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Closure and convergence properties
for classes of decomposable measures (**)

1 - Introduction

The concept of {-conorm was introduced by Schweizer and Sklar [8] on the
basis of the work of Menger [7] who defined generalized triangle inequalities by
means of triangular norms ({-norms). Schweizer and Sklar used the concepts of
t-norm and t-conorm in the theory of probabilistic metric spaces. Weber [11];
defined a special class of set functions by means of a t-conorm operator L, in
order to state a general theory of non additive measures (called L-decomposable
measures) and cohsequent integration, that reduces to the Lebesgue theory in
the additive case. Comparisons with other non-additive theories (e.g. Choquet’s
and Sugeno’s integrals) were illustrated in [11];.

A basic condition for many interesting developments is to consider Archime-
dean t-conorms.

In this framework it is worth mentioning some applications to measure of
information and probability theory (see, e.g., [1], [10] and [11],), and mathemati-
cal economics (see, e.g., [4]).

Let us observe that the structure ([0, 11, L) is a semigroup. We just recall
that semigroup valued measures are extensively treated in Sion’s book [9].

Our present aim is to analyze the closure of some families of L-decomposable
measures with respect to the operators «lim», and «t-conorm». Furthermore ‘
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some convergence theorems for sequences of decomposable measures are proved
(e.g. Nikodym and Phillips like theorems). We shall adopt [2] and [5] as reference
books.

2 - Some basic results and definitions

Recall that a ¢-conorm L is a binary operation on the interval J = [0, 1] which
is non decreasing in each argument, commutative, associative and has 0 as unit.

An Archimedean t-conorm L is, by definition, continuous and such that
1z, x)>w, for every x € (0, 1). The following representation theorem, due to
Ling [6], holds.

Theorem 1. A binary operation . on J is an Archimedean ¢-conorm iff
there exists an increasing and continuous function g:J-»[0, =] with ¢g(0) =0,
such that

L@, 1) =g"g@) + g
where ¢ is the pseudo-inverse of g defined by

9 @) = g~X(min(z, g(1)).
Moreover L is strictly increasing iff g(1) = oo.

Let (X, A) be a measurable space. A function p:A—J, with u(@) =0 and
w(X) =1, is called a L-decomposable measure [11]; (or measure decomposable
with respect to a {-conorm L) if w(A U B) =u(A) Lu(B); o-L-decomposable

measure if p( 791 A)= n_; w(A,); if condition u(X)=1 is replaced by uw(X) =1,
then the set function p is called subnormed L-decomposable measure; o-L-
decomposable measure if u( nk;Jl A)= H;ID_1 u(A,); continuous from below or above,
resp., if limu(Ay) =u(A) for A; 1 A or A, | A, resp.

The following propositions are valid [11];.

(a) If p is 1-decomposable, then x is monotone.
(b) 1 is L-decomposable if and only if

wAUB) Lu(ANnB)=u(A) LuB).
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(©) @ is o-L-decomposable if and only if u is 1-decomposable and continuous
from below.

An example of decomposable measure with respect to any Archimedean
conorm L is the Dirac measure, namely the measure concentrated in a point. For
non trivial examples see, e.g., [11];.

Let us recall that given an Archimedean r-conorm 1 with an additive
generator g, the following classification for 1-decomposable measures p holds
[11];:

(8): L strict. Then gou:A—[0, »] is an infinite (c-)additive measure,
whenever p is a (o-)L-decomposable one.

(NSA): L non-strict Archimedean and gou:A— [0, g(1)] a finite (c-)additive
measure with (g.u)(X) = g(1).

(NSP): L non-strict Archimedean and g.u a finite measure with
(g op)(X) =g(1), which is only pseudo (s-)additive, i.e., it is possible that

(@) (UrAL) = g(1) < (g -p) Ay

Furthermore, let « be a L-decomposable measure, then the following
propositions hold:

() If « is continuous from below, then y is continuous from above for all
decreasing sequences {A,;} in case (NSA), for all {A,}, with u(4,) <1, in the other
cases.

(ii) If u is continuous from above for all {B;} | @, then u is continuous from
below.

The following properties for decomposable measures can be easily checked.

2.2 - Let 1 be a L-decomposable measure on (X, A). Then:

(a) If {A;} is a finite family of measurable subsets of X, then

L e@)=u( g A) 1 § Ain4)
i<y

n

.L(J.(g)l j&ll kk:Jl (AzmA]nAk))J—".U-(é A,).

i<j<k
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(b) For every A, BeA, it is p(AuB)=u(4) Lu(B).
If {A,} is a sequence of measurable subsets of X, with A;nA4;=0, (i %) for
every A €A such that A) n(:Jl A, it is

LAy =<u@).
In particular I uA)<u(J A,

(¢) If u is o-L-decomposable and {A,} is an arbitrary sequence of measurable
subsets of A, then

3 - Closure properties
Let M (M, ) denote the set of 1-(o-l)-decomposable measures on the

measurable space (X, A). The following Nikodjm property, whose proof is
omitted, holds. ~

3.1 - Let {u,} be a sequence in M,, with L continuous in J X J, such that
{u(A)} converges for every A €A. Then the set function

wiA eA———>linm/.Ln(A)

is a L-decomposable measure on (X, A). Furthermore, if {,} is in M., and
converges uniformly with respect to A€ A, then u is in M..,.

3.2 - In 8.1 monotonicity can take the place of uniform convergence; indeed
we can state

Theorem 2. Let {x,} be an increasing sequence in M, , with L conti-
nuous. The set function p=limu, is in M,.,.
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Proof. By 3.1 u is L-decomposable. Let {A;} be a sequence of disjoint
subsets in A, B,,:= umAk and @, :=u,(B,). By monotonicity of u, the double
sequence {a,,} converges. The partial sequences have the limits u(B,,), for all m,

and u.,( kL.:Jl “ Ap), for all n, respectively. Therefore, interchanging the limits on m
and 7, we obtain

hm Qo = —J— F’*(Ak) FL( U Ak)

2, M

In virtue of Theorem 2, the behaviour of sequences in M, (M,,) can be
illustrated as follows.

3.3 - Let {u,} be a sequence of measures in M, with L continuous. Then the
set funection

piAed— 1 p(A)

is in M,; if {u,} is in M., then p is in M, too.

4 - Limit properties with variable subsets
It will be useful in the sequel the following definition and propositions [11],.
Def. For any t-conorm L the operation = is defined as

b=a=inf{yla L y=b}.

4.1 - For every strict Archimedean ¢-conorm with additive generator g,

/9_1(9(17) —gla) ifa<bh a<l
AN

b-a=
0 otherwise.

For every non-strict Archimedean t-conorm, and a<b ‘

b=a=g"gb)—g(@).
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4.2 - Let 1 be an Archimedean {-conorm and ¢ a |-decomposable measure. If
A ¢ B and under the additional conditions for (S) with p(4) <1 or (NSP) with
w(B) <1, resp., then u(B\ A) =u(B) = u(4).

The following theorems hold.

Theorem 4.3. Let L be an Archimedean t-conorm with additive generator
g, » & L-decomposable measure on (X, A).
For every sequence {A;} cA of pairwise disjoint subsets, it is

o) | limpu(A4) =0

in case (NSA). Eq. (1) holds in case (NSP) under the additional condition

w( 1L:Jl A) <1, for every k, and in the case (S) under the additional condition
w( i_k_'{w A)<1.

Proof. It is

limu(A) =limp( g A) =~ lime( S A) = 1w~ I w4 =0.

This follows by 4.2 and the continuity of the operator -, which is true only in
[0, 1) x [0, 1) for the case (S) and therefore is required the additional condition.

Let us state a tie between monotone and uniform convergence for a sequence
of o-L-decomposable measures.

Let B denote a subfamily in the ¢-algebra 4 of the measurable space (X, A).
Consider the property

(C) Every sequence of elements in B contains a convergent subsequence.

Theorem 4.4. Let (X, A) be a measurable space and {u,} an increasing
sequence of elements of M., with 1 archimedean and every ., of type (NsA). If B
is a subfamily of A enjoing property (C), then the equality

is valid uniformly with respect to A eB.
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Proof. Let us prove the assumption by contradiction, and then assume
that the convergence of {u,} is not uniform on B. Precisely if lim p,(4) = u(4), .
for every A € A, suppose that there exists ¢ > 0 such that there is a sequence {n;}
of indices and a sequence {C,} of subsets of B, for which

@ pa(CR) < p(Cp) — ¢

By property (C) there is a subsequence {Cy} in {C;} that converges to a
measurable subset C

lim C, = C.

Let k be a given positive integer; for n, = k we get wi(Cry) St

J(ij) hence, by (2),
3 /ilé(ckj) s,Uln,,].((/'kj) <u(C kj) —e.

By Theorem 2, is in M., and therefore g.u is a finite s-additive measure, in
virtue of Nikodym Theorem. Thus condition (NSA) is satisfied for u; therefore by
[11], u is continuous. Then (8) implies

#i(C) = limpi(Cy) <p(C) — ¢

The inequality wi(C)<u(C)—e¢, stated for an arbitrary %, contradicts the
hypothesis of monotonicity and, then, convergence of u, on every measurable
subset. Thus the uniform convergence of the sequence {u,} on B follows.

Remarks (i) If {u,} is a sequence fulfilling the hypotheses of Theorem 4,
then, in particular, limp,(B) =u(B), where B belongs to any convergent

sequence of measurable subsets.

(i) Theorem 4.4 holds, in particular, if {u,} is an increasing sequence of o-
additive measures (that are o-L-decomposable with respect to the non striet ¢-
conorm a L b=min(a + b, 1)).

The remarks above allow to restate a classical result (see, e.g., [3], p. 275).

(iii) If {u,} is a2 monotone sequence of s-additive measures and supy, is finite,

then {u,} is uniformly convergent on every subfamily in A, contained in a
convergent sequence of measurable subsets.
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(iv) Let (X, T) be a Hausdorff locally compact space, such that T contains all
countable intersections of open subsets (e.g. T is the discrete topology). T fulfils
condition (C).

Let N denote the set of positive integers and P(N) the power set of N. A
Phillips’ Lemma analogue for 1-decomposable measures holds.

Theorem 5. Let {u,} be a sequence of subnormed L-decomposable
measures on (N, P(N)) and L continuous. Then the following propositions

(a) li}:n pa(4) =0 for every AePN)
() lLmS,=0 © lmS,=0 @ lim I w®)=0

where S,, S, are the suprema of the sets {u,(A), for every finite A € N 1, {ua(4),
for every A c N}, respectively, are linked by the implications

(a) < ()= (b)<(d).

Proof. (a)=(c). Indeed, by contradiction if (c) is false, there is »> 0, such
that for every m € N, there exists p,, >m and A,, ¢ N, such that u, (4,,) =7, and

setting A = ng_:)l A,,, by monotonicity of every u, , up, (A) =y, (A) = n. Then the

absurd.
(e)=(a), (c)=>(b) are evident.

Let us prove (b) implies (d). Indeed
IES Hp”k; () = lim” lim 13:1 (k) <Hm” S, =0.

(d) = (b). We just observe that for any finite sequence ky<k,<...<k;,.
We have

0 <lim” Sn = lim" Sup{;un({kl ) ]‘52 o kjm})}
n JmeN

Im kjm .
= lim" Sup L wafe) <Hm”Sup L pa(le) = lim" L k)
3 N i= n n =z n =

Jm<
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As a concluding remark let us observe that if all measures u, are o-l-
decomposable, then

lim I o) =limp( O {k)) = limpu)

and all the propositions (a), (b), (c), (d) are equivalent between them.
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Sommario

Si diniostrano alcunt teoremi di convergenza per successioni di funzioni d’insieme
decomponibili rispetto a conorme triangolari; in particolare si stabilisce una condizione
sufficiente per la convergenza uniforme e Uanalogo del classico teorema di Phillips.
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