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YOSHIHIRO ICHIJYO (¥)

Finsler metrics on almost complex manifolds

Dedicated to professor G. B. Rizza, who is the originator
of the notion of Rizza manifolds.

Introduction

In the present paper, we are mainly concerned with Finsler metrics defined
on almost complex manifolds.

The tangent space at any point of an almost complex manifold can be
regarded as a complex vector space. On the other hand, the tangent space at any
point of a Finsler manifold can be regarded as a normed linear space. Thereupon,
with respect to an almost complex manifold endowed with a Finsler metric, first
of all, we should consider the condition under which the complex structure and
the norm are compatible as a complex Banach norm in each tangent space of the
manifold.

Our main purpose is to study the manifolds satisfying the above condition,
which will be called Rizza manifolds. Moreover we also deal with the case where
the given metric is not a Finsler metric but is a generalized Finsler metric. The
contents of the present paper are the following:

1 - C-Minkowski spaces 2 - Rizza manifolds 3 - The Rizza condition
4 - Kaehlerian Finsler structures 5 - The induced Moér metric
6 - (f, g, N)-structures 7 - A generalization of Yano-Westlake’s theorem.

(*) Address: Department of Mathematics, College of General Education, University
of Tokushima, Tokushima, Japan.
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1 - C-Minkowski spaces

Let R? be a 2n-dimensional real vector space and {ey, ..., €} be its normal
basis where ¢, =40, ..., 1, 0) (). Now R? admits a complex structure J such
that J=( ]é') B f ") where E, is the unit matrix of order n. It is clear that
Je,=e;. So, any vector £eR* can be represented as £=¢&'e;=¢E%¢, +EJe,.
Hence for any & e R?, we can define a complex vector £ as &= (&% +if%e, and
consider an n-dimensional complex vector space C* which is the set of all the
complex vectors £ Of course, the set {e, ..., ¢,} becomes a basis of C*. The
mapping £— £ is bijective from R to C" and maps xZ+ yJ& to z& where
2= +1y.

Now we can introduce an inner product in R* such that (e,, e,) =38, and we
can regard R* as an Euclidean space E?". For any £ = &'e; € E*, the norm of £ is

given by ||&[z==((&, E,))*=(§‘t (9% Corresponding to this, for any

E=(£*+1%%e, and 7= (5" +1iy")e,, which belong to C*, the Hermitian inner
product i(£, #) is given by

BE D=3 @ +iE) (7 i) = 3 {E 7+ E )+ i — &)

a=1

Thus C” can be regarded as a unitary space. In this unitary space, the norm of a
vector &= (£*+it%e, is given by &= (¢, HE It is easy to see that
|EB» = h(, & =]|&|p. Moreover it follows that

(.1 (h(zE, 2E)t=le]||¥|

E2n .

Next, we introduce the concept of Minkowski norm. A vector space admitting
the Minkowski norm is said to be a Minkowski space and is denoted by V
hereafter. The Minkowski norm is the following:

(1) for any eV, the norm function [[&l|=N(, ..., &) =N(®) is 3-times

(Y) In this paper, the latin indices a, b, ¢, ..., %, J, k, ... run over therange 1, ..., gn; and
the Greek indices «, 8, ..., A, g, ... run over the range 1, ..., ; and the indices 4, 3, 7, ...
stand for « +n, 8+ n, y+mn, ... respectively.
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continuously differentiable at £#0,
@ JEl=0, @ |&l=0if and only if £=0,

B ] & N*(&)
@ |k =Kl for any k>0, &) e

77 is positive definite.

Remark. According to circumstances, the condition (5) can be replaced by
the weaker condition [|& + &l < ||&ll+ &l (Rund [23D).

Now, let V** be a Minkowski space. In the complex vector space C"
corresponding to V', we can naturally introduce a norm such that

(1.2) I

on = || €l = N(&) .

Then we have

Theorem 1.1. Let us consider a on-dimensional Minkowski space Ve,
identify the space V" with an n-dimensional complex vector space c, and
define a norm in C* by (1.2). The space C" is a complex Banach space if and only
if the relation

(1.3) [l + yJ el = @2+ y ]y
holds for any real mumbers ©, Y and for any E€ V™.

Proof. The definition shows us that

llz&

o= |08 + yJE e = Nz + &)

and |2| ||l = @2+ yDIN(E) for any z=z+ iy. Hence (1.3) means that
[|2&llc» = |#|[|Ellc. The rest of the condition for C” to be a complex Banach space
is evidently satisfied from the definition of the Minkowski norm (Taylor [25)).
In what follows, a 2n-dimensional Minkowski space satisfying the condition
(1.8) is said to be a C-M inkowski space and the norm is said to be a C-Minkowski
norm.
Now we show some examples of C-Minkowski spaces.

Example 1. In an Euclidean space E® the norm llgH:(i R is a
C-Minkowski norm. i=1
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Example 2. In RY, ||¢]|= (i (&HM} is not a C-Minkowski norm.
i=1

Example 3. In R [|&]]=({(ED?+ %2+ (B2 + ()22 is a C-Minko-

wski norm. If we put z*=£*+14%% then we can see that Z=z%¢, and
12l =1lles = (2*1* + [

Example 4. In R™, we introduce the following
2n Y
gl = (3 G+ (@ +
a=1

This is not a Minkowski norm in the strict sense, because the condition (1) of a
Minkowski norm is not satisfied in some region. However, the rest of the
condition for a Minkowski norm and the condition (1.8) are all fulfilled. In such a
case, we call it a C-Minkowski norm in the wide sense.

If we put & = r cos 9, y =7 sin 6, the condition (4) of the Minkowski norm tells
us that the condition (1.3) is equivalent to ||(cos6 E + sin6 J) &|| =&, where E
is the identity mapping on V. By putting
(1.4) Py=cos0 E +sin6 J (Py';=cos0 8%+ sin6 J;),

we can rewrite the condition (1.3) as

(1.5) 2.l =€ for any 6.

With respect to the Minkowski norm and C-Minkowski norm, Rizza [20] has
shown

Theorem 1.2 (Rizza). Let V be an even dimensional Minkowski space
with a norm |||, then the so-called Rizza norm defined by

1.6 lelle= (5= J I1Pucledey

gwes V a C-Minkowski norm.
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Proof. By direct calculation, we have P,P.=P,,.. Hence we see

1P el = (L [ 1P 2P a0y = (g T 1Pt =[elh.
T o T 0

Thus ||£]lz is a C-Minkowski norm.

. . . 1 FN%E) .
Now, in a C-Minkowski space V, let g8 =5 3ra0 then g;(¢) gives V a

Riemann metric and satisfies g;(ké) = g;(&) for any non-zero real number k.

Next, let §;& =§1— fﬂgij(Pog) ds, then we have
T o
) G50 = £ G40 + 9D TT ).

It is easy to verify that g (J 2J9 =G5 and
(g J ")OEF + (g d T )IBE + 3Gy THIRE =0
Thus we obtain

Theorem 1.8. In a C-Minkowski space, the Riemann metric given by
(1.7) together with the complex structure J'; defines a Kaehler structure.

2 - Rizza manifolds

Let M be an n-dimensional Finsler manifold whose fundamental function
'is given by Lz, ). The metric tensor gy, ¥) is introduced by

9= %éi 8;LX(x, y). Here we assume that g;(, )& is positive definite. As is

well-known, the tangent space T),(M) at any point p = (&) € M can be regarded as
an n-dimensional Minkowski space such that the Minkowski norm of any tangent
vector y = y(3/3%"), is given by lyll= L(x, y), which is sometimes represented

by Lp, ¥)-

(®) Terminologies and notations in the present paper are referred to Matsumoto’s
monograph [16] unless otherwise stated.
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In the present paper, we assume moreover that M admits an almost complex
structure f*(«). Then n is even and T,(M) can be regarded as an g~dimensional

complex vector space due to fi(x) [17]. That is, for any complex number
¢=a+ and for any tangent vector y=yi(3/dx?),eT,(M), we define
¢y = (ay’ + bf () y™) (3/3Y),.

Now, we consider the case where the Minkowski norm given by
lyll=Lp, v) is compatible, in each T,(M), with the complex structure Fip).
That is, the norm in T,(M) is a kind of complex Banach norm with respect to the
complex structure fi(p). Concretely speaking, the relation

2.1) Lz, &y)=|¢|L(x, y)

holds good for any complex number & Since L(x, ky)=kL(x, y) for any k>0
holds, we can rewrite (2.1) as

(2.2) Lz, $y)=L(x, y)

for any 6 where we put

2.3) ¢ =08 08"+ sin 6 fi(x).

It is easy to verify that condition (2.2) is equivalent to
2.4 In(®, $0Y) &1 86" = g5, ).

If a manifold admits a Finsler metric and an almost complex structure
satisfying the condition (2.1) (or equivalently (2.2) or (2.4)), then the manifold is
called an almost Hermitian Finsler manifold or simply a Rizza manifold and
the structure is called an almost Hermitian Finsler structure or a Rizza
structure. The notion of the Rizza structure was, for the first time, introduced
by G. B. Rizza. It is known that the Rizza manifold has been studied by Rizza
[20], [21], Rund [24], Kobayashi [14], Ichijyo [6], [9], Royden [22] and Fukui [2].

With respect to Rizza manifolds, we show first

Theorem 2.1. The tangent space at any point of a Rizza manifold is a
C-Minkowski space.
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Proof. The norm of any tangent vector ¥ =y*3/3x* at any point p in M is
given by |yl|=L(p, y). Since M admits an almost complex structure f, the
tangent space at any point of M admits a basis such that {X,} = {X,, f(X)}.
Operating f, we see {f(X)}={fX), —X.}={X;, —X.}. If we put
f(X)=Q%X,, we have f(X)=@Q%.X,=X; and f(X)=Q"%X,=—X.. Hence
we otain Q% = J?. Thus we have {X,} = {X,, JX.}. And also we have that the
components of f with respect to the basis {X,} coincide with the components
of J. Thus ¢ =P, holds with respect to {X,}. Then the -condition
Lz, y)=L(x, &%) leads us to ||y|| =P,y with respect to {X,}, which implies
that the tangent space is a C-Minkowski space.

Theorem 2.2. A Rizza manifold is an almost Hermitian manifold with

respect to the given structure if and only if the tensor Cy, = %agij/ay" vanishes.

Proof. Suppose that Cy =0 holds in a Rizza manifold. Then, the Finsler
metric is, of course, a Riemann metric and the condition L(x, y) =L, $¥)
shows us that g;(x) = g,,(%) ¢/ ¢,%;. Hence we see

g(x) = 08?6 g;(x) + sin® 0 g,,(a) fPi(x) fU4(x)

+ ¢0s 0 sin 6 (g;(x) f7(x) + g;(x) fr)).

Consider the case where 6=—"25,
manifold is an almost Hermitian one. Conversely, let us consider an almost
Hermitian manifold. Then C; =0 holds evidently. Moreover the condition
G = Gpq J7: % shows us that g;, f7; + g;» f7:= 0. Hence we have that g,,¢/1 %% =94
holds good.

Applying Theorem 1.2 to a Finsler space, we obtain directly

we have g¢;= g, f% f%. Consequently the

Theorem 2.3 (Rizza). If a 2n-dimensional Finsler manifold admits an
almost complex structure f, the following fundamental function

[ L2, sy3)do)

@.5) Liw, 1) =( 1

2r

together with f defines a Rizza structure.
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Next, we consider a concrete example. Suppose that M is an almost
Hermitian manifold, that is, M admits a Riemann metric a;(x) and an almost
complex structure f satisfying a;= a,, [ f%. Further, we suppose that M
admits a vector field b(x). Here, we put

(2.6) Lz, y)=(ag@)y 'y + (0x) y ) + On(@) (%) y'):

Then, the function L(z, y) gives M a Finsler metric (in the wide sense). In what
follows, we call this metric an (a, b, f)-metric. Now we show

Theorem 2.4. A wmanifold admitting an (a, b, f)-metric is a Rizza
manifold (in the wide sense).

Proof. From the definition of L(x, %), it follows
L, $1) = (@ydep3d gy YD+ ((0: 8,y + b ™86 vy )

Now it is easy to show that a;¢,, ¢/, = a,, holds. And, for the second term of
Lz, ¢y), we see

(b g’y VP + O ™86+ Y ")
=¢0s20 (b,y")?+ 2 sin6 cos0 b y"b; fiy™+sin0 (b; [, y")?
+ cos?6 (b, f™;y’)* — 2 sin6 cos6 b,y"b; fl,y™+ sin®6 (b, y")?
= by + Ou [y,

Consequently, we obtain L(z, ¢,%) = L(x, y), that is, L(x, ) is a Rizza metric.

3 - The Rizza condition

Let M be a Rizza manifold and T(M) be the tangent bundle over M. T(M)
admits a local canonical coordinates system (x¢, y?).
Now we define a point transformation @, in (M) by

3.1) By (&%, yH— @ &'ny™.
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The straightforward caleulation gives us g’olim $0," = ¢ox+02"j. So, we have
By, 0 Dy, = Doy, Hence {@; —® <0 <=} is a group of 1-parameter tramsforma-

tions in T(M). Let & be the vector field induced by the group of 1-parameter
transformations. We have

E.(n:,y) = (éi—e‘(pe((xi, yi)))0=0 =fim(x) ym(a/ayi)(a&,y)
that is
3.2) E=fi(x)y" 3Ry’

Since the fundamental function L(x, y) is a scalar field in T(M), the Rizza
condition (2.2) implies that L(zx, y) is tnvariant under the group of 1-parameter
transformations {@g; —* <0< w}. Thus the condition (2.2) is equivalent to
FGLH =0. Hence we can rewrite (2.2) as flny™ 8,3L?) = 0. By the homoge-

neity property of L(z, y) for y, this can be written as fi.y™y’ éjéi(%LZ) = 0.
Thus the condition (2.2) is rewritten as

3.3) g5, PFia@y™y’ =0.
Next, differentiating (3.3) with respect to y*, we have
@4 G, Y) L@y + galws 9) @y =0
Transvecting (3.4) with f*;, we get
3.5 (g, Y) — Gp@, Y) I fra)y =0.
Conversely, multiplying (3.5) by f*y* and contracting, we get (3.3). Therefore

the condition (3.3) and (3.5) are mutually equivalent.
Differentiating (3.4) with respect to y", we get

(36) gim(xy y) fmj(m) + gjm(x, y) fmi(m) + ZCijm(x, y) fmr(m) yr = 0 .

Conversely, transvecting (3.6) with yiy’, we get (3.3). Therefore the condition
(8.3) and (3.6) are also mutually equivalent. Consequently we have proved
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Theorem 8.1. Let M be a manifold admitting an almost complex
structure fii(x) and a Finsler metric gi(x, y)=13; éjL2(w, y). The condition for

the couple (fix), gs(x, ¥)) to define a Rizza structure 1is given by
Lz, ¢yy) =Lz, y). This condition is equivalent to any one of the following

(1) gpq(x, ¢Gy) ¢0pi¢0j=gij(x: Z/)
@ gyx, Y@ Yy =0

@) @@, ) — g, y) o) f52)y =0

@ g, ¥) ") + Gin, ) 7o) +2C(x, ¥) @)y =0.

Remark. The Rizza’s condition (2.2) implies that @, is an isometry. Hence,
the general theory of the V-transformations in a Finsler space obtained by
Matsumoto [16] directly shows us that (2.2) is equivalent to (3.6).

From the condition (2.4), we have g,(x, fy) ") f%x) = g;(x, ¥). On the

contrary, Fukui [2] has proved

Theorem 3.2 (Fukui). If a Finsler metric g;(x, y) and an almost com-
plex structure f'(x) satisfy the condition

3.7 9o, Y) f7:@) ) = gy, o)
then g; is a Riemann metric, that is, (f, g) is an almost Hermitian structure.
Proof. Differentiating (3.7) with respect to y*, we have
Coqie [7: S = Ciji.
Multiplying by f7, f*, and contracting with j and %, we have
= Core % = Ci 1 [Em.

Thus we have — Chy,=Cyn. Namely, we have Cyx=0. Therefore g; is a
Riemann metriec.

Remark. This result is a generalization of Heil’s Theorem [4].
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4 - Kaehlerian Finsler structures

Let f%(x) be an almost complex structure in a manifold M*". The Nijenhuis
tensor of fi(x) is represented by

4.1) Niy=3,f5 = fiufi+ o fl— fouf.

We assume that a; is a Riemann metric constructing an almost Hermitian
structure together with f';. Putting fy=au. f™;, we have a globally defined
2-form o= fydaAda’l. With respect to this, the following diagram is well-
known:

., =0
Almost Kaehlerian str.l ————5’—}(——>lKaehlex'ian str.]

where V; represents the covariant derivative with respect to the Levi-Civita's
connection. By putting fix=3; fi +3; fui + 3x [, we know that the condition
dw =0 is equivalent to fy=0.

Now, in a Rizza manifold, let (I*‘i,-k, G, C'y) be the Cartan’s Finsler
connection [16]. Let us represent by %k the h-covariant derivative for the
Cartan’s Finsler connection. Then it is easy to see

4.2) Nig= *Vrfijfrk - 6rfikfrj +fir‘*7jfrk “firekfrj'
Hence we obtain

Theorem 4.1. A Rizza manifold is a complex manifold 'I;fekfij =0 holds
good. '

Now a Rizza manifold satisfying the condition A f5=0 is said to be a
Kaehlerian Finsler monifold, and a Rizza manifold satisfying the condition
Nip=0 is said to be an Hermitian Finsler manifold.
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In a Rizza manifold, we put

(43) fijzgimfmj-

If f;;= —f;: holds, we have g,, f? f% = gy Then Theorem 3.2 tells us that g; is
a Riemann metric. Consequently we obtain

Theorem 4.2. If a Rizza manifold satisfies fy+f;=0, it is an almost
Hermitian manifold.

We put
4.4) Q,=fde’ Ada’ 4.5) Qy=fydai Ay’
where
(4.6) Syl =dyl + G, da™.

Both Q, and Q, are globally defined 2-forms on T(M). For these 2-forms, we show

Theorem 4.3. Let M be a Rizza manifold, whose Rizza structure is given
by (f, ), and Q, be the 2-form defined by (4.4). In order that dQ; = 0 holds, it is
necessary and sufficient that (f, ¢) is- an almost Kaehlerian structure of M.

Proof. Since dQ, =23, fyde* Ada’ Ada? + 3 fydy* Adx' A da, the condi-
tion that d©Q, =0 can be written as

D) 3 fi+0ifut+difui—0kfi—0:f;—9fu=0
(2) ék .ﬁ] - ékfji - 0

The condition (2) can be rewritten as Cipm f™; = Cim f™i. So, we have
Cijm f™-y" = 0. The Rizza’s condition (4) of Theorem 4.1 leads us to f; + f;;=0. In
accordance with Theorem 4.2, it follows that g; is a Riemann metric. That is,
(f, @) is an almost Hermitian structure. In this case, the condition (1) is
equivalent to f=0. Hence (f, g) is an almost Kaehlerian structure. Conver-
sely, if (f, ¢) is an almost Kaehlerian structure, then we have Q; = w and d@, = 0.
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Theorem 4.4. Let M be a Rizza manifold, whose Rizza structure is given
by (f, @), and Q, be the 2-form defined by (4.5). In order that dQ, =0 holds, it is
necessary and sufficient that (f, ¢) is a Kaehlerian structure of M.

Proof. The 2-form Q. is written as
Qo= fin GUda' Ada? + fyda’ Ady’.
So we have
dQs = (fin G™) da® A da’ A da/
+ {finG™) = 8, fuy dy* Adai Ada? + 3, fydy* AdaiAdy’.
Thus the condition dQ,=0 is written as
D %(finG") +3(fim G + ([ G™)
= 3(Fm G™) = 3 finG") = 8 fi G™) =0

@ fin G —FinG™) = 3 fu+ 8 fie=0

®) S fy—3fa=0.
The condition (3) implies Chin ™= Cjim ™, from which Cy;, /™, y"=0. By the
same method used in the proof of Theorem 4.3, we have that g; is a Riemann
metric and (f, gz defines an almost Hermitian structure. Then we find f;; = — f,
Cfik = {,’;zf} y™, I'y={4}. Now the condition (2) can be rewritten as
V; fix=V; fu. Then we see

%ifjk= %jfik"_’ _%jfki= _%kfji= %kfijz Yo7z'fkj'—‘ _%ifjk-

That is, we obtain V; Jie=0. Thus (f, ¢) defines a Kaehlerian structure. In this

case, the condition (1) is satisfied identically. In effect the left hand side of (1)
becomes

ak(fim{‘,;‘lj} +fmj{11)'li}) ?/T + ai(fjm{wk} +f1nk{?}j})yr + aj(fkm{?‘li} +fmi{?77°lk}) Zl/"

=Y fun=0.
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Conversely, if (f, g) is a Kaehlerian structure, the condition (1), (2) and (3) are
all satisfied evidently.
Gathering these results, we have the following diagrams:

NP =0
1 \,[Hermitian Finsler
d521=0

ik - ©
Mmost Kaehlerianl S
kL
1 -
ka j = 0
>lKaehlerian Finsler]

o
\!{d91=0 ‘Q-ZQO ‘ldg =

: ;

[almost Kaehlerian|

As well as the Cartan’s Finsler connection (1*’]',” Gi, Ci), we know the
Berwald’s Finsler connection (G'y, G';, 0), where G'j. = & G';. Let us repre-
sent Vk the h-covariant derivative with respect to the Bel\Nald s connection. If
G} are functions of position alone, namely, 3,G? =0 holds, then the Finsler
space is said to be a Berwald space [16].

Now, let us suppose that (f, ¢) is a Kaehlerian Finsler structure. Then we
have

§kfij= akfij+f1imkfm —fim m]r-
From the relation F’k,,zy”’ G%, we have
Y " [+ Gl f™ = G™=0
Differentiating partially with respect to y*, we have

4 . , .
(47) ka_; - ak flj + Glmk fm flm "]lk =
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Let H,';, be the h-curvature tensor of the Berwald connection, that is
4.8) Hyp=6Gy+G G =G m— GG

where we put &, = 8 — G™3,,. .
Applying the Ricei identity for V, to fi[16], we have

4.9 Hly fri=f"Hiy,.

On the other hand, if an m-dimensional Finsler space M (m > 3) satisfies
H"y = K(g;;8": — ga ")), then M is called a Finsler space of constant curvature
[16]. Concerning this case, Fukui [2] has proved

Theorem 4.5 (Fukui). Let M be a 2n-dimensional Kaehlerian Finsler
monifold. If M is a Finsler space of constant curvature and n=2, then the
h-curvature tensor of the Berwald connection vanishes.

Proof. In this case, (4.9) can be rewritten as
K(g,58" — g ") fTi =" K(gy™ — 9875 .
Now we suppose K#0, then we have
S &ty ~f1id"= g5 M — ga [T
Contracting this equation with respect to 2 and 7, we find (1 — 2n) f1; =f%. From
the relation (4) in Theorem 3.1, we find (1 —2n) fi;= — f1: — 2Can ™ y". Since
n=2, wefind f;;= n—i——f Cijm [™»y". Again, from the relation (4) in Theorem 3.1,

we have Cj,, f™,y" = 0. Thus we have f;=0. Thisis a contradiction. Consequen-
tly we obtain K= 0.

Remark. If the metric is a Riemannian one, the h-curvature tensor H;";
coincides with the Riemann-Christoffel’s curvature tensor, and this theorem
reduces to the well-known Bochner’s theorem: If a 2n-dimensional Kaehler
mamifold is of constant curvature and n=2, then it is of zero curvature.

Now we consider the case n =1, that is, the manifold M is 2-dimensional. In
this case, the equation (1 —2n) fi;=f4, which appeared in the middle of the
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proof of the Theorem 4.5, becomes fy+f;=0. Then, in accordance with
Theorem 4.2, M is a Riemann manifold. On the other hand, in a 2-dimensional
Riemann manifold, the relation R;"; = K(g;;¢k — ga8";) holds identically. Hence
we obtain

Theorem 4.6. A 2-dimensional Kaehlerian Finsler manifold satisfies
Hity = K(gy8" — gu &%) if and only if it is a Riemann manifold or it satisfies
Hi hjk = ().

By the way, in a 2n-dimensional Finsler manifold, G"; = éiG"ﬂ. and
Gy =G}, are tensor fields, and satisfy ™ G,;=0 and Gy = Gj;. Moreover the
tensor field

1

Dity=Gn =gy 53

{’_l/h 8k Gij + O'\hiij -+ o“hj Gki + o‘"lk Gij}

is known as Douglas tensor [15]. With respect to this, Fukui [2] has shown

Theorem 4.7 (Fukui). If a Kaehlerian Finsler manifold has vanishing
Douglas tensor, then it is a Berwald space.

Proof. From the assumption we have

1
2n+1

Gy = (y" 0, Gy + " Gy + 8" Gy + 6. Gyy)

and V, f=0. Hence, from (4.7), we have also

O fij + Gimkfmj '"fim ijk =0.

Differentiating this with respect to %", we find G,,'u, f™;=f"nG;" . Thus we
have

Fialy™d, G+ 8" G + 8" Gy + 871 G

- (.7/2 8]1 Gmk + d\ih Gmk + é‘im Gkh + Ouk Ghm) fmj .
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Contracting this with respect to ¢ and k, we have
(4.10) Py 3G+ Gy =210 ;G

Transvecting (4.10) with ¢/, we find Gy, f"y™ =0.

Differentiating this with respect to %/, we find f,, y™ 3, Gj= — Gy, f7;. That
is, f"my"‘érijz — Gy f7y=— G [ By virtue of (4.10), we have G f7=0,
that is, Gy; = 0. Thus we obtain G"; = 0. Consequently the manifold is a Berwald
space.

Besides, with respect to the holomorphic sectional curvature in a Kaehlerian
Finsler manifold, some results have been obtained by Dragomir-Ianus [1], Fukui
[2] and Royden [22]. Especially, Royden has studied the subject from the
standpoint of the theory of functions of several complex variables.

5 - The induced Mo6r metric
Let M be a Rizza manifold determined by (fijx), g4z, ¥)). If we put
2=
gijzz% I gix, $oy)d6, then we find that
T g
5.1) G5 =5 G5, D)+ g, 1 L7 1,6

holds [6]. It is obvious that §; is a generalized Finsler metric and satisfies that
G5 = Gii, G, ) is (0) p-homogeneous for y* and g;(x, y)&'& is positive definite.
Moreover we can see easily

(5.2) Gr®, y) [P:4@) f15@) = Gy, ¥).

Differentiating the both sides of the equation (3) in Theorem 3.1 with respect to
y*, we have

(53) gjk=a.kgqupijryr+gqupijk-

Since gy = gi;, We have ékgqupjf‘?7.y"= éjgqupkf‘l,.y", from which

ia 1 .- . .12 .12 oA
Y akg1j=§(akg1j+akgquprqu)y =§akgqupijry =—2‘ jgqupqury =Y aj.qﬂ:-
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Hence we find
(5.4) Bl yPyT=0.

By (5.3), we get also g;,y" =g, /% [y = 2d;— gi)y". Hence we have
ginY™ = Jmy™. Differentiating the last equation with respect to y*, we
obtain

(55) = ékgjvny7n+gjk'

Since g;,&¢* is positive definite, 50 is (8 Gjmy™ + i) & .

By the way, if a generalized Finsler metric g;(x, ) satisfies the condition
that ;= g;, §;£'¢ is positive definite and gz, ) is (0) p-homogeneous for y,
then g;(x, ¥) is called a Modr metric [19].

Now, with respect to a Rizza structure (f*(x), ¢;(¢, ¥)), we have obtained
that gi(x, y), which is defined by (5.1), is a Moé6r metric and satisfies (5.2), (5.4)
and the condition that (G + 8 ;my™ & ¥ is positive definite.

Conversely, let M be a manifold admitting an almost complex structure f*;(x)
and a Moér metric G (x, y) satisfying (5.2), (6.4) and the condition that
(G5 + S Gimy™ & €% is positive definite. In this case, we define a new tensor g by
(5.5), that is,

g5@, ¥) = g5, ¥)+ 8;dm@, Py™.

Putting L¥x, y) = gn(x, ¥)y?y?, we find, by virtue of (5.4) and the homogeneity
condition of gi(x, y) for y, that d;L2 = 2§;,%” holds. And we obtain 8;3,3L2) = g;.
From our assumption, g;(x, ¥)& & is positive definite, g; = g;; holds and g,(, y)
is (0) p-homogeneous for y. So, g;(x, ) is a Finsler metric. Moreover, it is easily
seen that g;%’ = g;y’. On the other hand, from the assumption (5.2), we have
Gin /™= = Gpm [ ™, from which §y f*ny™y’ = — Gin f;y™y’. That is, we have
Gi fimy™y’ = 0. Hence we obtain g; f,, y™y’=0. Thus, applying Theorem 3.1,
we find that f'y(x) and gz, y) construct a Rizza structure. Consequently we
obtain

Theorem 5.1. Let M be a manifold admitting an almost complex
structure f'x). In order that M admits a Finsler metric which defines a Rizza
structure together with f'J(x), it is necessary and sufficient that M admits a



[19] FINSLER METRICS ON ALMOST COMPLEX MANIFOLDS 19

Moér metric §iy(x, y) satisfying the conditions

Q) gale, ) =Gulx, ) [P f1) @) bz, Wy*y?'=0
@) @ule, ¥)+ Gz, Yy™EE s positive definite.

Remark. In accordance with Miron [18], the condition for a generalized
Finsler metric such that

@ ékgpq(x, Ny’y?=0 (i) det|é’; +g™ 3; Gm Y| # 0

is called the regularity condition. In the present case, the condition (2) in
Theorem 5.1 coincides with (i) of the regularity condition. However, the
condition (38) is a little stronger than (ii). Because, if (8) is satisfied,
det|gy + 3;dxy* #0. Of course (§;)~' exists. Hence (ii) is satisfied. But the
converse is not always true.

6 - (f, §, N)-structures

In this section we consider an m-dimensional manifold M equipped with a
non-linear connection N'j(z, ). To give a non-linear connection implies that a
horizontal distribution is assigned globally in the tangent bundle T(M). It is
needless to say that the transformation rule of N, ) is given by

dg° , d*z* ., _ ox°

1 N(&, § 4G -
6.1 @ D3t Toniaem 3™

Nm,;(x, y) .

The quantity G, treated in 4 was a kind of non-linear connection.
Now we put

(6.2) X, = 8/oxi— N™;3/3y™ Y, =0a/3y.

Then {X;, Y;} is a local 2m-frame field in T(M), which we call the N-frame. And
{X.} is a basis of the horizontal distribution in T(}) and {Y;} is a basis of the
vertical distribution in T(M). The transformation rule of {X;, Y;} are given by

(6.3) X,=2£ %, v,=2v,.
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Now we assume moreover that m = 2n and that M admits an almost complex
structure fi(x) and a Mo6r metric g(x, y) satisfying the condition

(6.4) gpq(x; '!/) fpi(x) qu(w) = glj(/v, ',lj) .

We will say, in this case, that M admits an (f, §, N)-structure. Here we do not
assume that §; is the induced Modr metric from a Rizza structure.
Now we can define globally on T(M) a (1, 1)-tensor field F such that

(65) F(Xz) zfmiXm F(Yz) =.fmi Ym .

It is apparent that F' is an almost complex structure on T(M) [5). Moreover
we can define an inner product (,) such that

(6.6) (X, X;) =0y (X5, Y;) =0 (Y3, Y)) =dy.

Then the inner product gives T(M) a globally defined Riemann metric G [5]. The
components of F and G with respect to the N-frame are written as

WA COR G 0
6.7 F= . G= . .

6.7 Co fw) o g v

In addition we have FGF = G. Therefore (F, () defines an almost Hermitian
structure on T(M). Thus we obtain

Theorem 6.1. If a manifold M admits an (f, g, N)-structure, its tangent
bundle T(M) admits an almost Hermitian structure.

Remark. Theorem 6.1 can be rewritten more precisely as follows: If a
manifold M admaits an (f, §, N)-structure, then the tangent bundle T(M) admits
a D(U(n))-structure (as a G-structure). Here Un) is a real unitary group of

order 2n and D(U(n)) = {(‘g g) |A € Um)} [7], [10], [11], [13].

Next we consider such tensor fields F';, F,, F3 on T(M) that the components
with respect to the N-frame are given by

0

i = 0y =0 TEm

S0 By, 0 )-

68  F=(
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Straightforward calculation leads us to

F]ng—‘FzFl:Fg, F2F3=_F3F2=F1, F3F1_"‘F1F3 Fg
B GF, =FyGF,="F;GF3=G.
Hence we obtain

Theorem 6.2. If o manifold admits an (f, §, N)-structure, then its
tangent bundle admits an almost quaternion metric structure.

Now, in a manifold equipped with an (f, §,N)-structure, let us put

(69) ]1/» =‘;~g~im(ngjm +ngkm -Xmgjk) .

Then Z’},\ is symmetric with j and & and satisfies the transformation rule of a
linear connection. So, we represent by V, the h-covariant derivative with
respect to (I, N*) [3], [13], [18]. Then direct calculation leads us to

Remark. This connection I closely resembles to the Miron-Cartan
conmection defined by Miron [18] and named by Hashiguchi [3]. The only

difference between them is the choice of non-linear connections.
Now we put

(6.11) F @, 9) = gm@, v) @)
By virtue of (6.4) we have

(6.12) Fo==Fi  Fufmi=—0s
Putting

(6.13) Fijk=Xifjk+Xjfki+kaij
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we have

(6.14) Fu=Vifu+V;frut Vif 5.

So, Fi]-k is a tensor field of Finsler type.
Next, the relation Ij(x, y) =Tz, y) leads us to

(6.15) e Nly=, 5 Fr= T et V= 0
Moreover, let us put Ny;= G, N™;, then we have
Nug =V fui S5 =V P [+ F Vi 75 = Fan Vi 5
From (6.12),, we have V; f, ;= —f 1. Vi f7. Using this, we calculate
Fow 75— Fyn i
==V, Fuf i+ V. fiif —F VS +f Vi fri— Vi i+ Vi fufm
= =N+ Vi Fnfi=F Vi fri= — Ny + 2V, f i 75
That is, we have
(6.16) Fonfli— Fuu fri= = G N5+ 2V, f o 7.

Hence, if Fy3, =0 and N*;=0 hold, then V, ;=0 holds true.
Conversely, if V, f%=0 holds, according to (6.10), (6.14) and (6.15), F',-jk =0
and N*;=0 hold true. Consequently we obtain

Theorem 6.3. In order that V. ;=0 holds good in a manifold equipped
with an (f, §, N)-structure, it is necessary and sufficient that N*;=0 and

Fy.=0 hold good.

Of course, this theorem is a generalization of Eckmann’s famous theorem.
Now, an (f, §, N)-structure whose almost complex structure f is integrable
is said to be an Hermitian (f, §, N)-structure. An (f, §, N)-structure satisfying

Fy. =0 is said to be an almost Kaehlerian (f, §, N)-structure and an (f, §, N)-
structure satisfying V, f%;=0 is said to be a Kaehlerian ( f, §, N)-structure.
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Now we obtain the following diagram

(f.E.N)-str:] y | Hermitian (£.7.Mr-str.]

J.Fijk=°

Almost Kaehlertan (f,E;N)-str ~————>1Kaehlerian (f.E.N)—str.]

-~

Fijx0

Now, let us assume that a manifold M admits a Rizza structure (f, g), and let
g;; be the induced Moér metric from (f, g). Let G'; be the non-linear connection
defined in 4. Then (f%;, gy, G*) determinesan (f, §, N)-structure, which we call
an (f, §, N)-structure derived from a Rizza structure. If the (f, g, N)-structure
is a Kaehlerian (f, §, N)-structure, then the original Rizza structure f, 9)is
said to be a quasi Kaehlerian Finsler structure. The condition for a Rizza
structure (f, ¢) to be a quasi Kaehlerian Finsler structure is given by Ve fi=0,
and it is equivalent to Fy =0 and Ni;=0.

Well, g is a Finsler metric and gij=%(gij+ Goo [P fq]ﬁ) holds. Then
fij':%(gimfmj"‘gjmfmi). So, we have

6.17) Fy=5Fs=1)-

On the other hand, X, =4 holds in our case. Hence

Fijk=%(8ifjk+8jfki+akfij"&ifkj_é‘jfik_akfji)-

Putting
(6.18) Fyg,= %(61']“]'1: + %fkj + 6kfij - ‘*7ifkj - ‘*7jfik - %fﬁ)
we have F,=Fy. Thus we obtain

Theorem 6.4. A Rizza manifold is a quasi Kaehlerian Finsler manifold
if and only if the equations Fy.=0 and N =0 are satisfied.
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Moreover we can show

Theorem 6.5. If a Rizza manifold is a Kaehlerian Finsler manifold, it is
a quast Kaehlerian Finsler manifold.

Proof. By virtue of (6.18), our assumption A Jf%=01eads us to Fi = 0. On
the other hand, by virtue of Theorem 4.1, V, f;=0 shows us that N'; =0.
Consequently, the theorem is proved.

7 - A generalization of Yano-Westlake’s theorem

‘ Concerning almost Hermitian manifolds, the following is known as Yano-
Westlake’s Theorem [26], [27]:

Theorem. A necessary and sufficient condition that a 2n-dimensional
almost Hermitian manifold be locally conformal to an almost Kaehlerian
manifold is that,

fijk:éf;,b’l:ﬁ(fijfk'Ffjkfﬂffkifj) for n>2

and 8]- fl = 6'1 fj fO?" n=2

where fijk - 87; fjk + Sj fki =+ Sk fij and fk =fkrs frm gms- The equations fijk =0 are
satisfied identically for m=1. Hence a 2-dimensional almost Hermitian
manifold is always almost Kaehlerian.

In the paper [13], a manifold has been said to admit a (§, N)-structure, when
and only when it admits a Mo6r metric § and a non-linear connection N. At the
same time, the structure (¢, N) has been called a conformal change of the
(g, N)-structure where o(x) is a scalar field on the manifold. Some tensor fields
which are invariant under the conformal changes have been shown explicitly.

Now we consider a manifold M admitting an (f, §, N)-structure, and we call
the structure (f, €™ g, N)a conformal change of the (f, §, N)-structure. If we
put §ilx, y)=e*®gy(x, y), the tensor F, for gk is written as

o= X G ™) + X 170 + X G ) -
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Calculating this, we obtain

(71) F{;k = ez’(w’ {Fluk + 2(81 ijk + Sj o‘f ki + ak Ofij)} .
Putting
(72) le Fkrs f7 mgmg

and using (6.12), we see

Fi=e 2@ Fg f7,,™ =Fi+4n—1)3;0.

Hence, for n>1, we have

(7.3) Qo= (F—F,).

1
4n—1)

Thus we have

P =¥ {(Fy+5— (F5 ~ Fi)fjk+(pf<‘ﬁj)fki+(Fif“ﬁk)fij}-

2( 1y

Here we put

(7.4) Qi = Fyg— (F fjk+F FutFufy

2(
(7'5) Q]k = gim Qmjk .

Paying attention to the relation e =e*® f i, we have Q% = Q' Hence we
obtain

Theorem 7.1. In a 2n-dimensional manifold admitting an (f, §, N)-
structure, the tensor field

Qijk = gim{pmjk 2( (F f]k =+ F fkm + Fk fm])}
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1is twwariant under the conformal changes of the (f, §, N)-structure where the
dimensiun of the manifold is greater than 2.

Now, let us assume that (f%;, §*;, N%;) be a conformal change of the given
(f, §, N)-structure and be an almost Kaehlerian (f, §, N)-structure. The
assumption is represented by §i=e*® g, and F*; =0. Then we have F* =
and

dpo=— F,. Thus the relations

1
4(n—-1)
(76) ’ éjﬁk=0 aij=8ij

must hold identically. Moreover F*; = 0 means Q*;, =0, and so Q';, = 0. That
is, the relation

1
2n—-1)

(7.1) Fy= (Fifjk+ijki+kaij)

must hold identically.

Conversely, let us suppose that a manifold M admits a (f, §, N)-structure
satisfying the condition (7.6) and (7.7). Then (7.6) implies that, fo any point
p e, there exists such a suitable local coordinate neighlurhood (U, %% that

p € U and U admits a local scalar field o(x) satisfying 3,0 = — F.. In each

1
4n—-1)
U, the equation (7.7) is also satisfied identically. Hence, by virtue of (7.1), the
structure (f%;, §*y, N';) satisfies F*; =0 in the neighbourhood U where
g* =e¥®g. That is, the (f, §, N)-structure is locally conformal to an almost

Kaehlerian (f, §, N)-structure. Consequently we obtain
Theorem 7.2. Let M* (n=2) be a 2n-dimensional manifold admitting
an (f, §, N)-structure. A necessary and sufficient condition that M** be locally
conformal to an almost Kaehlerian (f, §, N)-structure is that
Qijk=0 a]Fk=0 aj[;’k=8k[f_’j
hold good.

With respect to the case where n=1, it is clear that any 2-dimensional
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(f, §, N)-manifold always satisfies F‘ijk=0. Hence the following is true: An
(f, §, N)-structure on a 2-dimensional manifold is always an almost Kaehle-
rian (f, §, N)-structure.
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