M. SQUILLANTE, A. S. G. VENTRE and S. WEBER (*)

Closure and convergence properties for classes of decomposable measures (**)

1 - Introduction

The concept of t-conorm was introduced by Schweizer and Sklar [8] on the basis of the work of Menger [7] who defined generalized triangle inequalities by means of triangular norms (t-norms). Schweizer and Sklar used the concepts of t-norm and t-conorm in the theory of probabilistic metric spaces. Weber [11]₁ defined a special class of set functions by means of a t-conorm operator \bot , in order to state a general theory of non additive measures (called \bot -decomposable measures) and consequent integration, that reduces to the Lebesgue theory in the additive case. Comparisons with other non-additive theories (e.g. Choquet's and Sugeno's integrals) were illustrated in [11]₁.

A basic condition for many interesting developments is to consider Archimedean *t*-conorms.

In this framework it is worth mentioning some applications to measure of information and probability theory (see, e.g., [1], [10] and [11]₂), and mathematical economics (see, e.g., [4]).

Let us observe that the structure ([0, 1], \perp) is a semigroup. We just recall that semigroup valued measures are extensively treated in Sion's book [9].

Our present aim is to analyze the closure of some families of \perp -decomposable measures with respect to the operators «lim», and «t-conorm». Furthermore

^(*) Indirizzi degli AA.: M. SQUILLANTE e A. S. G. VENTRE, Istituto di Matematica, Facoltà di Architettura, Via Monteoliveto 3, I-80134 Napoli; S. WEBER, Johannes Gutenberg Universität, Fachbereich Mathematik, Mainz. Fed. Rep. of Germany.

^(**) Ricevuto: 10-X-1988.

some convergence theorems for sequences of decomposable measures are proved (e.g. Nikodým and Phillips like theorems). We shall adopt [2] and [5] as reference books.

2 - Some basic results and definitions

Recall that a *t*-conorm \perp is a binary operation on the interval J = [0, 1] which is non decreasing in each argument, commutative, associative and has 0 as unit.

An Archimedean t-conorm \perp is, by definition, continuous and such that $\perp(x, x) > x$, for every $x \in (0, 1)$. The following representation theorem, due to Ling [6], holds.

Theorem 1. A binary operation \bot on J is an Archimedean t-conorm iff there exists an increasing and continuous function $g: J \to [0, \infty]$ with g(0) = 0, such that

$$\pm(x, y) = q^{(-1)}(q(x) + q(y))$$

where $g^{(-1)}$ is the pseudo-inverse of g defined by

$$g^{(-1)}(x) = g^{-1}(\min(x, g(1)).$$

Moreover \perp is strictly increasing iff $g(1) = \infty$.

Let (X, A) be a measurable space. A function $\mu: A \to J$, with $\mu(\emptyset) = 0$ and $\mu(X) = 1$, is called a \bot -decomposable measure $[11]_1$ (or measure decomposable with respect to a t-conorm \bot) if $\mu(A \dot{\cup} B) = \mu(A) \bot \mu(B)$; σ - \bot -decomposable measure if $\mu(\bigcup_{n=1}^{\infty} A_n) = \prod_{n=1}^{\infty} \mu(A_n)$; if condition $\mu(X) = 1$ is replaced by $\mu(X) \le 1$, then the set function μ is called subnormed \bot -decomposable measure; σ - \bot -decomposable measure if $\mu(\bigcup_{n=1}^{\infty} A_n) = \prod_{n=1}^{\infty} \mu(A_n)$; continuous from below or above, resp., if $\lim \mu(A_k) = \mu(A)$ for $A_k \uparrow A$ or $A_k \downarrow A$, resp.

The following propositions are valid [11]₁.

- (a) If μ is \perp -decomposable, then μ is monotone.
- (b) μ is \perp -decomposable if and only if

$$\mu(A \cup B) \perp \mu(A \cap B) = \mu(A) \perp \mu(B)$$
.

(c) μ is σ - \perp -decomposable if and only if μ is \perp -decomposable and continuous from below.

An example of decomposable measure with respect to any Archimedean conorm \perp is the Dirac measure, namely the measure concentrated in a point. For non trivial examples see, e.g., [11]₁.

Let us recall that given an Archimedean r-conorm \bot with an additive generator g, the following classification for \bot -decomposable measures μ holds [11]₁:

(S): \bot strict. Then $g \circ \mu : A \to [0, \infty]$ is an infinite (σ -)additive measure, whenever μ is a (σ -) \bot -decomposable one.

(NSA): \perp non-strict Archimedean and $g \circ \mu : A \to [0, g(1)]$ a finite (σ -)additive measure with $(g \circ \mu)(X) = g(1)$.

(NSP): \bot non-strict Archimedean and $g \circ \mu$ a finite measure with $(g \circ \mu)(X) = g(1)$, which is only pseudo (σ -)additive, i.e., it is possible that

$$(g \circ \mu)(\dot{\cup}_k A_k) = g(1) < \Sigma_k (g \circ \mu) A_k$$
.

Furthermore, let μ be a \perp -decomposable measure, then the following propositions hold:

- (i) If μ is continuous from below, then μ is continuous from above for all decreasing sequences $\{A_k\}$ in case (NSA), for all $\{A_k\}$, with $\mu(A_1) < 1$, in the other cases.
- (ii) If μ is continuous from above for all $\{B_k\} \downarrow \emptyset$, then μ is continuous from below.

The following properties for decomposable measures can be easily checked.

- **2.2** Let μ be a \perp -decomposable measure on (X, A). Then:
- (a) If $\{A_i\}$ is a finite family of measurable subsets of X, then

$$\begin{split} & \stackrel{\scriptscriptstyle 1}{\underset{\scriptscriptstyle i=1}{\overset{\scriptscriptstyle n}{\coprod}}} \; \mu(A_i) = \mu(\; \mathop{\cup}\limits_{\scriptscriptstyle i=1}^{\overset{\scriptscriptstyle n}{\coprod}} \; A_i) \perp \mu(\; \mathop{\cup}\limits_{\scriptscriptstyle i=1}^{\overset{\scriptscriptstyle n}{\coprod}} \; \mathop{\cup}\limits_{\scriptscriptstyle j=1}^{\overset{\scriptscriptstyle n}{\coprod}} \; (A_i \cap A_j)) \\ & \perp \mu(\; \mathop{\cup}\limits_{\scriptscriptstyle i=1}^{\overset{\scriptscriptstyle n}{\coprod}} \; \mathop{\cup}\limits_{\scriptscriptstyle j=1}^{\overset{\scriptscriptstyle n}{\coprod}} \; \mathop{\cup}\limits_{\scriptscriptstyle k=1}^{\overset{\scriptscriptstyle n}{\coprod}} \; (A_i \cap A_j \cap A_k)) \perp \ldots \mu(\; \mathop{\cap}\limits_{\scriptscriptstyle i=1}^{\overset{\scriptscriptstyle n}{\coprod}} \; A_i) \; . \end{split}$$

(b) For every $A, B \in A$, it is $\mu(A \cup B) \leq \mu(A) \perp \mu(B)$.

If $\{A_n\}$ is a sequence of measurable subsets of X, with $A_i \cap A_j = \emptyset$, $(i \neq j)$ for every $A \in A$ such that $A \supseteq \bigcup_{n=1}^{\infty} A_n$, it is

$$\prod_{n=1}^{\infty} \mu(A_n) \leq \mu(A).$$

In particular

$$\underset{n=1}{\overset{\infty}{\downarrow}} \mu(A_n) \leq \mu(\underset{n=1}{\overset{\infty}{\cup}} A_n).$$

(c) If μ is σ - \perp -decomposable and $\{A_n\}$ is an arbitrary sequence of measurable subsets of A, then

$$\mu(\bigcup_{n=1}^{\infty} A_n) \leq \prod_{n=1}^{\infty} \mu(A_n)$$
.

3 - Closure properties

Let $M_{\perp}(M_{\sigma \perp})$ denote the set of \perp - $(\sigma - \perp)$ -decomposable measures on the measurable space (X, A). The following Nikodým property, whose proof is omitted, holds.

3.1 - Let $\{\mu_n\}$ be a sequence in M_{\perp} , with \perp continuous in $J \times J$, such that $\{\mu_n(A)\}$ converges for every $A \in A$. Then the set function

$$\mu: A \in A \to \lim_{n} \mu_n(A)$$

is a \perp -decomposable measure on (X, A). Furthermore, if $\{\mu_n\}$ is in $M_{\sigma-\perp}$ and converges uniformly with respect to $A \in A$, then μ is in $M_{\sigma-\perp}$.

3.2 - In 3.1 monotonicity can take the place of uniform convergence; indeed we can state

Theorem 2. Let $\{\mu_n\}$ be an increasing sequence in $M_{\sigma \cdot \perp}$, with \perp continuous. The set function $\mu = \lim \mu_n$ is in $M_{\sigma \cdot \perp}$.

Proof. By 3.1 μ is \perp -decomposable. Let $\{A_k\}$ be a sequence of disjoint subsets in A, $B_m := \bigcup_{k=1}^m A_k$ and $a_{nm} := \mu_n(B_m)$. By monotonicity of μ_n the double sequence $\{a_{nm}\}$ converges. The partial sequences have the limits $\mu(B_m)$, for all m, and $\mu_n(\bigcup_{k=1}^\infty A_k)$, for all n, respectively. Therefore, interchanging the limits on m and n, we obtain

$$\lim_{n,m\to\infty} a_{nm} = \prod_{k=1}^{\infty} \mu(A_k) = \mu(\bigcup_{k\in\mathbb{N}} A_k).$$

In virtue of Theorem 2, the behaviour of sequences in M_{\perp} ($M_{\sigma-\perp}$) can be illustrated as follows.

3.3 - Let $\{\mu_n\}$ be a sequence of measures in M_\perp , with \perp continuous. Then the set function

$$\mu: A \in A \to \prod_{n=1}^{\infty} \mu_n(A)$$

is in M_{\perp} ; if $\{\mu_n\}$ is in $M_{\sigma-\perp}$, then μ is in $M_{\sigma-\perp}$ too.

4 - Limit properties with variable subsets

It will be useful in the sequel the following definition and propositions [11]₁.

Def. For any t-conorm \perp the operation $\dot{-}$ is defined as

$$b \doteq a = \inf\{y/a \perp y \geqslant b\} .$$

4.1 - For every strict Archimedean t-conorm with additive generator g,

$$b-a = \begin{cases} g^{-1}(g(b)-g(a)) & \text{if } a \leq b, \ a < 1 \\ 0 & \text{otherwise.} \end{cases}$$

For every non-strict Archimedean t-conorm, and $a \leq b$

$$b \doteq a = g^{-1}(g(b) - g(a)).$$

4.2 - Let \bot be an Archimedean *t*-conorm and μ a \bot -decomposable measure. If $A \subseteq B$ and under the additional conditions for (S) with $\mu(A) < 1$ or (NSP) with $\mu(B) < 1$, resp., then $\mu(B \setminus A) = \mu(B) \div \mu(A)$.

The following theorems hold.

Theorem 4.3. Let \bot be an Archimedean t-conorm with additive generator g, μ a \bot -decomposable measure on (X, A).

For every sequence $\{A_i\} \subseteq A$ of pairwise disjoint subsets, it is

$$\lim \mu(A_i) = 0$$

in case (NSA). Eq. (1) holds in case (NSP) under the additional condition $\mu(\bigcup_{i=1}^k A_i) < 1$, for every k, and in the case (S) under the additional condition $\mu(\bigcup_{i=1}^k A_i) < 1$.

Proof. It is

$$\lim_{i} \mu(A_i) = \lim_{i} \mu(\bigcup_{h=1}^{i} A_h) \doteq \lim_{i} \mu(\bigcup_{h=1}^{i-1} A_h) = \prod_{h=1}^{\infty} \mu(A_h) \doteq \prod_{h=1}^{\infty} \mu(A_h) = 0.$$

This follows by 4.2 and the continuity of the operator $\dot{-}$, which is true only in $[0, 1) \times [0, 1)$ for the case (S) and therefore is required the additional condition.

Let us state a tie between monotone and uniform convergence for a sequence of σ - \perp -decomposable measures.

Let B denote a subfamily in the σ -algebra A of the measurable space (X, A). Consider the property

(c) Every sequence of elements in B contains a convergent subsequence.

Theorem 4.4. Let (X, A) be a measurable space and $\{\mu_n\}$ an increasing sequence of elements of $M_{\sigma^{\perp}}$ with \perp archimedean and every μ_n of type (NSA). If B is a subfamily of A enjoing property (C), then the equality

$$\lim_n \mu_n(A) = \mu(A)$$

is valid uniformly with respect to $A \in B$.

Proof. Let us prove the assumption by contradiction, and then assume that the convergence of $\{\mu_n\}$ is not uniform on B. Precisely if $\lim \mu_n(A) = \mu(A)$, for every $A \in A$, suppose that there exists $\varepsilon > 0$ such that there is a sequence $\{n_k\}$ of indices and a sequence $\{C_k\}$ of subsets of B, for which

(2)
$$\mu_{n_k}(C_k) \leq \mu(C_k) - \varepsilon.$$

By property (C) there is a subsequence $\{C_{k_j}\}$ in $\{C_k\}$ that converges to a measurable subset C

$$\lim_{i} C_{k_i} = C.$$

Let \bar{k} be a given positive integer; for $n_{k_j} > \bar{k}$ we get $\mu_{\bar{k}}(C_{k_j}) \leq \mu_{n_{k_j}}(C_{k_j})$ hence, by (2), (3) $\mu_{\bar{k}}(C_{k_j}) \leq \mu_{n_k}(C_{k_j}) < \mu(C_{k_j}) - \varepsilon$.

By Theorem 2, μ is in $M_{\sigma\perp}$ and therefore $g \circ \mu$ is a finite σ -additive measure, in virtue of Nikodým Theorem. Thus condition (NSA) is satisfied for μ ; therefore by $[11]_2 \mu$ is continuous. Then (3) implies

$$\mu_{\bar{k}}(C) = \lim_{j} \mu_{\bar{k}}(C_{k_{j}}) \leq \mu(C) - \varepsilon.$$

The inequality $\mu_{\vec{k}}(C) \leq \mu(C) - \varepsilon$, stated for an arbitrary \vec{k} , contradicts the hypothesis of monotonicity and, then, convergence of μ_n on every measurable subset. Thus the uniform convergence of the sequence $\{\mu_n\}$ on B follows.

Remarks (i) If $\{\mu_n\}$ is a sequence fulfilling the hypotheses of Theorem 4, then, in particular, $\lim_n \mu_n(B) = \mu(B)$, where B belongs to any convergent sequence of measurable subsets.

(ii) Theorem 4.4 holds, in particular, if $\{\mu_n\}$ is an increasing sequence of σ -additive measures (that are σ - \perp -decomposable with respect to the non strict t-conorm $a \perp b = \min(a + b, 1)$).

The remarks above allow to restate a classical result (see, e.g., [3], p. 275).

(iii) If $\{\mu_n\}$ is a monotone sequence of σ -additive measures and $\sup_n \mu_n$ is finite, then $\{\mu_n\}$ is uniformly convergent on every subfamily in A, contained in a convergent sequence of measurable subsets.

(iv) Let (X, T) be a Hausdorff locally compact space, such that T contains all countable intersections of open subsets (e.g. T is the discrete topology). T fulfils condition (C).

Let N denote the set of positive integers and P(N) the power set of N. A Phillips' Lemma analogue for \perp -decomposable measures holds.

Theorem 5. Let $\{\mu_n\}$ be a sequence of subnormed \perp -decomposable measures on (N, P(N)) and \perp continuous. Then the following propositions

(a)
$$\lim_{n} \mu_n(A) = 0$$
 for every $A \in P(N)$

(b)
$$\lim_{n} S_{n} = 0$$
 (c) $\lim_{n} \bar{S}_{n} = 0$ (d) $\lim_{n} \prod_{k=1}^{\infty} \mu_{n}(k) = 0$

where S_n , \bar{S}_n are the suprema of the sets $\{\mu_n(A), \text{ for every finite } A \in N\}$, $\{\mu_n(A), \text{ for every } A \subseteq N\}$, respectively, are linked by the implications

$$(a) \Leftrightarrow (c) \Leftrightarrow (b) \Leftrightarrow (d)$$
.

Proof. (a) \Rightarrow (c). Indeed, by contradiction if (c) is false, there is $\eta > 0$, such that for every $m \in N$, there exists $p_m > m$ and $A_m \subseteq N$, such that $\mu_{p_m}(A_m) \ge \eta$, and setting $A = \bigcup_{m=1}^{\infty} A_m$, by monotonicity of every μ_{p_m} , $\mu_{p_m}(A) \ge \mu_{p_m}(A_m) \ge \eta$. Then the absurd.

 $(c) \Rightarrow (a), (c) \Rightarrow (b)$ are evident.

Let us prove (b) implies (d). Indeed

$$0 \leqslant \lim_{n} \prod_{k=1}^{\infty} \mu_{n}(k) = \lim_{n} \lim_{n} \lim_{k=1}^{\infty} \mu_{n}(k) < \lim_{n} S_{n} = 0.$$

(d) \Rightarrow (b). We just observe that for any finite sequence $k_1 \leq k_2 \leq ... \leq k_{j_m}$. We have

$$0 < \lim'' S_n = \lim_n'' \sup_{j_m \in N} \{ \mu_n(\{k_1, k_2 \dots k_{j_m}\}) \}$$

$$=\lim_n \sup_{j_m < N} \underset{i=1}{\overset{j_m}{\perp}} \mu_n(k_i) \leqslant \lim_n \sup_{j_n} \underset{k=1}{\overset{k_{j_m}}{\perp}} \mu_n(k) = \lim_n \sup_{k=1}^n \mu_n(k).$$

As a concluding remark let us observe that if all measures μ_n are σ - \perp -decomposable, then

$$\lim_{n} \prod_{k=1}^{\infty} \mu_n(k) = \lim_{n} \mu_n(\bigcup_{k=1}^{\infty} \{k\}) = \lim_{n} \mu(N)$$

and all the propositions (a), (b), (c), (d) are equivalent between them.

References

- [1] J. ACZÉL, Sur les opérations définies pour nombres réels, Bull. Soc. Math. France 76 (1949), 59-64.
- [2] K. P. S. BHASKARA RAO and M. BHASKARA RAO, Theory of charges, Academic Press, London, 1983.
- [3] F. CAFIERO, Misura e integrazione, Cremonese, Roma, 1959.
- [4] M. FEDRIZZI, M. SQUILLANTE and A. G. S. VENTRE: [•]₁ On the structure of the range of ⊥-decomposable measures, Proc. 11th AMASES Conf., Aosta, 1987; [•]₂ On the range of ⊥-decomposable measures, Riv. Mat. Univ. Parma (4) 14 (1988), 249-259.
- [5] E. KLEIN and A. THOMPSON, *Theory of correspondences*, Wiley-Interscience Publ., New York, 1985.
- [6] C. H. Ling, Representation of associative functions, Publ. Math. Debrecen 12 (1965). 189-212.
- [7] K. MENGER, Statistical metrics, Proc. Nat. Acad. Sci. USA 28 (1942), 535-537.
- [8] B. Schweizer and A.Sklar: [•]₁ Espaces métriques aléatoires, C. R. Acad. Sci. Paris 247 (1958), 2092-2094; [•]₂ Associative functions and statistical triangle inequalities, Publ., Math. Debrecen 8 (1961), 169-186; [•]₃ Probabilistic metric spaces, North-Holland, Amsterdam, 1983.
- [9] M. SION, A theory of semigroup valued measure, Lecture Notes in Math. 355, Springer-Verlag, Berlin, 1973.
- [10] A. G. S. Ventre and S. Weber, Evaluations of fuzzy sets based on orderings and measures, Stochastica XI-1 (1987), 35-44.
- [11] S. Weber: [•]₁ \(\pm \)-decomposable measures and integrals for Archimedean t-conorms, J. Math. Anal. Appl. 101 (1984), 114-138; [•]₂ Conditional entropies: a discussion of different concepts, Journées Remoises «Anal. problèmes décisionnels dans un environment uncertain et imprecis», Reims, 1985.

Sommario

Si dimostrano alcuni teoremi di convergenza per successioni di funzioni d'insieme decomponibili rispetto a conorme triangolari; in particolare si stabilisce una condizione sufficiente per la convergenza uniforme e l'analogo del classico teorema di Phillips.

A		