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YOSHIHIRO ICHIJYO (%)

Almost Finsler structures
and almost symplectic structures on tangent bundles

As it is well-known, the theory of G-structures is a theory to understand
geometrical structures of manifolds systematically. That is to say, let M be an
n-dimensional C*-manifold and G be a linear Lie group of order n. We say that M
admits a G-structure when and only when M is covered by a system of local
coordinate neighbourhoods {U,} such that, in each U,, there exists a local n-
frame {Z;*} satisfying the following: for {Z,¥} in U, and {Z,®} in U,, if
U, U,# ¢ then Z;¥ = P1Z;* holds in U, n U; where (P € G. In this case, the
n-frame {Z;®} in each U, is said to be adapted to the G-structure. '

If M admits a G-structure and is covered by a system of local coordinate
neighbourhoods {(U,, (x%.))} such that, in each U,, the natural frame {3/0x},}
is adapted to the G-structure, then the G-structure is said to be integrable.

On the other hand, on 2 manifold admitting a G-structure, a linear connection
V is called a G-comnection relative to the G-structure if it satisfies
VyZ;=T%,UmZ; where I, U™ € g (g is the Lie algebra of the Lie group G) for
any vector field U= U"Z,,.

It is well-known that, if M admits a G-structure, then there always exists a
G-connection relative to the G-structure [3], [11], [20].

As examples of G-structures, the followings are47ell-known:

M is a Riemann manifold 22 M admits an O(n)-structure
(locally Euclidean) (integrable)

M is an almost complex manifold 2 M admits a GL(n, C)-structure
(complex) (integrable)

(*) Address: Department of Mathematics, College of General Education, University
of Tokushima, Tokushima, Japan.
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M is an almost symplectic manifold = M admits an Sp(n)-structure

(symplectic) (integrable)
M is an almost contact metric =2 M admits a U(n) X 1-structure
manifold (with some condition)

(contact metric)

Now, from this point of view, we would like to reconsider the theory of
Finsler manifolds and to define a notion of an almost Finsler structure.
Concretely speaking, corresponding to some linear Lie group G of order 21, we
consider the following problems:

M is an almost Finsler manifold 2 T admits the G-structure
(Finsler) (satisfying some condition)

In other words, we would like to survey the

Conjecture. A manifold M is o Finsler manifold if and only if the
tangent bundle T(M) admits o G-structure satisfying some condition.

To solve this conjecture, we must find, in the first place, the linear Lie group
G, and next, we must define a notion of an almost Finsler structure, then we will
prove the conjecture.

The main purpose of the present paper is, first of all, to solve this conjecture.
In this ease, an almost symplectic structure defined on the tangent bundle
actually plays an important role. So, the almost Hamilton vector fields associated
with the almost symplectic structure is investigated. The G-connection relative
to the almost Finsler structure is also dealt with. Moreover we discuss the case
when a non-linear connection is assigned. The integrability conditions of these
structures are also investigated, from which the situation of the locally
Minkowski manifolds becomes clear.

Throughout the paper, we use the following indices and notations:

A, B, C, .., P, @Q, R, ... vun over the range {1, 2, 3, ..., 2n}
a, b, ¢ ..., % 7, k, ... run over the range {1, 2, 3, ..., n}

@ b, ..., 1, §, ... stand for a+n, b+mn, ..., i+n, j+n, .. respectively.

With respect to any canonical coordinate system in a tangent bundle, we
write (z4) = (x%, x® = (¢ y9, d; and J; stand for 3/0x* and 3/dy’ respectively.
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1 - The Finsler group

Let M be an n-dimensional C*-manifold and 7(M) be its tangent bundle. As is
well-known, T(}) admits a standard integrable almost tangent structure, that
is, standard tangent structure &, ({11, [2], [3], [5], [19]). Let Q be its structure
tensor.

Now T(n)={(‘§ X) |A€GL(n, R), Begltn, R)} is a wellknown Lie

group, which we call an n-dimensional tangent group. The structure Ty is a
T(n)-structure on T(}) and is integrable. Let = be the natural projection
T(M)— M. Any coordinate neighbourhood (U, 2% in M induces a coordinate
neighbourhood ("YU, (x%, ¥?) in T(M), which we call a canonical coordinate
neighbourhood. For two arbitrary canonical coordinate neighbourhoods
XD, (@ ), =XU), @&, 7)) such that =) A=Y O)# ¢, 2n-frames
{Z4) in =~ YU) and {Z,} in =~(U), both adapted to the T'(n)-structure, satisfy
Za=PB,Zs (P2 eTm) in =Y n="Y0). Of course, the components a';
and
] a'ij 0 . . )
b*; of (PBA)=(bi' afj) are functions of x* and y".
Now, we may] consider the case where a’; are positively homogeneous of

degree 0 with respect to y* and b’; are positively homogeneous of degree 1 with
respect to y°. This is well-defined by virtue of the transformation law of (@f, 9

Al 0 Az O . A-IAZ O
and the form of (B1 Al)(BZ Az) = (B1A2+A1 B, A A, ). If we treat only

the structure &, under the restriction of the above homogeneity condition, we
call it a homogeneous standard tangent structure and denote it by F§. The
condition for 2n-frames {Z 4} to be adapted to the structure & is that Z, and Z;
can be written as

3 ;i O
-+ v'a
oxt 14

3 .
; Zd= 1a. i d t’ la #0
3 P (det|y’| #0)

Zy= Yia
in any canonical coordinate neighbourhood (= X1, (x%, ¥%)) and v', are
positively homogeneous of degree 1 with respect to y' and ', are positively
homogeneous of degree 0 with respect to y*.

Now, let G be a Lie subgroup of 7(n). If T(M) admits the G-structure B and
if any frame adapted to the structure 98 is always adapted to the standard
tangent structure I, (48 is the G-structure as a reduction of Fy), then the
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structure &3 is called a G-structure depending on F,. The condition for &3 to be
a G-structure depending on &, is given as follows:

(1) G is a Lie subgroup of T'(n).

(2) For any canonical coordinate neighbourhoods = ~*(U) and = ~%(U) such that
=N U) n="{U) # ¢, there exists 2n-frames {Z,} in ="Y(U) and {Z,} in

= ~lo satistying Z.=PB,Z,
(PEHe@ in =Y U) nz"XDD.

(8) In each = (U), the above 2n-frame {Z,} adapted to &8 is written as

#0.

i
Y «a

Za=yﬂ,—§-. where det
oy’

In the case when we treat the homogeneous standard tangent structure &, we
must add the condition that Pi; and y'; are positively homogeneous of degree 0
with respect to y* and Pfj and ¢ ; are positively homogeneous of degree 1 with
. 0 ). The G-structure &8 under the
P P

restriction of the above homogeneity condition is called a homogeneous
G-structure depending on & §, and is denoted by &8*().

Now let us consider the following set

respect to y* where we put (PZ,)=(

F(n) = ) A e0m), SeSymm)}

A 0
{(SA A

A, 0 A 0

For any (S A A ), (S A A YeF(n), we see that
141 1 2 A 2
( Ay 0)( A, 0)=( Al A, 0 )
S14; A" S 4, A (S;+A4,S:'A)A A, AlA;

() This homogeneity condition can be written as d)'x(Za)(x,y)= (Z D3 Where dx is
the differential of the mapping A: T(M)— T(M) (x, y)— (x, 2y)), A being any positive
number.

(® F(n) is similar to the tangent orthogonal group 7(O(n)) defined by Morimoto [15].
But Fi(n) does not coincide with 7(0O(n)). In T(O(®)), S is an element of the Lie algebra
o(n) of O(n).



[5] ALMOST FINSLER STRUCTURES AND ALMOST SYMPLECTIC STRUCTURES ... 33
and S;+A,;S:'A;eSym{n). Moreover we see

A, 0

Al O -1 )
) —(—tAlslAlfAl tA,

S14; A, )

(

and —!'A,S; 4, e Sym(n). Hence, it is apparent that F(n) is a Lie subgroup of
T(n). Hereafter the Lie group F(n) is called a Finsler group, an F(n)-structure
depending on F, is called an almost Finsler structure and is denoted by F3.
Similarly, a homogeneous F(n)-structure depending on & § is called a homoge-
neous almost Finsler structure and is denoted by & ¥ [6], [8], [9].

0
E

tPJP =J, that is, F(n) c Sp(n) (Sp(n) is the n-dimensional symplectic group).
Also we can easily see that T(n) n Sp(n) = F(n). From the theory of G-structures
[3], we obtain

If we put J = (Jpg) = ( —g}), we easily see that any P € F(n) satisfies

Theorem 1.1. If a tangent bundle T(M) admits an almost Finsler
structure, TM) also admits an almost symplectic structure. And
T(n) N Sp(n) = F(n) holds good.

On a tangent bundle, the canonical frame {%} is adapted to &F,. On the

other hand, if {Z,} is adapted to &, then is adapted to &,. Hence in each
=), we have Z, =2 485, (B4 =I"eT(n)) for 2n-frame {Z,} adapted to
T, also we have 9, =% ,Zy where B=(8%,) =71"te T(n). Now, as is well-
known [3], wap=JpoB¥ 4895 becomes a global tensor field on T(M) and satisfies
det|was] #0, wap= — wpa. That is, Q= wapdz* A daB is just the 2-form associa-
ted with the almost symplectic structure under consideration.

Next, we can define a pseudo inner product (,) of rank n by (Z;, Z;) = &,
(Zi, Z;y=(Z;, Z;) =(Z;, Z;) =0 in_each -~@. Because of the proper-
ties of the F(n)-structure (i.e., A € O(n)), we can easily see that the above pseudo
inner product can be extended to the whole of T(M) globally. Thus
we obtain a singular Riemann metric G of rank n on T(M). In each = Y1), we
h’:ave Gip= <5%Z’ —G%E> = éﬂ“Aﬁ”B- Putting a%ﬁ“iﬁaj =gy and
S (B%:p%;— %)) = oy, We obtain
a=1

0) (=" T

0 g5 0 ) Q = azda’ Ads’ — 2g;da’ A dy’.

(Gha) = <g(;"'
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The Lie algebra {(n) of the Lie group F(n) is given by
i =1{(% ) lacow), beSymm).

Now, let V be a G-connection relative to the structure &, (i.e., V is an
F(n)-connection), then Vy;Z,=I3,U°Zz where I'5cUC e f(n) in each = XU).
With respect to any 2n-frame adapted to &, we see that

G = Gan) = (

) e=Gw=(p O Q=@»=(,

0 0 0

Hence by calculating VG', Vo and VQ, we easily obtain

Theorem 1.2, Let T(M) be a tangent bundle admitting an almost Finsler
structure ;. In order that a linear connection V on T(M) be a G-connection
relative to the structure 7y, it is necessary and sufficient that Vo =0 and
V@ =0 hold good. With respect to the connection V, VG' =0 is also true.

2 - Homogeneous almost Finsler structures
In the following we treat the homogeneous almost Finsler structure 7.
Consider again the 2-form

2.1) Q= wspda? Ada? = aydai A da’ — 2g;da Ady/.

In the present case the g;'s are positively homogeneous of degree 0 with
respect to y* (shortly (0)p-homogeneous for y), and the «;s are positively
homogeneous of degree 1 with respect to % (shortly (1) p-homogeneous for ¥).
So, the g;'s give M a generalized metric in the sense of A. Moér [14].

Next, wsp is a skew-symmetric tensor field on T(M). So, by direct calculation,
in each =" (U) n=~YU) where U U+ ¢, we find the following transformation
rules for g; and «y

Y ot dwd
(2.2)
=G 3_95’1%1_9- oFP_ "7 Y+ G &P, 9F!
YoM gt 9 P dxt Qxd Q™ Pgigem? i’
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Thus we obtain

Theorem 2.1. If a tangent bundle T(M) admits a homogeneous almost
Finsler structure, then T(M) admits an almost symplectic structure whose
associated 2-form is gien by Q=azdaiAda’—2g;dx' Ady’. Here, oy is @
quantity such that a; = — a; and is positively homogeneous of degree 1 for Y, gs
is a generalized metric of M, and the transformation rules of a; are given by
2.2).

Now, let N be a non-linear connection defined on T() ([7], [12]) and Nj’ be
the components of N with respect to the canonical local coordinates (x?, y°).
Then N satisfies the transformation rule

»P . - »q 2 4mp
ail'/" N}_n - Ng_aﬁ_ — a x ,ym .
™ 9’ dw’ dx™
By using this equation, we can show easily that 8= a;+ GimNT—g;u N7 is a
skew-symmetric quasi tensor(®) on M [7] and is positively homogeneous of

degree 1 for y'. Hence, if we put Ni=N: —% 9™ B, then we can show directly

that Ni gives T(M) a non-linear connection and satisfies a; = — g NJ' + gin N1
Thus we obtain :

Theorem 2.2. Let g=(gy) and a=(ay) be the quantities defined n
Theorem 2.1. On T(M), there always exists a non-linear connection N satisfying
the condition

2.3) a=—gN+'Ng.

Next, let N and N be any two non-linear connections satisfying the condition
(2.8). Then N—N is a (1, 1) quasi tensor field on M and is positively
homogeneous of degree 1 for y'. Now, k= (k;) = g(N —N)is a (0, 2) quasi tensor

() A quasi tensor is a so-called tensor of Finsler type. However to avoid the confusion
with a Finsler metric tensor, we shall adopt the terminology quasi tensor.
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field on M, that is positively homogeneous of degree 1 for %' and satisfies
h=(N-N)g=(a+gN)—(a+gN)=k.

So, k is a symmetric quasi tensor field.

Conversely, let N be the non-linear connection shown in Theorem 2.2 and &
be any symmetric (0, 2) quasi tensor field and be positively homogeneous of
degree 1 for y°. Then N =N + g~k satisfies

~gN +Ng = —gN+“Ng=a.
Thus we obtain

Theorem 2.3. In a tangent bundle admilting a homogeneous almost
Finsler structure, let N be a non-linear connection satisfying the condition (2.3).
If N is another non-linear connection satisfying the condition (2.3), then N is
written as N =N + g~k where k is a (0, 2) symmetric quasi tensor field on M
and is positively homogeneous of degree 1 for y'. And the converse is also true.

Now let us consider the converse of Theorem 2.1. That is to say, we assume
that a manifold M admits a generalized metric g and a skew-symmetric quantity
a = (o) which is positively homogeneous of degree 1 for y' and satisfies the
transformation rule (2.2). In this case, Q=qayda'Ade!—2¢;deiAdy’ is a
globally defined non-degenerate 2-form on T(M). First, we consider a local
coordinate neighbourhood (U, «%). With respect to the generalized metric g, it is
easy to find in U = linearly independent local covariant quasi vectors s¢ such

that g;;= i o¥cef. That is, g = 'sc where o = (¢f). Now, we put == (i) =71 Of
a=1

course, o¢ and i are positively homogeneous of degree 0 for y. Let N be the
non-linear connection shown in Theorem 2.2, i.e., N satisfies « = — gN + ‘Ng.
Then we can define, on = XU), a local 2n-frame {Z,} by

Z,=ti(3/3x' — N 3/dy™) Zy=r<.3/3y".

The quantities, o, v, N and {Z,} always exist on »~%(U). However, they can not
be determined uniquely. Next, let (7, %) be another local coordinate neighbour-
hood such that U n U # ¢. Then, on (=~(0), (&', 7%), we can define similarly o,
r, N and {Z,}, which we denote by 2, i, N and {Z,} respectively. Now, on
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=" YU) A =~ Y1), we can consider these quantities in terms of the local canonical
coordinate system (x¢, y?), which we denote by 2, u, N and {Z,)} respectively.
Then, we see

Z, = pi@ewi— NTa/dy™ Zi=pla/y.
Now, in =X U) n =" D), {Z4} and {Z 4} have, of course, the relation

3 pb PY

Zy=PiZp (Pﬁ)=(Pg P%)EGL@’YL, R).

First, Z,=P%Z,, + P%Z, can be rewritten as
yia/ayi=P$LT§,l(a/awi—Nga/ay”)+P’27f,za/ayi.

Hence we have P?=0 and P%=c"u}. Secondly, Z,=P"Z,+PMZ,; can be
rewritten as

wi(3/dx — N1 3/oy™ = Pyt (3/dw' — N1o/dy™) + P <5, d/dy".

Hence we have P™=c"u’ and PP =cPNiztP§— o7 Niui. Putting A= (P™),
we see

YAA = (o) (o) = fugin = 2 = '00) O) = By
i.e., AeO(m). Next, putting B =(P), we see, by virtue of Theorem 2.3
B =sNrA — cNu=oN<A — sNzA — og ktA = — oc' theA = — '<kA

where k is 2 symmetric matrix. So, putting S = —'zkr, we have ‘S=5, ie,
Se Sym(n); Thus we get (P$) = ( 51"}4 g) where A € O(n) and S € Sym(n). That
is to say, (P#) e F(n). And, for the relations

Zo=i8/0x  — <L NT-8/oy™ Zo=i8/3y’

we have seen already that det|7i| %0 and that =} is positively homogeneous of
degree 0 for y’, and <iN™ is positively homogeneous of degree 1 for yi.
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Moreover, (=Dt l'=%s=¢g and (—JT\F ?)'lz( ° O)=( a :) So, we
have C

n n
Z (G%L ’J]C'L - ’5?0—;‘1) = z (G]('I‘G;lnN,in —aian N}n) = gij?l — Gim N]’ﬂ = 5.
a=1 a=1

Thus, as the converse of Theorem 2.1 we obtain

Theorem 2.4. Assume that a manifold M admits a generalized metric g;
and a skew-symmetric quantity «; which is positively homogeneous of degree 1
for y' and satisfies the tramsformation rule (2.2). Then T(M) admits a
homogeneous almost Finsler structure whose associated almost Finsler 2-form
8 given by

ag A’ A da? — 29, dact A dy?

3 - Finsler structures

Let T(M) be a tangent bundle admitting a homogeneous almost Finsler
structure. Applying the exterior differentiation d to the almost Finsler 2-form
Q= ayda Ada? — 2¢,;,dx* Ady’, we get

dQ = 3o dw® A da’ A da? + By + 20;94) dy* A dar' A dad — 28, gy dy* A dawi A dy? .
So, the condition for Q to be closed can be written as

ékgif—éjgik:() ékaij+28jgik~ékaﬁ—Zaigjk=O akaij—{— a,-ocjk+8jaki=0.
The first condition means that g; is a Finsler metric [14]. The second condition
leads us to 3, ay; = O; gjx — Oj G- Since ay is positively homogeneous of degree 1 for
¥, we obtain

(3 1) &Ky = ym(ai Gim — ajgim) .

Conversely, let g; be a Finsler metric and «; be the quantity given by (3.1).
From the well-known equation ymék gim =0, we get 3 o; = ;g — ;9. Hence,
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the second condition is clearly satisfied. In this case, moreover, we see
B oy + Byt + D et
= Y™ O: Yjm — Ok 3 Gim + i Oj Jrm — Bi Ok Gjm + 0 O Gim — 059 i) = 0.
That is, the third condition is also satisfied. Thus we obtain

Theorem 3.1. Let T(M) be a tangent bundle admitting a homogeneous
almost Finsler structure. The almost Finsler 2-form Q=oyda’Adw?
—2¢g;;dw? A dy’ is closed if and only if g, is a Finsler metric and oy is given by
o =Y " (BiGjm — O Gim)-

In the case of Theorem 3.1 we have
Q= Y™(B;Gjm — 3 gim) dc’ A dw? — 29 A’ A dy? = A2y ™ gy dat).

That is, Q is the well-known exact form [20]. In the paper [6], we have called this
Q the Finsler form associated with a Finsler metric and denoted it by Q*. Since
Q% is determined by a Finsler metric only, it seems to us that Theorem 3.1 tells
us a new definition and a new treatment of a Finsler manifold.

Next, let there be given a scalar field o(%, ¥) on T(M), which is positi-
vely homogeneous of degree 0 with respect to y. If T(M) admits a homo-
geneous almost Finsler structure whose associated 2-form is given by
Q=ayda Adw’ —29;da’Ady?, then T(M) also admits another 2-form
Q=e¢®»0,  Putting §=e¢“Yg; and a;=e™Ya; we  have
@ = g;da’ A do? — 2g;de’ Ady’. Of course, §y is a generalized metric. With
respect to &, it is easy to verify

. _z O&P3EY : O&P_3*g! my 7 OB &P .
&= Opg a7 i Ipa 5 T Ami A Y g
dx' 3w ox' ox’ ox

Thus 7(M) admits another homogeneous almost Finsler structure whose
associated 2-form is O itself. The condition for Q to be closed is given by
(1) gy is a Finsler metric (2) ;5 =Y"(O;jm — O Fim)-

The condition (1) implies that the generalized metric g;; is conformal to a Finsler
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metric. From the condition (2), we have
3.2) a5 = Y" (i Gjm — OjGim) + 3i 0 Y™ — 3joGim Y™ .

Conversely, let Q= o;de* A de’/ - 2g;dai Ady’ be a 2-form on T(M). If there
exists such a scalar field ¢ = o(%, y) that o(®, y) is positively homogeneous of
degree 0 with respect to y, eg; is a Finsler metric and the relation (3.2) holds,
then €’ a;; = y™{34¢’ gj) — 3,(¢° gin)} holds good and e*Q becomes closed. Thus we
obtain :

Theorem 8.2. Let Q= da’ Ada/—2g;daiAdy’ be the almost Finsler
Jorm associated with o homogeneous almost Finsler structure defined on o
tangent bundle T(M). Let o = o(, y) be a scalar field on T(M) which is positively
homogeneous of degree 0 for y'. In order that ¢*Q be closed, it is mecessary and
sufficient that e’g; is a Finsler metric and the relation (8.2) holds good.

Let g be a Finsler metric, Q* be the Finsler form associated with g, and
o=o(x) be a scalar field on M. Then §=e®g is a Finsler metric. So, let O* be
the Finsler form associated with §. Then we have

é* = eﬂx).Q* + e’(”)y"‘(ai G‘gjm - aj Ugim) .

Therefore, the condition 0% =e®@0Q* is written as (3 Gjm — joGim) Y™ = 0.
Applying the differentiation 3, and multiplying by g#, we have 8;,5 =0, i.e., ¢ is
constant. Conversely, if ¢ is constant, it is evident that O* = e 0Q*. Thus we
obtain

Theorem 3.3. Let g and § be two Finsler metrics defined on M, that are
conformal to each other, namely, §j = e g. Let Q% and Q% be the Finsler forms
associated with g and § respectively. Then Q% = & Q% holds true if and only if §
18 homothetic to g.

4 - Hamilton vector fields in 7'(}{)

Let V be a vector field in T(M) and @ be the standard tangent structure
tensor. With respect to a local canonical coordinate, V and @ are written as

V =iz, y)3/dxi+v{x, y)d/dy’ and Q= (Q%) =( 62 8). Now, calculating the

J
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Lie derivation £y @, we have
va}z‘“é]‘Uf, va}"—‘O, —%/Q}T:—a‘jvg‘*‘ 9;v%, va§=éjvi~
Therefore, if %@ =F610 holds, V must take the form
V = vi(x) 3/0xt + (™3, v(x) + u'(x)) 3/3y*.

And the converse is also true. Here, vi(x) 8/3x* + y™d,,vi(x) 3/0y® is called the
complete lift of a vector field v(w) = v'(x) 3/3x to the tangent bundle T(M) and is
denoted by (w(x))°, and w'(x)3/3y’ is called the vertical lift of a vector field
w(z) = ui(x) 3/3xt to T(M) and is denoted by (u(x))® ([7], [20]). Hence we obtain

Theorem 4.1. Let V be a vector field in a tangent bundle T(M) and Q be
the standard tangent structure tensor of T(M). £»Q = 0 holds good if and only
if V= (@) + (u(x))” where ((@))° is the complete lift of a vector field v(x) in M
and (u(x))’ is the vertical lift of a vector field u(x) in M.

Now, we suppose that the tangent bundle 7(M) admits a homogeneous
almost Finsler structure & %. Let V be a vector field in T(3). In what follows,
we consider the case where the local 1-parameter group of local transformations
generated by V preserves the structures & 7. The condition to be demanded is
written as %y Q=0 and _%,Q =0. By virtue of Theorem 4.1, it is enough to
consider the two cases where V is the complete lift or V is the vertical lift of a
vector field in the base manifold M.

First, we consider the case where V is the complete lift of a vector field v(x) in

. wy Wi % Gy .
M. Now, let us calculate £ wap=0 for (wap)=( ~ = (g 0 ). Using

. .
‘the relations v

i
i

Y

3 D D
D wA;+ﬂ_wDB+wAD3V

Py py v° = vix) 3/3x! + y™3,, vi(x) 3/dy*

Ly wap=V

after some calculation, we get

,?Z,c Wi = 0, ,ﬁf Wi = ’Uh ahgij -+ ym am'l)h ahgij + Sivhghj -+ gin aj'l)h = —f’vgij
[ R h k aZ,Uh m ath m
I’ — gk m 0 M
—ﬁv" Wy =7V o &g +y Om ¥ Sh aj + Oy ;" + ay, 8]-'1) + gjhaxi o™ Y gzhaxj Fy Y
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where 7, g;; is the well-known formula of the Lie derivative of the generalized
metric g; [18].

As is well-known ([4], [8], [16], [17]), in a manifold admitting a symplectic
structure whose associated 2-form is Q, a vector field V satisfying 7, Q=0 is
called a Hamilton vector. And similarly, in a manifold admitting an almost
symplectic structure whose associated 2-form is Q, a vector field V satisfying
L0 =0 is said to be an almost Hamilton vector. Now we obtain

Theorem 4.2. Let T(M) be a tangent bundle admitting a homogeneous
almost Finsler structure F ¥, let Q = a;da’ A da’ — 2g;da’ A dy’ be the almost
Finsler form associated with F ¥, and let v=v(x)d/3x* be a vector field in the
base manifold M. Then, the complete lift of v is an almost Hamilton vector of
F ¥ if and only if
(1) v is a Killing vector field of the generalized metric gy

2

: *v
(2) ’Uh ahaij + ym amv" 8,, i + 8ivhah]- + Aip, aj’l)h -+ gth

h az h

m__ g, M o
A L e A

hold good.

In the case where dQ=0, ie., g¢; is a Finsler metric and
o= Y"(3; Gpm — O;Gim), the left hand side of the condition (2) of Theorem 4.2 can
be rewritten, after some calculation due to y™ 3 G =10, as

2 g; g,
n im h , im b i i
v Lymaxh ami 2 Lymamh Py t ym am ot ai gin— ym am P a]_ Jin -+ ym ai,v o ah Gim
2.0 2 0
h 1 i o%v “v
- ym aiv ' ajghm + Z/m ajv ' 81'911172 - ym aj,U Lahgim + ymgjhafci ax™ - ymgiha’lfj Ax™ '

Thus we can rewrite the condition (2) as
ai(ym—fvgjm) - aj(ym —;/’)v gim) =0.
Therefore we obtain

Theorem 4.3. Let g be a Finsler metric of a manifold M, v =v(x) 3/3x" be
a vector field in M and F§ be the symplectic structure on T(M) derived from
O* = d@y™g,;dx?). Then v° is a Hamilton vector of F ¥ if and only if v is a
Killing vector of the Finsler metric g.
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It is well known ([4], [11], [16]) that, for any p-form, the relation
Zv=1vd +diy holds good where iy is the interior product by V and d is the
exterior differential operator. If v is a Killing vector field of a Finsler metric g,
then we have _7Z,:Q* = 0. Of course, dQ* =0 holds. So, we have di,Q* = 0. That
is, the so-called Hamilton system p=wg(v9)®dx* is closed. Putting
H, = w8, we have

H;= yr{(am Gir ™ aigmr) V" A+ G arvm} H;=— I V™.

The equation y"_7,g;,=0 leads us to H;i= — ¢ 0™ 8;¢pr— Y 3;v™ gmy. Then we
have . = — d(g,»y"v™). That is, ¢ is an exact form and H = g,,,y"v™ is a Hamilton
function of & § ([4], [8], [16], [17]). Thus we obtain

Theorem 4.4. Suppose that ¢ manifold M admits a Finsler metric g and a
Killing vector field v = vi(x) 3/3x" of g. Concerning the symplectic structure ¥
derwed from Q% =d@y™g,,;dx’), H =g,,y"v™ is the Hamilton function with
respect to the Hamilton vector v° in T(M).

In the case of Theorem 4.4, the so-called Hamilton equation is written as

4 i ih ymr oH
" amvl = gzm__a_li + yp(ahgmp - amghp)g ! g

8H &y
Ax™ ayr :

da? _
aym’ dt =Y

- ’Ui — gim

dt

It is a matter of course that the Hamilton function is constant along the
integral curve of the Hamilton vector v°.

Next, we consider the case where V=u% u being a vector field on M.
Calculating £+ wap, we have

5 —_ m 3 m n g JE— i A 9 P
L wy = U™ Oy a; + I QU™ = Fin O U L w5 =U" 0y gy L wi=0.

Thus we obtain

Theorem 4.5. Let T(M) be a tangent bundle admitting a homogeneous
almost Finsler structure ¥, let Q = aydat A dw’ — 2g;;dat A dy’ be the almost
Finsler form associated with F ¥, and let u =u'(x) 3/3x be a vector field in the
base manifold M. Then, the vertical lift of w is an almost Hamilton vector of
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if and only if
(1) um ém gt] =0 (2) u" a.m %ij + gmj aium = Gim aj u™=0

hold good.

Here we consider the case where d2=0, i.e., ¢ is a Finsler metric and
Q=0* By virtue of (3.1) we have

u™ am xij + Oy aium = Gim ajum = um(ai Gim — ajgim) + Gim aium = Gim ajum .

Let V be the covariant differentiation with respect to the Cartan’s Finsler
connection f‘}k ({121, [18]). Using the condition «™ B g;; =0, and the well-known
relation V*7k 95 =0, we have

U"BiGim — OjGim) + Jir I tt™ — girImiu™=0.

Hence, we can rewrite the condition (2) as @(gjmu’”) - V*7]»(gimu"l) = (). Therefore
we obtain

Theorem 4.6. Let g be a Finsler metric of a manifold M, let u = u'(x) 3/3x?
be a vector field in M and let ¥ be the homogeneous almost Finsler structure
on T(M) derived from Q% =dQ2y"g.;dx?). Then the vertical lift of u is a
Hamilton vector of the symplectic structure F i if and only if

1) u™3,95="0 @) Vilgimu™ = Vgint™

hold good where V means the covariant differentiation with respect to the
Cartan’s Finsler connection I'y.

In the case of Theorem 4.6, the Hamilton system p is written as
o= gmu™da’. This p is, naturally, a closed 1-form, however, is not always an
exact form.

5 - D(GL{(n, R))-structures

Now we assume that T(M) admits a G-structure 8* which is depending on
FF&. If M is covered by a system of local coordinate neighbourhoods {(U, z9}
such that the natural frame {3/3x4} of the canonical coordinate neighbourhood
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(="XU), x*} for each (U, ') is adapted to the structure B*, then the G-
structure 98%, which is depending on & §, is called integrable.
Putting

DGL(n, R)= {(“3 fQ |A e GL(n, R))

we see that D(GL(n, R))is a Lie subgroup of T(n). In this section, we treat the
case where T(M) admits a D(GL(n, R))-structure depending on & §, and denote
it simply by &6*.

If we put P0=(]f)" B ]_S‘,)' ), then we see that TPy=P,T holds for any

T e D(GL(n, R)). Hence, if T'(M) admits a structure &* then it also admits an
almost product structure. Let {Z,} be an adapted frame of &* in each
= Y U), x?), and let us put Z, = y8 95, then I'=(y%,) is written as

r=(ro=("" ).

i
Ga Ya

! 0

Putting y=(y',) and o=(c%,), we see I!= 4 4 4) Now
E 0 -y 9 Y

P=rP,r1=( 9 " B ) satisfies P%*= E,, and becomes a globally defined
Y — Ly

(1.1)-tensor field on T(M), i.e., P is the almost product tensor field associated
with the given almost product structure [3].

Putting N = (N';) = — oy}, we see, as is well-known, that N is a non-linear
connection defined on T(M). Of course, N, is (1) p-homogeneous for y. Now we
show

Theorem 5.1. A tangent bundle T(M) admits a structure G* (namely, a
D(GL(n, R))-structure depending on Fi§), if and only if the underlying
manifold M admits a non-linear connection.

Proof. The necessity is shown already. So, we show the condition is
sufficient. In each (="YU), x4), let us put X;=0/dx'—N™;3/dy™ and
X;=Y,=0/3y", then {X,} is a 2n-frame in each = }(U), which we call the
N-frame hereafter. Let {X,} be the N-frame in (z~XU), &4). f Un U+#¢, it is

easy to see that Y,, %%T =Y, and X, %%7;:}(1- in = Y(U) n =" Y(U). So, if we put
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agt 0
X,=T",X5 we have (T%,)= (”3;-7 ag! ) e D(GL(n, R)). Since Ni; is
0 o
(1) p-homogeneous with respect to y, we see that 7(M) admits a structure &*
and the N-frame is an adapted frame of the structure &* in each (= X(U), x4).
Next, if we put Jo= (J4p) = (F(j) _f" ), then we see directly that 7./, =J, T
holds for any T e D(GL(n, R)). This means that D(GL(n, R))c GL(n, C),
namely, T(M) admits an almost complex structure if T(M) admits a structure
G*. The almost complex structure tensor F' associated with this structure is
given by F=TIJ,I'"%. Of course, F is a globally defined (1, 1)-tensor field on
T(M) satisfying F?= —FE;, [3]. The components of F' with respect to the
canonical coordinate {x*} are given by ([5], [7], [9], [12], [19D)

-N '—'En

F=rJ,r =
Jo (E,1+N2 N

).

Moreover, the components of F with respect to the N-frame {X,} are given by J,
itself and also F satisfies F(X;)=Y;, F(Y;)) = — X;. According to Matsumoto [12],
this almost complex structure is called the almost complex N-structure. Now we
show

Theorem 5.2. In order that a tangent bundle T(M) admits an integrable
D(GL(n, R))-structure depending on F§, it is necessary and sufficient that the
underlying manifold M is locally affine.

Proof. If T(M) admits the structure &* which is integrable, then M is
covered by a system of local coordinate neighborhoods {(U, x%} such that the
natural frame {3/3x4} of each (="Y(U), z*) is adapted to the structure G*. On
the other hand, the N-frame is also an adapted frame of the structure G in
=XU), z*). So, we have 3/3x* = TE , Xz where (T'®,) e D(GL(n, R)). That is,
d/dxi=Tm™; (3/dx™— N7,3/3y") and 3/dy'=T";3/0y™ These yield T™;=38",;
and Ni;=0. Next, let {U, &'} be another coordinate neighbourhood satisfying
the above. If Un U#¢, then, in z~XU) n="YU), the relations

- . =T =1 2 5t . _ .
dx’ Oz’ ! dx™

2 i
hold, and these lead us to amaj gx" =0, that is, M is locally affine.
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Conversely, if M is locally affine, there globally exists a flat affine connection
Ii(x) on M. Then T(M) is endowed with a non-linear connection such as
N =Tr%(@)y™. Owing to Theorem 5.1, T(M), therefore, admits a D(GL(n, R))-
structure depending on &, i.e., a structure 6*, whose N-frame is adapted to

G*. Since I'i(x) is a global flat affine connection on M, M is covered by a system
of local coordinate neighbourhoods {(U, @9} such that I"i(x) = 0 holds in each U.
Then, in each U, N*;=0 holds, from which we have X, =3/x' and Y; = 3/3y".
Namely, the canonical natural frame {3/3x“4} is adapted to &%, in each

= (U), «*). Consequently, the proof is complete.

6 - D(O(n))-structures

In this section we consider the Lie group defined by
_A 0
DO =1{(%y §)lAc0m).

It is obvious that T(O(n)) N F(n) = D(O(n)) and the Lie algebra of D(O(n)) is
given by bd(o(n)) = {(g 3)[61,6 o(n)}. Now we consider the case where T(M)

admits a homogeneous D(O(n))-structure depending on & §, which we denote by
In a canonical coordinate neighbourhood {=X(U), 24}, let {Z,} be a 2n-
frame adapted to the structure F§ and represent Z,=y%,0;. Since

I'=(E)= (;1 ¢ )(’)i )€ T(n), det|y’,]# 0 and y?, are positively homogeneous of

degree 0 with respect to %' and ¢*, are positively homogeneous of degree 1 with
respect to y°.

First, it is clear that D(O(w)) c D(GL(n, R)). So, if T(M) admits a structure
%, then it admits a structure 6%, that is, T(M) admits a non-linear connection
N, given by N = —ay—-].

On the other hand, it is clear that D(O(n)) c O@2n). So, if T(M) admits the
structure 7, it also admits a Riemann metric. That is, if we define an inner
product in each =™ (U) by (Z4, Zg) = 845, the inner product in each = X(U) gives
T(M) globally a positive definite Riemann metric G. The components of G with
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respect to the frame {X,} are written as
(X, X)=3p85=95 (X Y)=0 (¥, Y=g

where (B%)=g8=7y"".

The functions g; are positively homogeneous of degree 0 with respect to Ik
and they give M a so-called generalized metric.

Conversely, if a manifold M admits a generalized metric g; and a non-linear
connection N;, a proof similar to that of Theorem 2.4 shows us that 7(M) admits
a homogeneous D(O(n))-structure depending on F§. Therefore we obtain [9]

Theorem 6.1. A necessary and sufficient condition for a tangent bundle
T(M) to admit a structure F§ (i.e., a homogeneous D(O(n))-structure depen-
ding on F¥) is that the manifold M admits a generalized metric and a non-
linear connection.

If T(M) admits the structure & ¥, because of the fact D(O(n)) c F(n), T(M)
admits an almost symplectic structure. Moreover we can see that the functions
gy in the 2-form Q = e da? A dw? — 2g;dac’ A dy? coincide with the components g
of the given generalized metric. The functions «; in Q are given by
ai= > (B%8% —B%:8%), and the relations (%) =—ps8 and —gf=N hold.

Hence, g%; =4, N™; and a;= g, N"; — g N";. With respect to these quéntities,
we can easily verify
dQ = 2[0,(g; N7 dw* A dzi A da? + B(g; N7)) dy* A dee’ A dae
+ 304 dy* A dac A dw? — 8, gy dy* A dae’ A dy].

From this relation, as well as from Theorem 3.1, we can prove [9].

Theorem 6.2. If a tangent bundle T(M) admits o structure F§ (i.e., a
homogeneous D(O(n))-structure depending on F§), T(M) admits an almost
symplectic form Q= — {(g-N";— g;; N") dac’ A dow? + 2¢;;dw* A dy’}. Moreover Q
is closed if and only if g; is a Finsler metric on M and Q coincides with the
Finsler form Q% associated with the Finsler metric.
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Moreover we can prove

Theorem 6.3. In order that a tangent bundle T(M) admits an integrable
D(Om))-structure depending on F§, it is necessary and sufficient that the
underlying manifold M admits a flat Riemann metric.

Proof. First, let us consider a tangent bundle T(M) admitting an integra-
ble &% structure. Due to the definition, T(M) is covered by a system of
canonical coordinate neighbourhoods {(="%(U), x4)} such that the natural frame
{B8/3x4} is adapted to the structure F¥. Then (3/3x4, 8/0x%) = &4p holds. That
is, i = ¢; holds true with respect to each (U, x?). Of course, {(U, x9} covers M.
Hence M is locally Euclidean.

Conversely, if M admits a flat Riemann metric g;, then M is covered by a
system of local coordinate neighbourhoods {(U, X%} with respect to which
g; =&y holds always. Then {§;} =0 holds. Now, the system of the canonical
coordinate neighbourhoods {(z"X(U), x#)} covers T(M). With respect to these
coordinate neighbourhoods, the non-linear connection N';= {},} y™ vanishes.
Hence the N-frame {X;, Y;} for the non-linear connection coincides with the
canonical natural frame {39/3x4}. On the other hand, according to Theorem 6.1,
g; and N'; determine a structure &§ in T(M) and the relations (X;, X;) =gy,
(Y, ¥;) =g;and (X, Y;) =0 hold. Hence we have (9/3x4, 3/3x®) = d,5. Thus
the natural frame {3/3x4} is adapted to the structure & §. That is, the structure
F§ is integrable.

Next, we denote by V the h-covariant derivative with respect to the non-
linear connection N, that is, for any quasi tensor field T, for example, of (1, 1)-

type,
%lejz ak Tij— a.mTiijk'{‘ ijé,nNik - Tima.ijk.

If N satisfies €7k g5 =0, then the non-linear connection N is said to be
metrical. Now we show

Theorem 6.4. In order that a manifold M is a locally Minkowsk:
manifold, it is necessary and sufficient that the tangent bundle T(M) admits o
structure SF§ satisfying

(1) The structure G* induced from F§ is integrable
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(2) The almost symplectic 2-form Q induced from F§ is closed
(8) The mon-linear connection derived from G* is metrical with respect to
the generalized metric derived from F§.

Proof. Let M be locally Minkowskian and g; be the metric tensor. Then M
is covered by a system local coordinate neighbourhood {(U, x%} such that
319 =0 holds good in each U. Then, in these coordinate neighbourhoods, the
Cartan’s Finsler connection f’}k and the Cartan’s non-linear connection G';
vanish. Now, g; and G'; induce a structure F§ in T(M). We consider this
structure & §. The N-frame associated with G*; is an adapted frame of the
structure G* determined by G';, and G';=0 holds in each = U). So, the
natural frame {8/3x4} is adapted to the structure &*. Of course, by definition,
6* coincides with the D(GL(n, R))-structure induced from 3. Namely, the
structure @* satisfies the condition (1). On the other hand, it is obvious in each
U that

G . . .
ngij = akgij =3 gij’"‘k — Omj %G™, — Gim aj G",=0.

Hence the condition (3) is satisfied. And, of course, g; is a Finsler metric. Hence,
owing to Theorem 6.2 the structure & § satisfies the condition (2).

Conversely, let us assume that T(M) admits a structure & § satisfying (1),
(2) and (3). Then there exists a non-linear connection N and a generalized metric
g. Now, according to Theorem 6.2, the condition (2) tells us that g is a Finsler
metric. And the condition (1) implies that T(M) is covered by a system of local
coordinate neighbourhoods {(=X(U), )} such that {(U, x%)} covers M and
N%;=0 holds in each =~(U). On the other hand, the condition (3) means %g =0,
Then, with respect to these coordinates, 9, g; =0 holds. Namely, M is covered
by a system of local coordinate neighbourhoods {(U, x%} such that 3,g;=10
holds good in each U. Therefore M is locally Minkowskian.

7 - G-connections relative to the structure & §

First, we assume that a tangent bundle T(M) admits a structure &, that is,
a D(O(n))-structure depending on &, and {Z 4} is the 2n-frame adapted to F>.
Now we shall treat G-connections relative to the structure &,. Let V be such a
connection. Then V is a linear connection on T(M) and satisfies
VyZa=I8.UCZy where I'E; UC € d(o(n)) for any U = UZ.. The condition can



[23] ALMOST FINSLER STRUCTURES AND ALMOST SYMPLECTIC STRUCTURES ... 51

be rewritten as

@) Ty =0, =0 i =

I
i

o . i
= — Il =—Tl.

U

(S-S

Let G be the Riemann metric defined on () derived from the structure
5. We have

(Vu@up=U(Z4, Zp))— (VuZa, Zp)—(Z4s, VuZsg)
== (ThqU%Zp, Zp) —(Za, ThUOZp) = ~T5,U°—TH,U%=0.

Thus a G-connection V relative to the structure &, is a metrical connection for
the Riemann metric derived from #,, and, from the above condition (¥), the
connection V satisfies

1) V4,Z;=I}Zn, @) V3Z;=T}Z,
®) Vy,Zi=I}Zns @) V3Zi=T§Z,.

Conversely, if the above conditions (1) (2) (3) (4) and VG = 0 are all satisfied,
the condition (*) is fulfilled. Consequently we obtain

Theorem 7.1. In order that a linear connection V on a tangent bundle
admitting a structure F, (i.e., a D(On))-structure depending on ) be a
G-connection relative to the structure F,, it is necessary and sufficient that the
conditions (1), (2), (3), 4) and VG =0 are satisfied, where G is the Riemann
metric derived from the structure .

Now, we add the homogeneity condition to the structure &,, that is, we
consider the structure & §. Then, there exist a non-linear connection N and a
generalized metric ¢ on the manifold M. In addition, V is a G-connection relative
to the structure & ¥ if and only if, for any positively homogeneous vector U of
degree 0 with respect to y', VyZ, =I5, U°Zy where

(TE.U% e {(g 2) la +ta =0, a is (0) p-phomogeneous with respect to %%}

are fulfilled. Since Z, = y™,X,, and Z, = y™ .Y, (y", are positively homogeneous
of degree 0 with respect to y?), I'} is positively homogeneous of degree 0 for y*
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and I is positively homogeneous of degree — 1 for y'. Now, let us denote the
components of V with respect to {X,} by I'#c. Checking the conditions (1), (2),
(8), 4) and VG =0 in Theorem 7.1 with respect to the frame {X,}, we have

Theorem 7.2. On a tangent bundle admitting o structure F§ (.e., a
homogeneous D(O(n))-structure depending on F §), a linear connection V is a
G-connection relative to the structure &5 if and only if

VX"’ Xj = F;Z Xm VXk Yj = F;Z Y’”‘ VYL- Xj = C}]Iz X m VY;; YY = C}Z Ym

hold where F'} are positively homogeneous of degree 0 with respect to y* and CJ
are positively homogeneous of degree — 1 with respect to y', and

akgz] - a.mgiijk - gimF}z — Gim Z}f =0 akgz] — Gim C]”I‘z = Jjm C;}f =0
hold good.

If a linear connection V satisfies the first four conditions in Theorem 7.2, V is
called, as is well-known, a linear connection of Finsler type [12]. And the last
two conditions are the condition for a Finsler connection (&', N, C) to be a
metrical connection with respect to a generalized metric g. Consequently we can
rewrite Theorem 7.2 as

Theorem 7.3. On a tangent bundle admitting a structure & §, a linear
connection V is a G-connection relative to the structure &5 if and only if Vis a
linear connection of Finsler type and, at the same time, the Finsler connection
derived from V and from the non-linear connection N is a metrical connection of
the generalized metric.

It follows from the definition that the components of the tensors w, @ and P
with respect to the frame {X,} have the following forms: ‘

0

—-g
) -E

<<:)AB>=(2 ’ ) (PAB>=(§ ).

say_(0 0
(QAB)“(E 0

Let V be a linear connection on T(M). Then, by calculating the components of
V@, VF and Ve, we obtain

Theorem 7.4. Let T(M) be a tangent bundle admitting o structure F§. A
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Linear conmection V on T(M) is a linear connection of Finsler type if and only if
VQ=0 and VP=0 hold good. Moreover the linear comnection V 1is a G-
conmection relative to the structure F§ if and only if VQ=0, VP =0 and
Vo =0 hold good.

The curvature and torsion with respect to a linear connection of Finsler type
are shown by Matsumoto in [12]. However, we shall consider them from our
viewpoint using our notation.

The torsion of a linear connection is given by

Ty, Vi=vy;V-v,U~-1[U, VI].

For the components of T of a G-connection relative to the structure & § with
respect to the frame {X;, Y;} (.e., T(Xp, X¢)= T4:X4), we have

Al h h b h Fh o (YR ko __
Fh h AR _ 1k 3 I3 A A h I3 Fho_ k I3

where we put R;",=—d;N",+8,N*;+3,N";—8,N";N", [12].
The curvature of a linear connection is given by

RW; U, V)=(VyVy—VyVy=VynW.

For the components of R of a G-connection relative to the structure F§ with
respect to the frame {X;, Y;} (.e., R(Xp; X¢, Xp) =R4cpX,), we have

Rihjk: _Rhijk Rihﬂé: _Phijk Eihy’k=Phijk Rihj‘lé= "’Shijk
R{ﬁjk = _Rhijk R{ﬁﬂé: —Ph,ijk Rz}'zjkzphijk R{EJ’IE: —Shijk
Riy=Riz=Rip=Riz=0 Rij=Riz=Rin=R'z=0

where we put [12]

Rhijk“_‘:akF}ilj'—émF;.Lijk'—GjFilzk'l'a.mF;.Lkij'!"FﬁﬁF?nk_F;;}L'F;'nj“*' C;‘tm ;713

Phijk == (ajC;lk - a.1wzC§sz7nj + C}Z}chny'— ankF;ZL' - C;wz Z]l) + C}:nn(a.kij_F}S')

+ 0, Fi;

St =0:Cl—3;Cli+ Ciu Cli— Coni Ch.-
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