(S) = \bigcap_{x \in S} r(x)$.

If $A \subseteq N$, $\mathscr{F}(A) \subseteq \operatorname{Aut}(N^+)$ denotes the subset of automorphisms of N^+ which transforms A into itself. If A is a structure, O_A denotes the zero endomorphism of A. If f, g are functions from S to T and $H \subseteq T$, we write f = Hg for $f(x) - g(x) \in H$ for every x belonging to S. Moreover $\gamma_a : x \to ax \quad \forall x \in N$ is a left translation of N determined by a.

C(A) denote the centre of A.

If $G = A + {}_{\varphi}B$ and $A^0 = \{\langle a, 0 \rangle / a \in A\}$, ${}^0B = \{\langle 0, b \rangle / b \in B\}$, then it follows that A^0 and 0B are subgroups of $A + {}_{\varphi}B$; $A + {}_{\varphi}B = A^0 + {}^0B$; $A^0 \cap {}^0B = \{\langle 0, 0 \rangle \}$; $A^0 \sim A$ and $A + {}_{\varphi}B/{}_{A^0} \sim B$.

3 - Ø-sum of near-rings

Proposition 1. Let $N = A +_{\varphi}B$, $F: A \times B \to \text{End}(N)$ be a Clay function and \cdots denotes the multiplication inferred in N, then an additive subgroup $S \subseteq N$, by \cdots , turns to:

- (i) a subnear-ring of $[N,\cdot]$ iff $F(S) \subseteq \mathcal{F}(S)$;
- (ii) a left N-subgroup of $[N,\cdot]$ iff $F(N) \subseteq \mathcal{F}(S)$;

(iii) a right ideal of $[N,\cdot]$ iff it is a normal subgroup of N^+ and $F_{a+\varphi_b(\bar{a}),b+\bar{b}} = {}_SF_{a,b}$ (*) holds for every $\langle a,b\rangle$ in N and for every $\langle \bar{a},\bar{b}\rangle$ in S; (iv) a right N-subgroup of $[N,\cdot]$ iff $F_{a,b}(N) \subseteq S$ for every $\langle a,b\rangle \in S$.

Proof. (i) Let S be a subgroup of N = A + B and $F(S) \subseteq \mathcal{F}(S)$, then

$$\langle a, b \rangle \cdot \langle a', b' \rangle = F_{a,b}(\langle a', b' \rangle) \in S \quad \forall \langle a, b \rangle, \langle a', b' \rangle \in S$$

so S is a subnear-ring of $[N,\cdot]$. Viceversa, let S be a subnear-ring of $[N,\cdot]$, then $\langle a, b \rangle \cdot \langle a', b' \rangle \in S$ for every $\langle a, b \rangle$, $\langle a', b' \rangle \in S$, so $F_{a,b}(\langle a', b' \rangle) \in S$ and $F(S) \subseteq \mathcal{F}(S)$.

- (ii) and (iv) analogously to (i).
- (iii) Let S^+ be a normal subgroup of N^+ and let (*) be true $\forall \langle a, b \rangle \in N$, $\forall \langle \tilde{a}, \tilde{b} \rangle \in S$, then

$$\begin{split} & (\langle a, b \rangle + \langle \bar{a}, \bar{b} \rangle) \langle a', b' \rangle - \langle a, b \rangle \langle a', b' \rangle \\ \\ &= \langle a + \varphi_b(\bar{a}), b + \bar{b} \rangle \langle a', b' \rangle - \langle a, b \rangle \langle a', b' \rangle \\ \\ &= F_{a + \varphi_b(\bar{a}), b + \bar{b}} (\langle a', b' \rangle) - F_{a, b} (\langle a', b' \rangle) \in S \qquad \forall \langle a', b' \rangle \in N \end{split}$$

so S is a right ideal of $[N,\cdot]$. The converse is analogous.

Proposition 2. Let $N = A + {}_{\varphi}B$, then a multiplication on N makes A^0 and ${}^{0}B$ left ideals of N iff it is inferred by a Clay function defined as follows

$$\forall \langle a, b \rangle \in A \times B$$
 $F_{a,b}(\langle a', b' \rangle) = \langle f_{a,b}(a'), \tilde{f}_{a,b}(b') \rangle$

where $f_{a,b} = f(\langle a, b \rangle)$, $\bar{f}_{a,b} = \bar{f}(\langle a, b \rangle)$, $f: A \times B \to \text{End}(A)$, $\bar{f}: A \times B \to \text{End}(B)$ are functions for which the following properties are true:

(1)
$$f_{a,b}{}^{0}f_{a',b'} = f_{f_{a,b}(a'),\bar{f}_{a,b}(b')}$$
 (2) $\bar{f}_{a,b}{}^{0}\bar{f}_{a',b'} = \bar{f}_{f_{a,b}(a'),\bar{f}_{a,b}(b')}$ (3) $f_{a,b}{}^{0}\varphi_{b'} = \varphi_{\bar{f}_{a,b}(b')}{}^{0}f_{a,b}$.

Proof. $F_{a,b}$ defined above is an endomorphism of $N \, \forall \langle a, b \rangle$ belonging to $A \times B$ by (3) and the associativity of multiplication inferred in N arises from (1) and (2), so F is a Clay function.

It is easy to verify that now A^0 and 0B are left ideals of N. Viceversa, if $F: A \times B \to \operatorname{End}(N^+)$ is a Clay function and «·» denotes the multiplication inferred in N, then

$$\langle a, b \rangle \cdot \langle a', b' \rangle = F_{a,b}(\langle a', b' \rangle) = F_{a,b}(\langle a', 0 \rangle) + F_{a,b}(\langle 0, b' \rangle).$$

Now $\forall a' \in A \quad \forall b' \in B \quad \forall \langle a, b \rangle \in N$

$$F_{a,b}(\langle a', 0 \rangle) = \langle a'', 0 \rangle \in A^0$$
 $F_{a,b}(\langle 0, b' \rangle) = \langle 0, b'' \rangle \in {}^0B$

because A^0 and 0B are left ideals of N, so $F_{a,b}/_{A^0}$ and $F_{a,b}/_{{}^0B}$ are endomorphisms of A^0 and 0B repectively. Take now $f_{a,b}(a')=a''$ and $\bar{f}_{a,b}(b')=b''$ $\forall \langle a, b \rangle \in A \times B$, then two functions from $A \times B$ to $\operatorname{End}(A)$ and $\operatorname{End}(B)$ respectively are defined, so we can write $\forall \langle a, b \rangle \in A \times B$.

$$F_{a,b}(\langle a', b' \rangle) = \langle f_{a,b}(a'), \bar{f}_{a,b}(b') \rangle$$
.

The property (3) is true because $F_{a,b} \in \operatorname{End}(N^+)$ and (1) and (2) arise from associativity of «·».

From Proposition 2 we can see that $F/_{A^0}$ and $F/_{{}^0B}$ determine a Clay function of A and B respectively.

Obviously, particular remarkable cases come from choice of homomorphism φ and functions f and \bar{f} ; for example:

(1) If $f(\langle 0, 0 \rangle) = O_A$ and $\tilde{f}(A \times B) = \{\text{id}\}$, then we find Def. 1 of [1]. Besides, if also $\varphi(B) = \{\text{id}\}$, A and B are non trivial abelian groups and $f(A \times B) \to \operatorname{End}(A)$ is a commutative subset, all the mixed semirings and only those arise, in fact the near-ring constructed is abelian, because additively it is a direct sum of abelian groups, and also left permutable; moreover $N_0 = A^0 \neq \{0\}$ and $N_c = {}^0B \neq \{0\}$, so it is a mixed semiring.

Viceversa, if N is a mixed semiring, then $N^+ = N_0^+ \oplus N_c^+$, moreover $(n_0 + n_c)(n_0' + n_c') = (n_0 + n_c)n_0' + n_c'$, so now

$$F_{n_0,n_c}(\langle n_0',\ n_c'\rangle) = F_{n_0,n_c}(\langle n_0',\ 0\rangle) + F_{n_0,n_c}(\langle 0,\ n_c'\rangle) = \langle f_{n_0,n_c}(n_0'),\ n_c'\rangle \; .$$

Finally, $f(N_0 \times N_c)$ is obviously a commutative subset of $\operatorname{End}(N_0^+)$ and

S: $N \rightarrow N_0^+ \oplus N_{c'}^+$ with $S(n_0 + n_c) = \langle n_0, n_c \rangle$ is an isomorphism of mixed semirings.

- (2) If $f(\langle 0, 0 \rangle) = O_A$, $\bar{f}(\langle 0, 0 \rangle) = O_B$ and $\varphi(B) = \{id\}$, then we find Def. 2 of [1].
- (3) If A is a near-ring, A = B, $\varphi(A) = \{id\}$, $f(\langle a, b \rangle) = \gamma_a$, $\bar{f}(A \times B) = \{id\}$ then we obtain the Example 2.13 of [3].
- (4) If A=B, $\varphi(A)=\{\mathrm{id}\}$, $f_{a,b}=f_{0,b}=\gamma_b=\bar{f}_{a,b}\ \forall \langle a,b\rangle\in A\times B$, then we obtain the Example 2.11 of [3].
- (5) If A and B are vectorial spaces and A is normed, $\varphi(B) = \{id\}$ $f(\langle a, b \rangle)(a') = |a| a' \ \forall \langle a, b \rangle \in A \times B \ \forall a' \in A \ \text{and} \ \tilde{f}(A \times B) = \{O_B\}$, then we obtain the Example 2.8 of [3].

We shall call Φ -sum of A and B a near-ring constructed as in Proposition 2. If N is a Φ -sum of A and B, the multiplication of N infers a multiplication in A and B if we define

$$aa' = \Pi_A(\langle a, 0 \rangle \langle a', 0 \rangle)$$
 $bb' = \Pi_B(\langle 0, b \rangle \langle 0, b' \rangle)$

and with respect to such operations A and B are near-rings, isomorphic images of $A^{\tt 0}$ and ${\tt 0}B$ respectively.

Proposition 3. If N is a Φ -sum of A and B where A and B are near-rings, the multiplication inferred in A and B by multiplication of N and the multiplication of A and B coincide iff we define $f_{a,0} = \gamma_a \quad \forall a \in A$ and $\bar{f}_{0,b} = \gamma_b \quad \forall b \in B$.

Proof. Easy verification.

In the following, Φ -sum of near-rings means that the assumption of Proposition 3 is given.

It can easily be seen that if N is a Φ -sum of A and B, then A^0 is a left ideal of $[N,\cdot]$ and 0B is a left N-subgroup of $[N,\cdot]$; indeed:

Theorem 1. Let N be a near-ring, then N = I + K where I is a left ideal and K is a left N-subgroup and $I \cap K = \{0\}$ iff N is isomorphic to a Φ -sum of I and K.

Proof. It follows immediately from Proposition 2.

Corollary 1. In a near-ring N, N_0 is an ideal iff N is isomorphic to the Φ -sum of N_0 and N_c with $f(\langle 0, 0 \rangle) = O_{N_0}$ and $\tilde{f}(N_0 \times N_c) = \{id\}$.

Proof. Obviously, since it is always $N = N_0 + N_c$ with $N_0 \cap N_c = \{0\}$ and now N_c is even a N-subgroup. Thus we find the Theorem 1 of [1].

Corollary 2. If N is a near-ring, then N = I + J where I and J are left ideals with $I \cap J = \{0\}$, iff N is isomorphic to the Φ -sum of I and J with $\varphi(I) = \{\text{id}\}.$

Proof. Obviously, because a left ideal is of course a left N-subgroup and I is a left ideal iff the sum I + J is direct, that is $\varphi(I) = \{id\}$.

In addition, if we assume $f(\langle 0, 0 \rangle) = O_{I^+}$ and $\tilde{f}(\langle 0, 0 \rangle) = O_{J^+}$, then all and only zero-symmetric near-rings belonging to the class seen in Corollary 2 are found; thus we find the Theorem 2 of [1].

Proposition 4. Let N be a Φ -sum of A and B, then:

- (i) N is zero-symmetric iff $f(\langle 0, 0 \rangle) = O_A$ and $\bar{f}(\langle 0, 0 \rangle) = O_B$.
- (ii) ${}^{0}B$ is a N-subgroup iff $f({}^{0}B) = O_{A}$.
- (iii) A^0 is a right ideal iff $\bar{f}_{a,b} = \bar{f}_{0,b} \ \forall a \in A, \ \forall b \in B$.

Proof. The verification of (i) and (ii) is routine.

(iii) Generally, if N is a Φ -sum of A and B, we have

$$(\langle a, b \rangle + \langle \bar{a}, 0 \rangle) \langle a', b' \rangle - \langle a, b \rangle \langle a', b' \rangle$$

$$= \langle a + \varphi_b(\bar{a}), b \rangle \langle a', b' \rangle - \langle f_{a,b}(a'), \bar{f}_{a,b}(b') \rangle$$

$$= \langle \dots, \bar{f}_{a+\varphi_b(\bar{a}),b}(b') \rangle + \langle \dots, -\bar{f}_{a,b}(b') \rangle = \langle \dots, \bar{f}_{a+\varphi_b(\bar{a}),b}(b') - \bar{f}_{a,b}(b') \rangle = (*);$$

then if $\bar{f}_{a,b} = \bar{f}_{0,b} \ \forall a \in A, \ \forall b \in B$, we have

(*) =
$$\langle \dots, \bar{f}_{0,b}(b') - \bar{f}_{0,b}(b') \rangle = \langle \dots, 0 \rangle$$

so A^0 is a right ideal. Viceversa: if A^0 is a right ideal then

$$\bar{f}_{a+\varphi_b(\bar{a}),b}(b') - \bar{f}_{a,b}(b') = 0 \qquad \forall a, \ \bar{a} \in A, \ \forall b, \ b' \in B;$$

in particular assume a = 0, so $\bar{f}_{\varphi_b(\bar{a}),b} = \bar{f}_{0,b}$ and $\bar{f}_{a,b} = \bar{f}_{0,b} \ \forall a \in A$ because φ_b is an automorphism of A and $\varphi_b(A) = A$.

Proposition 5. Let N be a Φ -sum of A and B, then N is a medial (left permutable) near-ring iff $f(A \times B) \subseteq \operatorname{End}(A)$ and $\overline{f}(A \times B) \subseteq \operatorname{End}(B)$ are right permutable (commutative) subsets.

Proof. It is enough to recall (1) and (2) of Proposition 2.

Proposition 6. Let N be a Φ -sum of A and B, then:

- (i) $r(\langle a, b \rangle) = \ker f_{a,b} X \ker \tilde{f}_{a,b}$.
- (ii) If A^0 is a right ideal and $\bar{f}(\langle 0, 0 \rangle) = O_B$, then ${}^0B \subseteq r(A^0)$.

Proof. (i) It is trivial. (ii) If A^0 is a right ideal, then $\bar{f}_{a,b} = \bar{f}_{0,b} \ \forall a \in A, \ \forall b \in B$ from Proposition 2, so, in particular, $\bar{f}_{a,0} = \bar{f}_{0,0} = O_B$ thus $\ker \bar{f}_{a,0} = B$ and, from (i), $\{0\} \times B \subseteq \ker f_{a,0} \times \ker \bar{f}_{a,0}$ so ${}^0B \subseteq r(A^0)$.

4 - Λ-sum of near-rings

Consider now the near-rings on direct sums of additive groups, that is $\varphi(B) = \{id\}.$

Proposition 7. Let $N = A \oplus B$ be the direct sum of the additive groups A and B, and let B be an abelian group. The function F defined by: $\forall \langle a, b \rangle \in A \times B$ $F(\langle a, b \rangle) = F_{a,b}$, with $F_{a,b}(\langle a', b' \rangle) = \langle f_a(a'), \lambda_{a'}(b) + b' \rangle$ $\forall \langle a', b' \rangle \in N$ where f is a Clay function of A, $\lambda_{a'} = \lambda(a')$ and λ : $A \to \operatorname{End}(B)$ is a group homomorphism for which $\lambda_{a'} \circ \lambda_a = \lambda_{f_a(a')}$ is true, is a Clay function of N.

Proof. F defined as above is a function from $A \times B$ to $\operatorname{End}(N)$; in fact $F_{a,b}$ is an endomorphism of $N \ \forall \langle a, b \rangle \in A \times B$, moreover the multiplication inferred in N is associative, so $F: A \times B \to \operatorname{End}(N)$ is a Clay function.

Proposition 8. In a near-ring $[N,\cdot]$ constructed on $N=A\oplus B$ by Clay function like the one in Proposition 7, A^0 is a right ideal including N_0 and 0B is an abelian ideal included in N_c .

Proof. Obviously A^0 is a normal additive subgroup of N, moreover

$$\begin{split} F_{a+\bar{a},b+0}(\langle a',\ 0\rangle) - F_{a,b}(\langle a',\ 0\rangle) &= \langle f_{a+\bar{a}}(a'),\ \lambda_{a'}(b)\rangle - \langle f_a(a'),\ \lambda_{a'}(B)\rangle \\ &= \langle f_{a+\bar{a}}(a') + f_a(a'),\ 0\rangle \in A^0 \end{split}$$

so condition (iv) of Proposition 1 is true; ⁰B is also a normal additive subgroup, moreover

$$F_{a,b+b}(\left\langle 0,\ b'\right\rangle)-F_{a,b}(\left\langle 0,\ b'\right\rangle)$$

$$=\langle a_a(0), \lambda_0(b) + b' \rangle - \langle f_a(0), \lambda_0(b) + b' \rangle = \langle 0, 0 \rangle \in {}^{0}B$$

which results to be a right ideal, and $F_{a,b}(\langle 0, b' \rangle) = \langle 0, \lambda_0(b) + b' \rangle$ belonging to ${}^{0}B$ $\forall \langle a, b \rangle \in N$, $\forall b' \in B$, so $F_{a,b}(N) \subseteq \mathscr{F}({}^{0}B)$ and condition (ii) of Proposition 1 is true, thus ${}^{0}B$ is a left ideal.

Finally, is routine to verify that $N_0 \subseteq {}^{0}A$ and ${}^{0}B \subseteq N_c$.

The structure described above will be called Λ -sum of A and B.

If N is a Λ -sum of A and B, the multiplication of N infers a multiplication in A and B if we define

$$aa' = \Pi_A(\langle a, 0 \rangle \langle a', 0 \rangle)$$
 $bb' = \Pi_B(\langle 0, b \rangle \langle 0, b' \rangle)$

and with respect to such operations A and B are near-rings, isomorphic images of A^0 and 0B respectively.

Proposition 9. If N is a Λ -sum of A and B, where A and B are near-rings, the multiplication inferred in A and B by multiplication of N and the multiplication of A and B coincide iff we define $f_{a,0} = \gamma_a \ \forall a \in A$ and B is a constant nearing.

Proof. Easy verification.

In the following Λ -sum of near-rings means that the assumption of Proposition 9 is given.

Proposition 10. Let N be a Λ -sum of A and B, then:

(i) $A^0 = N_d$ iff f is a homomorphism. (ii) The following conditions are equivalent

(a)
$$N_0 = A^0$$
 (b) $N_c = {}^0B$ (c) $f(0) = O_A$.

Proof. (i) It is trivial. (ii) $N_0 = A^0$ implies $N_c = {}^0B$, obviously. $N_c = {}^0B$ implies $f(0) = O_A$; in fact, if $N_c = {}^0B$, then $\langle 0, b \rangle \langle a', b' \rangle = \langle 0, \bar{b} \rangle$ so $f_0(a') = 0$ $\forall a' \in A$ and $f(0) = O_A$. $f(0) = O_A$ implies $N_0 = A^0$; in fact, if $f(0) = O_A$ then $\langle 0, 0 \rangle \langle a, 0 \rangle = \langle 0, 0 \rangle$ $\forall a \in A$ so $A^0 \subseteq N_0$, moreover $\langle a, b \rangle \in N_0$ implies that $\langle 0, 0 \rangle \langle a, b \rangle = \langle f_0(a), \lambda_a(0) + b \rangle = \langle 0, b \rangle = \langle 0, 0 \rangle$ so $N_0 \subseteq A^0$.

The proof of the following theorems is a direct consequence of Propositions 7, 8, 9 and 10.

Theorem 2. A near-ring N in which $N_0 = N_d$ and N_c is an abelian ideal, is isomorphic to a Λ -sum of N_0 and N_c .

Theorem 3. A near-ring N is abstract affine iff it is isomorphic to a Λ -sum of a ring A and a constant near-ring on an abelian group B.

So the Clay functions which allow us the construction of abstract affine nearrings are characterized, in fact: A near-ring N is abstract affine iff it is constructed on the direct sum $A \oplus B$ of abelian groups by a Clay function as in Proposition 7, where f is a homomorphism, thus we find Theorem 5 of [4]₂.

References

- [1] A. Benini, Sums of near-rings, Riv. Mat. Univ. Parma (4) 14 (1988), 135-141.
- [2] A. Benini and S. Pellegrini, Medial and permutable near-rings, to appear in Riv. Mat. Univ. Parma.

- [3] G. BIRKENMEIER and H. HEATHERLY, Medial near-rings, to appear.
- [4] J. R. CLAY: [•]₁ The near-rings on groups of low order, Math. Z. 104 (1968), 364-371; [•]₂ The fibred product near-ring and near-ring modules for certain categories, Proc. Edin. Math. Soc. 23 (1980), 15-26.
- [5] G. Pilz, *Near-rings*, 2nd ed., North Holland, Math. Studies 23, Amsterdam, 1983.
- [6] M. Weinstein, Example of groups, Polig. Pub. House, 1945.

Summary

Particular classes of near-rings on direct or semidirect sums of additive groups are constructed, so that direct or semidirect summands are one-sided or two-sided ideals of the constructed near-ring or, at least, of its multiplicative semigroup.
