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Toeplitz operators associated
with Bergman and Hardy spaces (**)

Introduction

Let 0 <p < . The Hardy space H? consists of all analytic functions f defined
on the open unit disk D= {2: |2| <1}, for which M,(r, f) remains bounded as
r— 1, where

My, )= {5 § |fireldoyte.

The space H” consists of all bounded analytic functions defined on D.
If a function fis in H?(1 <p < «), then 1}31 flre®) exists almost everywhere on

the unit circle 3D. This of course, permits an association of H? with a closed
subspace of LP(3D). This subspace of LP(3D) (still denoted by H?) consists of
those functions in LZP(3D) which has vanishing negative Fourier coefficients, that
is

b2
L [ flehedt=0 for n>0.
271'0

The above results appear in [7], [9].
The Bergman space AP(D) is the space of all analytic functions f defined on D
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for which |f|? is integrable with respect to the area measure dA‘=—1—dy da.
T

Obviously AP(D) is a Banach space where p =1 (one can convince oneself that is
the case by a proof in all similar to the classic one for H?). In particular if p =2,
AX(D) is a Hilbert space. It can be easily checked from the definition of the Hardy
space HP, and the Bergman space AP(D), 0<p< o that H? is contained in
AP(D). The inclusion H? c A% follows from a particular case of an inequality of
Hardy and Littlewood (see [7], p. 8T). V

For 1<p<« and ¢ e L*(D), the Toeplitz operator T, is defined on the
Bergman space AP(D) by T(f) = P(y, f), where P is the projection of L*(D) onto
AP(D). In particular P is defined as follows

PHR =S, k) = Df AOA - E)2dA®

where k.(£) = (1 — 2872 Toeplitz operators on the Hardy spaces H? are defined
in a similar manner. The Hankel operator H,: AXD)— (A¥D))* is defined by
H(f)=UI-P)yf.

Toeplitz operators on the Hardy space H* have been the object of much study
(see [3], [6]). In [3] the algebraic properties of Toeplitz operators were discussed.
In [6], it was shown that the spectrum and essential spectrum of such operators
were connected, and the only compact Toeplitz operator is the zero operator.

The primary goal of this paper is to study some of the above mentioned
properties for Toeplitz operator defined on the Bergman space A% D).

In 1 some algebraic properties of Toeplitz operators defined on A%D) are
proved. In particular, it is shown that if T, T,=T,, and kernel H,# {0}, then
9= ¢ almost everywhere. Also, it is proved that if ¢ € C(D) and |¢| attains its
maximum on the unit circle 3D such that T, is an isometry, then ¢ is constant.

In 2 an example of a compact Toeplitz operator which is not Hilbert-Schmidt
is constructed. In fact it is shown that if ¢(r, 6) = (1 —7)?, where 0 <« < 1/2 then
the Toeplitz operator T, defined on the Bergman space A%D) is compact but nor
Hilbert-Schmidt. It is also shown that the operator T, is actually a trace class
only if a>1.

In 3 some spectral properties of Toeplitz operators defined on A2%(D) are
studied. In particular it is shown that o(T,) = (D), where ¢(z) = 2i|2|* + \Zz[", i
and 7 are integers such that >0, n=0, A is real ‘and |A|<1. Moreover, the
spectrum of 7, is completely determined, where ¢ is in a class of complex valued
harmonie functions (not analytic).
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1 - Algebraic properties

The purpose of this section is to study some algebraic properties of Toeplitz
operators defined on the Bergman space AXD) and to compare them with those
on the Hardy space HZ

The theory of Toeplitz operators is not easy, and this makes it difficult to
predict all algebraic properties of T; by the behaviour of ¢. One useful too in
trying to get related good results, is the matrix associated with the Toeplitz
operator.

Consider the orthonormal basis {¢,=¢e™, n=0, 1, 2, ...} for H? the matrix
{@m} of the Toeplitz operator T, ¢ € L*(3D) associated with it is

Oy, = <T¢ Eny em) = <T¢ €n+1y em+l> = Ap+1n+l = ¢(m - n)

where ¢(n) are the Fourier coefficients of ¢. Thus, the matrix for T, is constant
on diagonals, such a matrix is called a Toeplitz matrix. This special form of the
Toeplitz matrix made the algebraic properties relatively easily derivable. An
important result of this special form was proved in [3]. It was shown that if ¢ and
¢ were in L*(@@D) then T, T, = T,, if and only if ¢ is analytic or ¢ is analytic. As a
consequence, it was proved that for ¢ € L*(3D) T, is an isometry if and only if ¢ is
analytic and |¢| = 1.

It would be interesting to have similar characterization for Toeplitz operators
defined on the Bergman space A%(D). Since the Toeplitz matrix on A%(D) does not
have a special form as that on H?, different tools should be used in studying their
algebraic properties. However, it can be easily established that if ¢ € L*(D) and
T;T,=Type, then ¢ € H*(D). In what follows we prove the following.

Proposition 1.1. Let ¢, ¢ and g be in L=(D). Assume that T¢ T,=T,, and
kernel H,# {0}. Then g=¢J).

Proof. Letfe A%D) such that H,f= 0. From this it follows that ¢f'e A¥D),
and thus ¢2"fe A¥D) for all n=0. Now

(T,T,z"f, 2™y ={(T,z"f, 2" n, m=0
implies that (ggarf, z2™) = (g2*f, 2™).

Therefore (df, Z°ea™) = {gf, *2™).
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This show that  ((g—g)f, 2"z") =0 for all n, m=0.

But the span of {#™2"},, .0 is dense in LAD), so (¢4 —g)f = 0. Consequently,
¢4 = g since f cannot vanish on a set of positive measure, and this ends the proof.

Remark 1.1. A question related to Proposition 1.1 is to characterize those
functions in L(D) such that kernel of H, 0. ’

Proposition 1.2. Let ¢ € C(D) such that |¢| attains its mawimum on the
unit circle 3D. If T,T,=1, then ¢ is constant.

Proof. It can be easily checked that
HiH,=Typ—T5T, = Tp-s.

Since ¢ € C(D), then it follows by [11] that H. #H,is compact, and this will imply
that |¢| = 1 on the unit circle 3D (see [4]). Therefore, |¢(z)] <1 for all z € D, and
hence ||¢l. < 1. Let ¢ = ¢, + ¢,, where ¢, € AXD) and ¢, e (AXD))*. Using the fact
that T, is an isometry, it follows that ||T,1)|=|l¢;z. Thus, ¢.=0. Therefore,
¢ € H*(D), and hence T;T;=T),e=T,. From this it follows that T|,p_;=0, and
consequently ¢ is constant. :

One final note regarding the algebraic properties of Toeplitz operators is that
in [3] it was shown that the Toeplitz operator T', defined on the Hardy space H? is
normal if and only if ¢ = « + ff, where «, 8 are complex numbers, and fis a real
valued function. However, it can be easily checked that if ¢(r, 6) = (r) (radial),
then the matrix associated with the Toeplitz operator defined on the Bergman
space A%D) is diagonal. Thus, T is a normal operator.

2 - Compactness

The theory of compact Toeplitz operators defined on the Hardy space H?,
1<p< o, is relatively easy. In fact, and in this case, the only compact Toeplitz
operator is the zero operator. To see this, Widom [15] showed that if ¢ € L*(3D)
where 3D is the unit circle, ¢ =¢; +1¢s, then spectrum of T, is connected.
Moreover, using the fact that 77 is compact and that the spectrum of a compact
operator is countable with zero in the spectrum, it follows that «(T,) = {0} and
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o(T,) = {0}. But T, and T,, are self-adjoint and hence normal operators, so it
follows by [8] that T, =T, =0, and hence T,=0.

The theory of compact Toeplitz operators on the Bergman space A%D) is
rather deep. In fact Coburn [4] showed that if ¢ € C(D), then T, is compact if and
only if $|dD =0. Moreover, compact Toeplitz operators were studied in [10],.
Our goal now is to find a class of Toeplitz operators which is of Hilbert-Schmidt
but not of trace class. First, the following is needed.

Def. 2.1. Let H be a Hilbert space, and {e,} be an orthonormal basis for H.
The operator T € L(H) is said to be Hilbert-Schmidt if

1Tl = (S |[Te, )

n=0

is finite. The set of all Hilbert-Schmidt operators will be denoted by a..
Note that for each n, |[Te,|f= i [{tes, en)|>. Thus, to show an operator
m=0

T e L(H) is Hilbert-Schmidt, it suffices to show that S, |(Te,, e, )| is finite.

mn=0

Also, it is well-known that every operator 7' in o, is necessarily compact.

Def. 2.2. The products of two operators in o, form the trace class .. If {¢;}
is a given basis, then for T €z, the finite number

D) =73 (te;, &)
defines the trace of T.

As a consequence of Def. 2.2, every operator in 7, is in o,, and hence is
compact. Also, it is well-known that T e L(H) is a trace class operator if and only
if tr(T*T) is finite. For detailed and further more information about these
operators (see [5], [14]).

Lemma 2.1. For a>—1and n=0, 1, 2, we have
1
Jr—rrdr=nllla+Da+2)...c+n+1).
0

Lemma 2.1 is the well-known Beta integral.
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Proposition 2.1. Let ¢(r, 6)=(1—7)* where «>0, and let T, be the
Toeplitz operator defined on the Bergman space AXD). Then:

(@) T, 1s Hilbert-Schmidt only if «>1/2.

(i) T, is of trace class only if a>1.

Proof. (i) If {a,.} is the matrix associated with T, then {a,,} is a diagonal
matrix, and

G =M+ 1D {A—r)y2"2") =2(n+1) [ 1 —r)*dr.
0
Using Lemma 2.1
€h)] A= Cn+ 2/ (a+Da+2)...(a+2n+2).

From previous discussion, it suffices to show that
) i[(2n+2)!/(a+1)(a+2)...(a+2n+2)]2
n=0

diverges for a< <12 The convergence of (2) can be checked very easily using

Stirling formulas. Thus (i) is achieved.
To prove the second part of the theorem, con51der equation (1) and apply

Raab’s test to the series

S @n+ 2+ Da+2)... (a+2m+2).

n==

If u, denote the n' term of the series, then

lim (1 — ;“ )=limn(l — @n+4)@n+8)/(a+2n+3)a+2n+4) =a.

n

Thus, T, is a trace class operator if « >1. Moreover, if <1, 7, is not of trace
class. For the case a=1,

5 1
' =
Za,m ;O(2n+2)/234 L@+ =3 o

which is divergent and hehce T, is not of trace class, completing the proof.
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Remark 2.1. In Proposition 2.1 and for « < 1/2, a class of compact Toeplitz
operators on the Bergman space A*(D) which is not Hilbert-Schmidt was given.
Also, for 1/2<a<1, T, is a Hilbert-Schmidt operator which is not of trace class.
Finally, Luecking [10], showed that the only finite rank Toeplitz operator T,
defined on the Bergman space A%D) is the zero operator.

3 - Spectral properties

In this section various results on the spectrum and essential spectrum of
certain classes of Toeplitz operators defined on the Bergman space A¥D) are
obtained.

Let ¢ € L®(3D) be a real-valued function. It was shown in [6], that the
spectrum of T, o(T,) =[essinf¢, esssup¢], where T, is the Toeplitz operator
defined on H?. In fact, o(Ty) = o(T), where o(T,) denotes the essential spectrum
of T, and this is due to the fact that ker T.= {0}. For Toeplitz operators defined
on the Bergman space A%(D), it is no longer true that a(T,) = [essinf ¢, esssup ¢).

For example, if ¢(2) =1— [¢f%, then o(T}) is countable, since T is compact,
while [essinfg, esssup¢]=[0, 1], and o(T,) = {0}; since ¢ € C(D) and ¢loD=0.

It was shown in [12] that if ¢ is a real-valued bounded harmonic function in
the unit disk D, then o(T,) = o(T,) =[inf$, sup ¢]. However, the previous result
is no longer true if ¢ is a complex bounded harmonic function in D. For example,
let ¢(z) =2, z€D. Then, o(T,) =D, since ¢ € H*(D), while o(T)) = {z: |2| =1},
since ¢ € C(D). However, if ¢ € H*(B), where B is the open unit ball in the
complex plane C* (n =2) and T, is the Toeplitz operator defined on the Bergman
space A%RB), then ollT)=o(Ty) = ¢(B). This follows from the facts that
o(T) = ¢(B) and index T,= {0} (see [11]).

In what follows, it will be shown that it is not necessarily true that
ofT,) = [inf¢, sup¢] whenever ¢ is a subharmonic function. Moreover, the
spectrum of a class of complex bounded harmonic functions (not analytic) will be
determined.

Example 8.1. Let ¢(2) =|2/% z € D. The function ¢ is subharmonie, [inf¢,
sup¢]=1[0, 1] and (T,) = {1}. Also, note that, Tp-1 is a compact Toeplitz
operator, and hence o(T},2-,) is countable. Thus, o(T,) is countable, and this ends
the example.

Example 8.2. Let ¢(x;, y)=%% Then ¢ is a subharmonic function in the
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open unit disk D and o(7,) = [0, 1]. Using the facts that o(T,) c [inf¢$, sup ¢] and
oTy) ca(Ty), it follows that

[0, 11=0/T,) co(T,) c[inf$, sup¢l=1[0, 1].

Thus 0T = o(T,) =[inf ¢, sup¢].

Def. 3.1. Let T be an operator on a Hilbert space H. T is said to be
hyponormal if and only if T*T — TT* = 0. T'is said to be pure if the only subspace
of H reducing T on which T is normal is the zero subspace.

Lemma 3.1. Let T=X +1Y be hyponormal (X, Y are self-adjoint, 2> 0.
Then

o(M(T)) = M,(o(])).
Here, M,(T) =X + 1Y and M,(z) = Ax + iy.
Proof. See [16].

Lemma 3.3. Let ¢(x, y)=xx +1iy, where x®+y?*<1, and A=0. Direct
computations show that

TiT,— T, Ts = 2T, T, — T, T) = NT; T, ~ T.T5).

Using the facts that T, is hyponormal and A>0, then it follows that T, is
hyponormal. Moreover, oT.) = {(x, ¥):2*+y*<1}. Thus, by Lemma 3.1,
o(T) = {Ox, y):a®+y?*<1}. Therefore, o(T,) is connected.

Theorem 3.1. Let i and m be integers such that i>0, n=0 and

#(z) = 2'|z|". Then:
() T, is a pure hyponormal operator. Moreover the self-commutator of Tk,

T;T,—T,T; is Hilbert-Schmidt.

(i) o(T,) =D. The approximate point spectrum, oq,(Ty) =0D = a(T,), and
for every a €D, T,_., is Fredholm, with non-zero index.

(i) o(Trae) =[—1, 1], and the point spectrum o)(Truy) is emply.

(iv) For i=1, n=0, T, is a unilateral weighted shiﬁ with trace class self-
commutator.
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Proof. (i) It can be easily checked that

21+ 2

_2i+2 242
n+2i+2

® el = n+2i+2°"

PACPAPILES

Thus, using (3) and for m =0, we have

G+m+1Dm+1)

4 B Y
@ N T gt am T 22

However, for 0<sm <1, T,T;2"=0 and for m=1

m—i1+Dim+1)
T.T;7m=4 m
®) TeteR (1 + 2m + 2)°

Thus, it follows from (4) and (5) that T, is hyponormal. Mdreover, if M is the
smallest reducing subspace of T, that contains the range of the self-commutator
of T, then from (4) and (5), it can be concluded that M = A%D). Consequently, 7,
is a pure hyponormal operator. Moreover, by direct computation, it can be
checked that

i |77, — T, T3 e, |f < where e,=\n+1z2".
n=0
Thus, the self-commutator of T is Hilbert-Schmidt.

(ii) Since ¢ is continuous on D, then o(T) = ¢(dD) = 3D (see [11]). Also, for
any « € D, we can find a neighborhood N, of 3D such that |¢(z) — ¢(x)| > ¢ for all
zeN,. Thus, it follows by [11] that T, ., is Fredholm, consequently
3(a) ¢ 0 (T). ’

However, it can be easily checked that kerT, is empty and T32m=0 for
0<m <. Thus, index of T, is different from zero and hence index (T,_,y) is
different from zero for all «e D, and this will imply that ¢(D)=D cq(T,).
Moreover, it is well-known that o(T,) c €6(R(¢)) =D. Therefore, o(Ty) =D.
Finally, using the fact that 3o(T,) c o,,(T}), it follows that o, (T},) = 3D.

(iii) Since T is hyponoi'mal, then it follows by [16] that o(Re(T,)) = Re(s(T%).
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Thus, using (i), we have «(Re(Ty))=[-1, 1]. Moreover, if N,={feA¥D):
Tresf=c«f} is not empty, then N, reduces T,. Using the fact that T, is
hyponormal, it follows that T,|NV, is normal, and this contradicts the fact that T,
is pure. Thus, o,(T'res) is empty.

(iv) Using (8) and for 2 =0 it can be checked easily that T, ¢; = «; €;41, Wwhere

@ = M Thus, T, is a pure hyponormal unilateral weighted shift.

Also, note that 1 is a cyclic vector for T,p. Thus by a result of Berger and Shaw
[2], the self-commutator of T, is trace class.

Corollary 3.1. Let i,m be integers such that i>0, n=0, and
W2) = 22" + 2Zz|", ¢(z) = 2i|2|". Then:

@ If A <1, T, is a pure hyponormal operator with Hilbert-Schmidt self-
commutator.

@) If x is real, and |A| is different from one, then o(T,) = D).

Proof. (i) It follows from Theorem 3.1 and the fact that
T3Ty—T,Ty=A— XT3 T, — T, T5).
(i) Applying the same argument in (ii) of Theorem 3.1 one gets that
o(Ty) c Co(WD)) = YD) oTy) = ¢(3D)

and T, is Fredholm for every « € D. Moreover, it can be easily checked that
range of T, si not A%D). Thus, T, is not invertible. However, since 7, is a pure
hyponormal operator and 0 € o(T}) — o (T), then index (T,) <1, (see [5]). Thus,
index (Ty_y,) < — 1 for every « € D, hence T,_,, is not invertible for every « € D.
Consequently, (D) ¢ o(T,). Therefore, o(T,) = ¢(D).

Remark 8.1. For |A|=1, see (iii) in Theorem 8.1.

It is known that if ¢ € L*(3D), then either ker T'; = {0} or ker T; = {0}. As a
corollary of this result, it follows that if ¢ € L*(8D) such that the Toeplitz
operator defined on the Hardy space H?, is Fredholm, then T, is invertible if and
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only if index T, = {0}. These results are no longer true for the case of Toeplitz
operators defined on the Bergman space A%(D).

Example 8.4. Let ¢()=In2—1/1+zf). Note that ¢eC(D), and
T =In2— —;— . Therefore, T, is Fredholm, and hence index T, = {0}. Yet it can
be easily checked that 1ekerT, and thus T, is not invertible.

One of the basic results of Toeplitz operators defined on the Hardy space H?is
that if ¢ € L*(38D) and T, is invertible, then ¢7* exist in L=(3D). This result is no
longer true for Toeplitz operators defined on A%(D). To see this, let ¢(z) = |2|%
Note that range of T is closed, since T is Fredholm, moreover, using the fact
that ¢ =0, it can be easily established that T, is 1 — 1. Thus T} is invertible yet
47! does not exist in L=(D).

The following proposition furnishes us with a class of functions ¢ € L™(D) such
that T, is invertible.

Proposition 3.1. Let ¢=¢,+ i be in L*(D). Suppose that J;=0 (J, is
not the zero function) and the range of Ty, is closed, then T, is invertible.

Proof. It can be easily proved that T, is invertible. Also, note that
o(T,) is non-negative. Moreover, it is known that o(T,) c[m, M], whete

m= I1|1f1f( WSy ), M= f,}ﬁp<T9"1 , f) and m, M eo(T,), (see [1]). Since 0 ¢ o(T,)

it can be concluded that (7, f, f) =m>0, ||f]|1. Consequently, the numerical
range W(T,) of T, is contained in the half-plane {ze C: Rez=m}. Since
o(Ty) c W(T,), this will imply that T, is invertible.

Remark 3.2. Sarason [13] showed that if the Toeplitz operator defined on
H? is bounded below then ¢ exist in L*(3D) moreover, and in this case, T} is
invertible, and this is due to the fact that o(T},) = [essinf|¢|, esssup|¢|] and
|¢| =e>0. However, by using different techniques it can be shown from
Luecking paper [10]; that if ¢ € L”(D) and the Toeplitz operator T, defined on
A%(D) is bounded below, then T, is invertible. Thus, from this we conclude that
if T, is bounded below then either ¢! exist in L=(D) or essinf|4| ¢ o(Ty).
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Abstract

In this paper some algebraic and spectral properties of Toeplitz operators on the
Bergman space A¥D) are studied. Also, a class of Hilber-Schmidt Toeplitz operators
which is not of trace class is obtained. ‘

# %k ok



