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DANUT MARCU (¥)

The chromatic number of some graphs

in the euclidean plane (*%)

Let M(x;, y:) and N(xz, y») be two points in the Euclidean plane E* It is well-
known that the following definitions yield metrics for the Euclidean plane:

(@) dM, N)=V(x; — 2%+ (1 — y2)? euclidean distance
(b) dy(M, N) = |, — | + |y1 — 12 city block distance
(@) dsM, N)=max(|z; — x|, |1 — 2l chessboard distance.

The numbers 4 and 8 are appropriate, because if we restrict ourselves to the
points of E%, which have integral coordinates (digital points), these numbers
represent the number of points at distance one (the neighbours) from a given
point, with respect to these two metrics [3].

We shall define the infinite graphs G, G, and Gs, in the following way: the
vertex set of these graphs is the set of points of E2, two vertices being adjacent if
and only if their Euclidean, city block, respectively chessboard distance is equal
to one.

Theorem. The chromatic number of the graphs G4 and Gs is equal to four,
or %(Gy) = 2(Gs) = 4.

Proof. The set of points having coordinates (0, 0), (1/2, 1/2), (1/2, —1/2)
and (1, 0) is a 4-clique for G4, and the points (0, 0), (0, 1), (1, 0) and (1, 1)

(*) Indirizzo: Str. Pasului 3, Sect. 2, R-70241 - Bucharest.
(**) Ricevuto: 29-X1-1988.
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induce a 4-clique for G, which implies that »(G,) =4 and »(Gg) = 4. It remains to
define a 4-coloring for G, and for Gs. In the case of Gy, consider all lines with
slope =+ 1 passing through the digital points of E2. The intersection points of these
lines are points M(p, q), where p, g€ Z and points N(r/2, s/2), with », seZ,
7, 8=1 (mod 2).

Denote by S the set of these points. Color M(p, q) with the color «, if p=¢q
(mod 2), and with the color 8, if p=¢+1 (mod 2).

A point N(r/2, s/2) will be colored with the color v, if 7= s (mod 4), and with
the color ¢, if r=s+2 (mod 4). For P(u, v) €S, denote Qu—1/2, v+ 1/2) and
Ruw—1/2, v—1/2). If P is colored with the color ae{«, 8, y, 8}, then all
interior points of the segments PQ and PR will be also colored with the color a.
In this way, any square ABCD, having vertices in S and the length of the side
equal to \/—/2 will have the four vertices colored with «, 3, v, & and the colors of
the sides will be a, a, b, ¢, where a, b, ce {«, 8, v, ¢}. In this case, color all
interior points of ABCD with the color a. In this way, all points of E? are colored
with four colors. It is easy to see that if dyF, F)=1, then E and F have
different colors.

A 4-coloring of Gg may be defined in a similar manner. Denote by S the set of
digital points of B Color the points of S in the following way: M(p, ¢), with
P, q€Z, will be colored with the color: « if p=1 (mod 2) and ¢=1 (mod 2); 8 if
p=0(mod 2) and ¢=0 (mod 2); y if p=1 (mod 2) and g =0 (mmod 2); ¢if p = 0 (mod
2) and ¢=1 (mod 2).

If M(p, q) is colored with the color @, then all interior points of the segment
M@ and MR, with Q(p — 1, ¢) and R(p, ¢q— 1), will be also colored with the color
a. Any unit square ABCD, with its vertices in S, has the four vertices colored
with «, 8, v, 4, and the colors of the sides are @, a, b, ce {a, 8, v, ¢}.

Color all interior points of ABCD with the color a. Now, if dy(E, F)=1then
the points E and F will have different colors. The proof is complete.

Note that the determination of x(G) is an open problem, in the Euclidean
Ramsey theory [1] [2]. It is only known that 4<x(G)<7 and it has been
conjectured that, also, x(G)=
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Résumé

On donne un théoréme de 4-coloration pour certain graphes définis sur le plan
eucliden.






