DĂNUT MARCU (*)

The chromatic number of some graphs in the euclidean plane (**)

Let $M(x_1, y_1)$ and $N(x_2, y_2)$ be two points in the Euclidean plane \mathbb{E}^2 . It is well-known that the following definitions yield metrics for the Euclidean plane:

(a)
$$d(M, N) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

euclidean distance

(b)
$$d_4(M, N) = |x_1 - x_2| + |y_1 - y_2|$$

city block distance

(c)
$$d_8(M, N) = \max(|x_1 - x_2|, |y_1 - y_2|)$$

chessboard distance.

The numbers 4 and 8 are appropriate, because if we restrict ourselves to the points of \mathbb{E}^2 , which have integral coordinates (*digital points*), these numbers represent the number of points at distance one (the neighbours) from a given point, with respect to these two metrics [3].

We shall define the infinite graphs G, G_4 and G_8 , in the following way: the vertex set of these graphs is the set of points of \mathbb{E}^2 , two vertices being adjacent if and only if their Euclidean, city block, respectively chessboard distance is equal to one.

Theorem. The chromatic number of the graphs G_4 and G_8 is equal to four, or $\chi(G_4) = \chi(G_8) = 4$.

Proof. The set of points having coordinates (0, 0), (1/2, 1/2), (1/2, -1/2) and (1, 0) is a 4-clique for G_4 , and the points (0, 0), (0, 1), (1, 0) and (1, 1)

^(*) Indirizzo: Str. Pasului 3, Sect. 2, R-70241 - Bucharest.

^(**) Ricevuto: 29-XI-1988.

induce a 4-clique for G_8 , which implies that $\chi(G_4) \ge 4$ and $\chi(G_8) \ge 4$. It remains to define a 4-coloring for G_4 and for G_8 . In the case of G_4 , consider all lines with slope ± 1 passing through the digital points of \mathbb{E}^2 . The intersection points of these lines are points M(p, q), where $p, q \in \mathbb{Z}$ and points N(r/2, s/2), with $r, s \in \mathbb{Z}$, $r, s \equiv 1 \pmod{2}$.

Denote by S the set of these points. Color M(p, q) with the color α , if $p \equiv q \pmod{2}$, and with the color β , if $p \equiv q + 1 \pmod{2}$.

A point N(r/2, s/2) will be colored with the color γ , if $r \equiv s \pmod 4$, and with the color δ , if $r \equiv s + 2 \pmod 4$. For $P(u, v) \in S$, denote Q(u - 1/2, v + 1/2) and R(u - 1/2, v - 1/2). If P is colored with the color $a \in \{\alpha, \beta, \gamma, \delta\}$, then all interior points of the segments PQ and PR will be also colored with the color a. In this way, any square ABCD, having vertices in S and the length of the side equal to $\sqrt{2}/2$, will have the four vertices colored with $\alpha, \beta, \gamma, \delta$ and the colors of the sides will be a, a, b, c, where a, b, $c \in \{\alpha, \beta, \gamma, \delta\}$. In this case, color all interior points of ABCD with the color a. In this way, all points of E^2 are colored with four colors. It is easy to see that if $d_4(E, F) = 1$, then E and F have different colors.

A 4-coloring of G_8 may be defined in a similar manner. Denote by S the set of digital points of \mathbb{E}^2 . Color the points of S in the following way: M(p, q), with $p, q \in \mathbb{Z}$, will be colored with the color: α if $p \equiv 1 \pmod{2}$ and $q \equiv 1 \pmod{2}$; β if $p \equiv 0 \pmod{2}$ and $q \equiv 0 \pmod{2}$; γ if $p \equiv 1 \pmod{2}$ and $q \equiv 0 \pmod{2}$; β if $p \equiv 0 \pmod{2}$ and $q \equiv 1 \pmod{2}$.

If M(p, q) is colored with the color a, then all interior points of the segment MQ and MR, with Q(p-1, q) and R(p, q-1), will be also colored with the color a. Any unit square ABCD, with its vertices in S, has the four vertices colored with α , β , γ , δ , and the colors of the sides are a, a, b, $c \in \{\alpha, \beta, \gamma, \delta\}$.

Color all interior points of *ABCD* with the color a. Now, if $d_8(E, F) = 1$ then the points E and F will have different colors. The proof is complete.

Note that the determination of $\chi(G)$ is an open problem, in the Euclidean Ramsey theory [1] [2]. It is only known that $4 \leq \chi(G) \leq 7$ and it has been conjectured that, also, $\chi(G) = 4$.

References

[1] B. Bollobás, *Graph theory*. An introductory course, Springer-Verlag, New York, 1979.

- [2] R. L. Graham, *Rudiments of Ramsey theory*, Regional Conference series in Mathematics, 45, Amer. Math. Soc., Rhode Island, 1981.
- [3] A. ROSENFELD, Geodesics in digital pictures, Inform. and Control 36 (1978), 74-84.

Résumé

On donne un théorème de 4-coloration pour certain graphes définis sur le plan eucliden.

		·	