RAFFAELE SCAPELLATO (*)

Semigroup identities in near-rings (**)

Introduction

This paper is a continuation of the researches of [2] on various kinds of identities in (left) near-rings.

We have seen in $[2]_1$ that an autodistributive and idempotent near-ring satisfies the identity xyz = yxz. Here we show (Theorem 2.6) that in a large class of near-rings (including the regular ones) any permutation identity implies the xyz = yxz.

1 - Preliminaries

In this paper we work on *left* near-rings. For such a N we put $A(x) = \{y \in N | xy = 0\}$ for each $x \in N$, and $A(X) = \bigcap \{A(x) | x \in X\}$ for each $X \subseteq N$. Moreover, we put $K = \{x \in N | A(x) \neq 0\}$ and $A = \bigcap \{A(x) | x \in K\}$.

A near-ring N is called *simple* if it has no non-trivial ideals, *integral* if it is 0-symmetric and without divisors of zero, *regular* if for each $x \in N$ there is $x' \in N$ such that xx' = x, *neutral* if for each $x, y \in N$, $A(x) \neq 0$ implies xy = 0y. It is said that N has the IFP if xy = 0 implies xy = 0 for each $x, y, r \in N$.

We call here N a W-near-ring if there is a map $x \mapsto x^0$ from N to itself, such that $(x^0)^2 = x^0$ and $x^0x = x$ for all x and, moreover, for each N-subgroup M of N, $x \in M$ implies $x^0 \in M$. This concept is similar but different from that of weak regularity.

^(*) Indirizzo: Dipartimento di Matematica, Via Università 12, I-43100 Parma.

^(**) Ricevuto: 14-XII-1988.

A permutation identity $x_1 x_2 ... x_n = x_{\varphi(1)} x_{\varphi(2)} ... x_{\varphi(n)}$ will be denoted by $I(\varphi)$ (n is supposed to be fixed). These identities have been studied, e.g., in [1] and [3]₂. The following has been proved (see [3]₁, Thm. 1 or [1], Lemma 2).

Lemma 1.1. Let S be a semigroup satisfying $I(\varphi)$. For each $a_1, ..., a_n, b_1, ..., b_n, x, y \in S$ we get

$$a_1 \dots a_n xyb_1 \dots b_n = a_1 \dots a_n yxb_1 \dots b_n$$
.

Lemma 1.2. Let N be a near-ring, let k be a nonnegative integer, let N' be the set of all products of k elements of N. If N satisfies $I(\varphi)$, where $\varphi(i) = i$ for $i \leq k$, then N/A(N') satisfies the identity

$$x_{k+1} x_{k+2} \dots x_n = x_{\varepsilon(k+1)} x_{\varepsilon(k+2)} \dots x_{\varepsilon(n)}.$$

Proof. Let $b \in N'$ and $a_{k+1}, ..., a_n \in N$. By $I(\varphi)$

$$a_{k+1} a_{k+2} \dots a_n - a_{\varsigma(k+1)} a_{\varsigma(k+2)} \dots a_{\varsigma(n)} \in A(b)$$
.

It follows that this element lies in A(N').

Though very simple, the above result seems to be useful. E.g., in a near-ring without nilpotent elements, $I(\varphi)$ implies the identity considered there. As a very special case, a regular near-ring satisfying the identity xyzt = xzyt satisfies also the xyz = yxz. A much more general result will be shown in Thm. 2.6.

2 - Main results

The following theorem is analogous to $[2]_2$, Thm. 7.

Theorem 2.1. If the distributive near-ring N satisfies $I(\varphi)$, then the nilpotent elements of N form an ideal J of N, and $J = \mathcal{N}(N)$ (the nil radical of N).

Proof. Let J be the set of all nilpotent elements of N, let a, $b \in J$. Then there is a positive integer m such that $a^m = b^m = 0$.

We get $(a+b)^{2(m+n)} = \Sigma_i z_i$, where z_i is a product of 2(m+n) elements of $\{a, b\}$. For a fixed i, there are at least m factors equal to a (or else m equal to b) in this product, and lying after the first n and before the last n factors. By Lemma 1.1, $z_i = xa^m y$ or $z_i = xb^m y$ thus $z_i = 0$. This proves that $a + b \in J$. The rest is clear, by Lemma 1.1.

Corollary 2.2. If the distributive near-ring N satisfies $I(\varphi)$, then $N/\mathcal{N}(N)$ is a subdirect sum of integral domains.

Proof. We may see N as a right near-ring, as well as a left. The assertion follows easily from Lemma 1.2 and $[2]_2$, Thm. 9.

Let us now pass to the W-near-rings. Note that every regular near-ring is a W-near-ring (if x = xx' x put $x^0 = xx'$). An example of a non-regular W-near-ring is the following.

Let (G, +) be a cyclic group, whose order is not a prime. Let $D = \{x \in G | G \neq \langle x \rangle\}$. For $x, y \in G$ define xy = y if $x \in D$, xy = 0 otherwise. Now $N = (G, +, \cdot)$ is a near-ring.

Let $x \mapsto x^0$ be any map from N to itself, such that $x^0 \in D$ for all x and $x^0 = x$ for $x \in D$. It is now easily checked that N is a W-near-ring.

Lemma 2.3. If the W-near-ring N satisfies $I(\varphi)$, then N has the IFP.

Proof. Let a, b, $r \in N$, with ab = 0. By Lemma 1.1, we have $arb = a^0 \dots a^0 arb^0 \dots b^0 b = a^0 rab = a^0 r0 = 0$.

Of course, the hypothesis of the preceding lemma can be weakened. The same argument may also be used in order to simplify the proof of [2]₃, Thm. 13.

Lemma 2.4. Let N be a W-near-ring. If $A \neq 0$ then N is neutral and has a left identity.

Proof. Since A is a N-subgroup, for $w \in A \setminus \{0\}$ we get $w^0 \in A \setminus \{0\}$. If $A(w^0) \neq 0$ then from $w^0 \in A$ it follows $w^0 = (w^0)^2 = 0$, a contradiction. Thus $A(w^0) = 0$.

A known argument (see e.g. $[2]_1$, Lemma 5 or $[2]_3$, Lemma 12, where it is used in the proof) shows that w^0 is a left identity. Now for $x, y \in N$, with $A(x) \neq 0$, we get $xw^0 = 0$ and $xy = xw^0y = 0y$.

Lemma 2.5. Let N be a subdirectly irreducible 0-symmetric W-near-ring. If it has the IFP, then N is simple.

Proof. Let H be the intersection of all the non-zero ideals of N, let $w \in H \setminus \{0\}$. We get $w^0 \in H$, because H is an N-subgroup.

If $A(w^0) \neq 0$ then $K \neq 0$ and $A \neq 0$, whence $H \subseteq A$. This implies $(w^0)^2 = 0$, a contradiction. Therefore $A(w^0) = 0$ and, since it is idempotent, w^0 is a left identity. From the 0-symmetry of N it follows $N = w^0 N \subseteq H$. Then N is simple.

In the following statements, we will write x, y, z instead of x_1 , x_2 , x_3 .

Theorem 2.6. Let N be a W-near-ring. The following are equivalent:

- (1) $I(\varphi)$ holds in N (2) xyz = yxz holds in N
- (3) N is a subdirect sum of neutral subdirectly irreducible near-rings with xyz = yxz.

Proof. It is clear that $(3) \Rightarrow (2) \Rightarrow (1)$. Only $(1) \Rightarrow (3)$ needs to be proved. Since the image inverse of a f(N)-subgroup is a N-subgroup, for each homomorphism f defined on N, it is easy to see that each homomorphic image of N is again a W-near-ring. Then N is a subdirect product of subdirectly irreducible W-near-rings N_i .

Each N_i is neutral (Lemma 2.4). By using $I(\varphi)$ and a left identity of N_i (Lemma 2.4), a straightforward computation yields xyz = yxz. It follows (3).

Corollary 2.7. Let N be a 0-symmetric W-near-ring. The following are equivalent:

- (1) $I(\varphi)$ holds in N (2) xyz = yxz holds in N
- (3) N is a subdirect sum of integral, N-simple near-rings, each of which satisfies xyz = yxz.

Proof. By Theorem 2.6, we need only to prove that if N is subdirectly irreducible, it is integral. Since N is simple, by Lemma 2.5, and has the IFP, by Lemma 2.3, for $x \in N \setminus \{0\}$ we get A(x) = 0 or A(x) = N. Clearly $x^0 \notin A(x)$, then A(x) = 0.

References

- [1] M. S. PUTCHA and A. YAQUB, Semigroups satisfying permutation identities, Semigroup Forum 3 (1971), 68-73.
- [2] R. SCAPELLATO: [•]₁ On autodistributive near-rings, Riv. Mat. Univ. Parma (4) 10 (1984), 303-310; [•]₂ Sui quasi-anelli verificanti identità semigruppali C-mobili, Boll. Un. Mat. Ital. (6) 4-B (1985), 789-799; [•]₃ Near-rings with discriminator terms, Atti Sem. Mat. Fis. Univ. Modena 36 (1988), 219-229.
- [3] R. WIEGANDT: [•]₁ On rings with subsets satisfying permutation identities, Karachi J. Math. 3 (1985), 1-7; [•]₂ On subdirectly irreducible near-rings which are fields, Proc. Conf. Near-rings and Near-fields, Tübingen 1985, 295-300.

Riassunto

Proseguiamo qui la nostra indagine sui quasi-anelli soddisfacenti identità semigrup-pali. Mostriamo, in particolare, che per una classe di quasi-anelli, comprendente tutti quelli regolari, una tale identità implica sempre la commutatività debole (cioè l'identità xyz = yxz).
