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Near-rings on certain groups (*%)

1 - Introduction

In [4]; Clay gives a method for constructing all near-rings on a given additive
group.

We shall call Clay function of an additive group G a function F: G— End(G)
such that the multiplication «-» inferred in G is associative, that is [G,-]is a left
near-ring.

Now, let N=A + B be a semidirect sum of additive groups A and B with
homomorphism . Obviously, by Clay method, every near-ring on N can be
constructed but, generally, restrictions of Clay functions on A° and °B are not
Clay functions, that is, from a multiplicative view-point, isomorphic images of
semidirect summands are not even sub-structures.

Furthermore, for characterizing some classes of near-rings, it is better that
such images are one-sided or two-sided ideals of the constructed near-ring or, at
least, of its multiplicative semigroup.

For this reason it is necessary to find conditions on Clay functions so that A°
and °B are support for given structures, in particular left ideals of the
multiplicative semigroup of the near-ring.

A near-ring constructed by one of the last functions is called @-sum of A and
B and among the near-rings characterizable as @-sums, those of Def. 1 and Def. 2
of [1] and as also some geometric exemples of [3], can be seen.

The class of left permutable zero-symmetric near-rings with an idempotent
non-zero element is characterizable as @-sum too (see [2]) and generally, a near-
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ring is a @-sum if and only if its additive group is a semidirect sum of the additive
groups of a left ideal and a left N-subgroup, respectively.

Subsequently the definition of A-sum of near rings is given and such a
structure results to be a near-ring.

Finally we can prove that the class of abstract affine near-rings is a particular
A-sum and then we characterize the respective Clay funections.

2 - Preliminaries

Throughout the paper N stands for a left near-ring.

In general we adhere to the notation and therminology used in [4],. In
particular a near-ring N = Ny + N, with N, # {0} # N, is called mixed near-ring,
the additive group and the multiplicative semigroup of N are denoted by N* and
N’ respectively; S c N is called ideal of N" if SN ¢ S and NS ¢ S; a subgroup of N*
which is a left (right) ideal of N is called left (right) N-subgroup of N.

N, denotes the set of distributive elements of N.

r(x) = {& € N/o@ = 0} is the right annihilator of x and (S) = 0 ().

If Ac N, & (A) c Aut(N*) denotes the subset of automorphisms of N* which
transforms A into itself. If A is a structure, O, denotes the zero endomorphism
of A. If f, g are functions from S to T and H¢T, we write f=pg for
S (&) — g(x) € H for every « belonging to S. Moreover y,:x—ax VrxeN isaleft
translation of N determined by a.

C(4) denote the centre of A.

If G=A+ _B and A= {(a, 0)/aec A}, °B={{0, b)/be B}, then it follows
that A® and °B are subgroups of A+ B; A+ B=A+°B; A°n°B={(0, 0)};
A"~ A and A + Blse~B.

3 - ¢-sum of near-rings

Proposition 1. Let N=A+ B, F: AXB—End(N) be a Clay function
and «» denotes the multiplication inferred in N, then an additive subgroup
Sc N, by «», turns to:

@ a subnear-ring of IN,-14f F(S)c F(S);

(i) o left N-subgroup of [N,-] #ff F(N)c F(S);
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(i) o right ideal of [N,-] iff it is a normal subgroup of N* and
Foroiovis = sFop (%) holds for every (a, b) in N and for every (d, b) in S;
(iv)  a right N-subgroup of [N,-] iff F,s(N) ¢S for every {(a, b) €S.
Proof. (i) Let S be a subgroup of N=A+ B and F(S) ¢ F(S), then
(@, b)-{a', b') =Fo,({a’, ¥'))eS V(a, b), (o', b') €S
so S is a subnear-ring of [N,-]. Viceversa, let S be a subnear-ring of [N,-], then
(a, b)-(a', b') €S for every (a, b), (a’, b') €S, so F,,((a’, b'))eS and
FES)c F(S).
(i) and (iv) analogously to (i).

(iii) Let S* be a normal subgroup of N* and let (*) be true V{a, b)eN,
Y{d, b) €S, then

(a, b) +(a, b)) (a’, b') = (a, b){a’, ')
=(a+ @), b+b){a’, b') —(a, b){a', b')
=Foy@pil{a’, ') = Fou({a’, b')) eS8 V(a', b')eN
so S is a right ideal of [N,-]. The converse is analogous. -

Proposition 2. Let N=A + B, then a multiplication on N makes A® and
°B left ideals of N° iff it is inferred by a Clay function defined as follows

V(a, b)) eAXB  F((a', ') = (foi@"), fus(®")

where f,,=f(a, b)), fus=Ff{a, b)), f AXxB—End(4), f: AxB—EndB)
are functions for which the following properties are true:

D Sfop Loy =T sar e @) fapFurw =Frsar i
@ foplor= Pas®) s -
Proof. F,, defined above is an endomorphism of N V(a, b) belonging to.

A X B by (3) and the associativity of multiplication inferred in N arises from (1)
and (2), so F' is a Clay function.




152 A. BENINI [4]

It is easy to verify that now A° and °B are left ideals of N'. Viceversa, if
F: AxB—End(N*) is a Clay function and «-» denotes the multiplication’
inferred in N, then

{a, b)-{(a', b)Y =F({a’, b') =F,({a, 0))+F.:({0, b')).
Now Va'e A Vb'eB V{a, b)eN
F.,({a’, 0))={a", 0) e A° F, ({0, o'))=(0, ¥")e’B

because A and °B are left ideals of N, s0 F', y/40 and F, ;/05 are endomorphisms of
A° and °B repectively. Take now f,,(a’)=a" and f,,(b")=b" ¥(a, b) € A X B,
then two functions from A X B to End(A) and End(B) respectively are defined,
so we can write V{(a, b) e AXB.

Foi{a', 0')) = {fas@"), Fous(®) .

The property (8) is true because F,, e End(N*) and (1) and (2) arise from
associativity of «-».

From Proposition 2 we can see that F/,o and F/op determine a Clay function of
A and B respectively.

Obviously, particular remarkable cases come from choice of homomorphism ¢
and functions f and f; for example:

(1) If £({0, 0)) =04 and f(A X B) = {id}, then we find Def. 1 of [1]. Besides,
if also o(B) = {id}, A and B are non trivial abelian groups and (A X B)— End(4)
is a commutative subset, all the mixed semirings and only those arise, in fact the
near-ring constructed is abelian, because additively it is a direct sum of abelian
groups, and also left permutable; moreover Ny=A’# {0} and N,=°B # {0}, so
it is a mixed semiring.

Viceversa, if N is a mixed semiring, then N*=N§® N, moreover
(Mo + n)(ng + nl) = (ng + ny) My + ng, SO NOW

Fron (b, 1)) = Fupn({nh, 0)) + Fp ({0, 1)) = { fron (1), mc) -

Finally, f(No,XN,) is obviously a commutative subset of End(N§) and
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S: N—Ng @ N with S(ng+ n,) = (ny, n,) is an isomorphism of mixed semi-
rings.

@) If £({0, 0))=04, 7({0, 0)) =0y and o(B) = {id}, then we find Def. 2 of
[1].

@) If A is a near-ring, A=B, o(4)={id}, f({a, b)) =1y, A XB)= {id}
then we obtain the Example 2.13 of [3].

@ If A=B, oA)={id}, fur=for=vs=Fu» ¥(a, b) e AXB, then we
obtain the Example 2.11 of [3].

(6) If A and B are vectorial spaces and A is normed, o(B)= {id}
fa, b))a)=lala’ ¥(a, b) e AXB Va'e€A and F(AXB)={03), then we
obtain the Example 2.8 of [3].

We shall call @-sum of A and B a near-ring constructed as in Proposition 2.
If N is a ¢-sum of A and B, the multiplication of N infers a multiplication in A
and B if we define

aa’ =I4({a, 0){a’, 0)) bb' =II5({0, b)(0, b'))

and with respect to such operations A and B are near-rings, isomorphic images of
A" and °B respectively.

Proposition 8. If N is a &-sum of A and B where A and B are near-rings,
the multiplication inferred in A and B by multiplication of N and the
multiplication of A and B coincide iff we define Joo=71. YaecA and
fos=vs YbeB.

Proof. Rasy verification.

In the following, @-sum of mear-rings means that the assumption of
Proposition 3 is given.

It can easily be seen that if N is a #-sum of A and B, then A° is a left ideal of
[N,-] and °B is a left N-subgroup of [N, -]; indeed:




154 A. BENINI 6] .

Theorem 1. Let N be a near-ring, then N=1+K where I is a left ideal
and K is a left N-subgroup and I n K= {0} iff N is isomorphic to a &-sum of I
and K.

Proof. It follows immediately from Proposition 2.

Corollary 1. In a near-ring N, Ny is an ideal iff N is isomorphic to the
@-sum of Ny and N, with £({0, 0))= Oy, and filNox N,) = {id}.

Proof. Obviously, since it is always N =N,+ N, with NonN.= {0} and
now N, is even a N-subgroup. Thus we find the Theorem 1 of [1].

Corollary 2. If N is a near-ring, then N=1I+J where I and J are left
ideals with I nJ={0}, iff N is isomorphic to the ®-sum of I and J with

o) = {id}.

Proof. Obviously, because a left ideal is of course a left N-subgroup and /
is a left ideal iff the sum I +J is direct, that is (1) = {id}.

In addition, if we assume ({0, 0))=0 and f({0, 0))=0,+, then all and
only zero-symmetric near-rings belonging to the class seen in Corollary 2 are
found; thus we find the Theorem 2 of [1].

Proposition 4. Let N be a &-sum of A and B, then:

i) N is zero-symmetric iff ({0, 0))=0, and f({0, 0))=O0s.
()  °B is a N-subgroup #f f°B)=0,.
(i)  A°is a right ideal iff f.,=fop» Ya€A, VYbeB.

Proof. The verification of (i) and (i) is routine.
(iii) Generally, if N is a ¢-sum of A and B, we have

(<(1/, b>+<d’1 0))((1/', b,>_ <a; b><a,7 b’>
= <a’+¢b(d)7 b><a”: bl) - <fa,b(al)7 fa,b(b,)>

= (erey Farag@a®)) + ey —Fus®)) = (ot Frtayars(®) — s = (9);
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then if f,,=f,» Vac A, VbeB, we have
()= (oey Joald) —=fos®)) = (..., 0)
so A° is a right ideal. Viceversa: if A® is a right ideal then
Fora@sd") —Fop(®) =0 Va, GeA, Vb, b’ €B;

in particular assume a =0, s0 f,us=/fos and fo,=F;, Ya € A because g, is an
automorphism of A and ¢,(4)=A.

Proposition 5. Let N be a @-sum of A and B, then N is a medial (left
permutable) near-ring iff f(A X B) c End(4) and f(A X B) c End(B) are right
permutable (commutative) subsets.

Proof. It is enough to recall (1) and (2) of Proposition 2.

Proposition 6. Let N be a ®-sum of A and B, then:

@ 7({a, b)) =ker f,, X ker f,,.
() If A is a right ideal and f({0, 0)) = Op, then °B c r(A°).

Proof. () Itis trivial. (i) If A® is a right ideal, then f,,=f,, Vac A4, Vb e B
from Proposition 2, so, in particular, fa,o = fo,o = Op thus ker fa,o = B and, from (i),
{0} X B cker f, % ker f,, so °B ¢ 7(A%).

4 - A-sum of near-rings

Consider now the near-rings on direct sums of additive groups, that is
o(B) = {id}.

Proposition 7. Lét N=A @ B be the direct sum of the additive groups A
and B, and let B be an abelian group. The fumction F defined by:
V{a, b) eAXB F({a, b))=F,5, with F.({a', b'))=(fola), 2z(b)+")
V{(a', b') € N where fis a Clay function of A, Ay = Ma') and x: A— End(B) is a
group homomorphism for which Ao, = g 18 true, is a Clay function of N.
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Proof. F defined as above is a function from A X B to End(N); in fact F; is
an endomorphism of N ¥{a, b) € A X B, moreover the multiplication inferred in
N is associative, so F: A X B—> End(N) is a Clay function.

Proposition 8. In a near-ring [N,-] constructed on N=A @B by Clay
Sfunction like the one in Proposition 7, A is a right ideal including Ny and °B is
an abelian ideal included in N,.

Proof. Obviously A° is a normal additive subgroup of N, moreover
Fa+d,b+0(<a’, 0)) _Fa,b(<a',, O)): <fa+d(a'/), )\a’(b)> = (fa(a’), )\a,’(B)>
= (farala) +fia)), 0) € A°

so condition (iv) of Proposition 1 is true; °B is also a normal additive subgroup,
moreover

Fopea({0, b)) = Fou({0, b))
= (@(0), 20(0) +b") ~ (£ul0), X(b)+ 1) =(0, 0) B

which results to be a right ideal, and F, 4({0, ")) = (0, A(b) + b’) belonging to °B
V{a, b) €N, Vb’ €B, s0 F,,(N)c & (°B) and condition (ii) of Proposition 1 is
true, thus °B is a left ideal.

Finally, is routine to verify that Nyc®4 and °BcN.,.

The structure described above will be called A-sum of A and B.
If Nis a A-sum of A and B, the multiplication of N infers a multiplication in A
and B if we define

aa’ =I1,({a, 0){a’, 0)) bb' =IIx({0, b){0, b'))

and with respect to such operations A and B are near-rings, isomorphic images of
A° and °B respectively.

Proposition 9. IfNisa A-sum of A and B, where A and B are near-rings,
the multiplication inferred in A and B by multiplication of N and the
multiplication of A and B coincide #ff we define f,o=v, YacA and B is a
constant nearing.
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Proof. Easy verification.

In the following A-sum of near-rings means that the assumption of
"Proposition 9 is given.

Proposition 10. Let N be a A-sum of A and B, then:

@ A'’=N; iff f is a homomorphism. (i) The following conditions are
equivalent

() Ny=A° () N,=°B (@ f0)=04,.

Proof. (i) It is trivial. (i) N,=A" implies N,=°B, obviously. N.=°B
implies £(0) = Oy; in fact, if N,=°B, then (0, b)(a’, b') = (0, b) so fola’) =0
Va' € A and f(0)=0y4. f(0)=0, implies Ny=A"% in fact, if f(0)=0, then
{0, 0){a, 0)={0, 0) YaecA so A°cN,, moreover {(a, b) e N, implies that
(0, 0)<a, b) = (fioa), 2(0)+b) =0, b)=(0, 0) so Noc A".

The proof of the following theorems is a direct consequence of Propositions 7,
8, 9 and 10.

Theorem 2. A near-ring N in which Ny = N, and N, is an abelian ideal, is
isomorphic to a A-sum of Ny and N,.

Theorem 3. A near-ring N is abstract affine iff it is isomorphic to a A-
sum of a ring A and a constant near-ring on an abelian group B.

So the Clay functions which allow us the construction of abstract affine near-
rings are characterized, in fact: A near-ring N is abstract affine iff it is
constructed on the direct sum A @ B of abelian groups by a Clay function as in
Proposition T, where f is a homomorphism, thus we find Theorem 5 of [4],.
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Summary

Particular classes of near-rings on direct or semidirect sums of additive groups are
constructed, so that direct or semidirect summands are one-sided or two-sided ideals of
the constructed near-ring or, at least, of its multiplicative semigroup.
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