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P. BUEKEN and L. VANHECKE (%)

Curvature characterizations in contact geometry (*%)

1 - Introduction

Let (M, g) be a C*® Riemannian manifold and R its Riemann curvature
tensor. It is an interesting problem to determine what kind of Riemannian
manifolds may be determined by special pointwise expressions for E. The
following example is classical: Let (M, g) be a connected Riemannian manifold
with dimension >2 and suppose that its curvature tensor has the following
pointwise expression

RyyZ =2{gX, 2)Y —9(¥, 2) X}

where 2 is a C* function on M. Then (M, g) is a space of constant sectional
curvature. Another typical example is given in [5]p: Let (M, ¢) be a connected
Riemannian manifold with dimM >2 whose curvature tensor at each point is
that of an irreducible symmetric space (N, ¢). Then (M, g) is locally symmetric
and locally isometric to that model space (N, §). (We refer to [5]5 for extensions
of this resuit.)

Further, when the manifold (M, g) is equipped with some additional
structure, then it is sometimes possible to derive conclusions for this structure
too from the special form of R. In [5]; an example is given for an almost
Hermitian manifold and a quaternionic-analog is proved in [4]. In [2] we treated a
similar problem in contact geometry. The main purpose of this paper is to extend

(*) Indirizzo degli AA.: Katholieke Universiteit Leuven, Department of Mathema-
tics, Celestijnenlaan 200 B, B-3030 Leuven.
(**) Ricevuto: 1-XII-1988.



304 P. BUEKEN and L. VANHECKE [2]

this result and to derive other algebraic characterizations for some classes of
almost contact metric structures and manifolds by means of special expressions
for the curvature tensor.

We start with some preliminaires in 2 and prove the main result in 3. We
refer to [1], [3], [6] for more details and examples.

2 - Preliminaries

Let M be a (2n + 1)-dimensional C* manifold and X(M) the Lie algebra of C*
vector fields on M. An almost contact structure on M is defined by a C* (1, 1)-
tensor field , a C~ vector field £ and a C* one-form  on M such that for any point
meM we have

§9$n = -] 4 nm® En ﬁnL(Em) =1

where I denotes the identity transformation of the tangent space T,,M of M at
m. This implies pf=0, nop=0. Manifolds equipped with an almost contact
structure are called almost contact manifolds. A Riemannian manifold M with
metric tensor ¢ and an almost contact structure (o, £, ») such that

9(X, ¢Y) = g(X, ¥) — n(X) n(Y)

for all X, Y € X(M), is called an almost contact metric manifold. Note that the
existence of an almost contact structure on M is equivalent with the existence of
a reduction of the structural group of the tangent bundle to U(n) x 1.

The Sasaki form ¢ of an almost contact metric manifold (M, g, ¢, & ») is
defined by

$X, V)=g(X, ¢¥) for all X, Yex(M).

The associated structure is cosymplectic if d¢ = dy =0 and then (M, g, ¢, & )
is called an almost co-Kdhlerian manifold. When ¢=dn the structure is a
contact structure and (M, g, ¢, & ») an almost Sasakian manifold. The almost

contact metric manifold is said to be almost a-Sasakian if ¢=;1:d7;, « € Ry.

An almost contact structure is said to be normal if

[p, pl+2dy®&=0
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where [p, ¢] denotes the Nijenhuis tensor of ¢. A co-Kdhlerian manifold
is a normal almost co-Kihler manifold and an «-Sasakion manifold is a nor-
mal almost «-Sasakian manifold. Here we have the following useful character-
izations [3]

Proposition 1. Let (M, g, ¢, & ») be an almost contact metric manifold
with Riemannion connection V. Then

(i) M is co-Kdhlerian if and only if Vo=0;
(i) M is a-Sasakian if and only if for all X, Y e X(M)

® (Vxo) Y =a{g(X, NE-5()X}.

Note that £ is a Killing vector field on co-Kdihlerian and «-Sasakian manifolds.
Further, let R denote the Riemannian curvature tensor determined by
RyyZ =VignZ —Vx, Vy1Z
for X, Y, Z e X(M). An almost contact metric manifold is said to be an almost
C(x)-manifold if there exists an « € R such that for all X, Y, Z, We X(M) we

have
(2) RXYZW=RXY;Z9W+a{g(X, Z)g(Y; W) _g(X’ W)g(Y7 Z)

—9(X, 9Z2)g(Y, W) + g(X, eW) 9(¥, ¢2)}

where Ryyzw=g(RxyZ, W). A normal almost C(«)-manifold is a C(«)-manifold.
Then we have [3]

Proposition 2. An a-Sasakian manifold is a C(e®)-manifold and a co-
Kihlerian manifold is a C(0)-manifold.

A plane section in T', M***!, me M, is called a ¢-section if it possesses an
orthonormal basis of the form {X, ¢X}, where X e T,, M***! is vector orthogonal

to &,. The sectional curvature

KX, ¢X)=H(X)=R(X, oX, X, ¢X)
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is called the associated ¢-sectional curvature. For a C(x)-manifold, the o-
sectional curvature completely determines the curvature and moreover, for
dimM =5, if the g-sectional curvature at any point of a C(«)-manifold is
independent of the choice of g-section at the point, then it is constant on the
connected manifold. A C(«)-manifold of constant p-sectional curvature is called a
C(x)-space form. Its curvature tensor is given by

®  RwZ =253 (g, )Y - v, W) +27E () 92) X — 1O Y

—g(X) Z)Y](Y)E+Q(Y, Z)T)(X)f—g(Z, ?Y)?’X',"g(zy @X)@Y_ZQ(X, ?Y)9Z}

where ) is the constant g-sectional curvature.

3 - The main result

Our purpose is to start with an almost contact metric manifold whose
Riemannian curvature tensor has, at each point, the form (3) and to derive a
result for the almost contact metric structure and for the manifold itself. More
specifically, we prove the following

Theorem. Let (M, g, ¢, & n) be a connected almost contact metric
manifold such that g(X, Vx&) =0 for any vector field X orthogonal to £ and with
dimM =2n +1=5. Suppose further that the Riemann curvature tensor B has
the form

4) R =fo; + ho,
where f and h are C* functions on M such that h is not identically zero and where
®). olX, NZ=9X, )Y —9(¥, Z)X

® wX, ) Z =9 @)X - nX)n(2D)Y - 9(X, Z)n(Y) &

+9(, 2)n(X)E-9(Z, oY) X +9(Z, X) oY —29(X, oY) ¢Z .
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Then f and h are constant and f—h is nonnegative. Moreover, if f—h=0,
(9, 9, & ) is a co-Kdhlerian structure and (M, g, o, & n) a co-Kéihler space
Sform. Further, if f—h=a*>0, then (g, ¢, & n) or (g, — ¢, & 1) is an «-
Sasakian structure and the corresponding manifold is a C(a®-space form.

The proof will be given in several steps. The first three use the second
Bianchi identity

V,\?Y(VVR)XYZW =0.

Proof. Step 1. LetX, Y, Z, V, W be vector fields orthogonal to & Using
4), (5), (6), a straightforward computation leads to

M (Vv R)xyzw = V(N9 2)9(¥, W) - g(¥, Z) g(X, W)}
+V{=9Z, oY) g(oX, W) +9(Z, 2X) 9(oY, W) - 29(X, oY) g(pZ, W)}
+h{~9Z, (Vvo)Y)gleX, W) —g(Z, ¢V g(Vyp) X, W)
+9(Z, (Vvo)X)g9(eY, W) +9(Z, eX) 9(Vvo) Y, W)

— 29X, Vwo)gloZ, W) - 29X, oY) g(Vvp) Z, W)} .

Since dimM =5, we can choose Y orthogonal to £, X, oX. Further, we put
[X|=]¥l=1 and V=¢Y, Z=X. Then, the second Bianchi identity and (7) -
yield
® @Y, W) = Y(f)gleY, W) + 2X(R) g(oX, W)

+1{=39((Vr ) Y, X) g(pX, W) + 9(Vy9) X, X) g(oY, W)
—9((Vxp) oY, X)g(oY, W) —g((Vx9) Y, X)g(Y, W)

—29((Vxp) oY, Y) g(pX, W) +29((Vx ) X, W)+ g((Vy9) X, X) (Y, W)

+9((Vy ) 0Y, X) g(oX, W) - 29((Vyp) X, oY) g(eX, W)} =0.
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Now, we put successively W=¢oX, W=Y and W=¢Y in (8). This gives
2X(h) = 3h{g((Vy9) Y, X) + g(Vyp) X, ¢¥) =0

©)
Y(f)—-38hg(Vx9) X, 9Y) =0

for any X orthogonal to &, Y orthogonal to & X, ¢X and ||X||=|Y]|=1. By
interchanging the role of X and Y in (9) we get from (9)

(10) X(f+nr)=0.

Step 2. Let X, Y, Z, W be orthogonal to £, V =¢ and proceed as in Step 1.
This gives

an (VeR)xyzw = E(){9&X, 2)g(¥, W) —g(¥, Z2)g(X, W)}
o EM{—9Z, oY) gleX, W) +9(Z, eX) 9(pY, W) —29(X, oY) g(eZ, W)}

+h{~g(V:) Y, Z) g(eX, W) = g(Z, o) g(V:0) X, W)
+9(V:) X, Z)9(eY, W)+ g(Z, X)) 9(V:p) Y, W)
-29((V:)Y, X)g(oZ, W) — 29(X, oY) 9((V:9) Z, W)
- 9(Y, Z)g(Vx&, W)+ g(Y, W) g(Vx&, Z) + g(¢Vx &, Z)g(pY, W)
—9Z, oY) 9(@Vx & W) +29(pVx &, V) g(oZ, W)+ 9(X, Z) 9(Vy&, W)
~9&X, W g(Vyé, Z) — g(eVr &, Z2)g(eX, W)

+9(Z, 9X)g(oVyE, W) —29(eVy§, X)gloZ, W)}.

As before we put ||[X]|=|Y]|=1 and take Y orthogonal to & X, ¢X. Then,
we take first Z =X in (11). This yields for W=¢X, W=Y and W=Y:

5F) + h{g(X, V& +g(¥, Vy&)} =0 h{g(Vx &, oX) ~ g(Vy &, oY)} =0
(12)
h{3g((V:p) Y, X) +29(Vx £, oY) — 4g(Vy ¢, oX)} =0.
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Proceeding in the same way for Z =¢oX and W=X, W=Y and W=oY, we
obtain

&h) + h{g(Vx & X) + g(Vy&, Y)} =0 h{g(Vx&, oX) — g(Vy&, oY)} =0
13)
h{8g((V:2) Y, X) + 2g(Vx &, 9Y) —4g(Vy &, pX)} =0.

So, because of our hypotheses, we get from (12) and (18)
f)=&m=0 E{g(Vx&, 0X) — g(Vy&, 9Y)} =0
(14)
R{89((V:9) Y, X) +29(Vx &, oY) — 4g(Vy&, ¢X)} = 0.

By interchanging to role of X and Y in (14), we obtain

Ef)=&h)=0 r{g(Vx&, oY) +g(Vyé, ¢X)} =0
(15)
r{g((Vep) Y, X) +29(Vx &, 9Y)} =0 P{g(Vx&, 9X) — g(Vy§, 1)} =0.

Step 3. Let X, Y, W be orthogonal to & and V = Z = £. The same procedure
leads to

(16) Y(f~-hoX, W)=X(f-h)g(Y, W)
+ h{g(V:&, V) gX, W) —g(V:&, X)g(¥, W) —g((V:p) Y, Og(eX, W)
+9((V:0) X, &) g(eY, W) — 29((Vip) &, W)g(X, 9Y)} =0.

Again put ||[X]|=]Y]|=1, ¥ orthogonal to &, X, ¢X and W=X, W=Y, W=sX,
W =Y. Then we get

X(f-h) +hg(V;¢, X)=0 Y(f=h) + hg(Ve&, ¥) =0
an

hg(Vep) ¥, & =0 hg(Veo) X, & =0.
Since g(pX, £ =0 this leads to

(18) X(f=h)=0 hg(Vep) X, =0 hV;E=0.
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Hence, from (9), (10), (15) and (16) we conclude

@) f and h are constant on M,
(i) since h#0

g(Vy9) Y, X)+g(Vyp) X, oY) =0 9(Vxp) X, oY) =0
(19) g(Vx &, oY)+ g(VyE, ¢X) =0 9i(V:) Y, X) +29(Vx¢, oY) =0

V:iE=0 9(Vx &, oX) — g(VyE, oY) =0.

Step 4. Since g(X, Vyx&) =0, it is easy to derive from (19) that & is a Killing
vector field. Further, the second condition implies

(20) (Vxp) X =ag(X, X)¢&

for X orthogonal to £ and from the last condition in (19) it then follows that « is
independent of X.
Now, (4), (5) and (6) imply

@n Ryi=—-(f-mX

for X orthogonal to &. Moreover, since & is a Killing vector field, we have (see for
example [1])

22) VxVyé—=Voyl=—RgY
and so, with (21)

Voeé=—-(f-nX.

Hence
@3) 9(VxE, Vxd = (f=h)g(X, X)
for X orthogonal to & This implies f—k=0.
Step 5. First, we suppose f—~h=0. Then (23) yields

(24) Vxé=0
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which means that & is parallel. Moreover, from (20) we get

(25) (Vxp) X =0

and from (19) we may coneclude that (25) is valid for any vector field X. So
(Vx) Y+ (Vy@) X =0.

Finally proceed as in Step 1 with Z =X, ¥ = ¢X and W now arbitrary. This
leads to '

Vxp) Y — (Vye) X =0.

(The proof is similar to that of Theorem 12.7 in [5];). Hence Vo = 0. From this,
we get that (M, g, ¢, & n)is a co-Kdihlerian manifold. Moreover E = f(p; + o2)
which implies easily that (M, g, ¢, & ) is a C(0)-space form.

Step 6. Put f—h=a?>0 and
|
(26) @X-——-;ng,

Then, (22) yields #X =— X for X orthogonal to & and hence #=—I+,®&.
Moreover,

X, V)= %—(g(Y, V) — g(X, Vyd) = — g(X, V¢ = ag(X, §7)

and so 9(@X, oY) =g(X, ¥) = n(X)n(Y).

This all implies that (g, o & n) is an almost contact metric structure on M.
Further,

(VaDY = V@) — V3 ¥ = == (Vx Vy& = Vo §

and so, with (22), (V9 Y=;1:RXEY.
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Then, (4) yields
(V29 ¥ == (X, 1= (1) X} = algX, DE- 9D X).

This and Proposition 1 imply that (M, ¢, g, & ») is an «-Sasakian manifold.
Further, (19) and (26) imply

(o + 09 X =aX

for any unit X orthogonal to £, where a = —2¢g(pX, #X) is independent of X.
Then (4), (5) and (6) yield

Ryaxxx=f+ -i—haz =g

for any unit vector field X orthogonal to & So, (M, g, 3¢, ) is a C(«¥)-space
form with constant g-holomorphic sectional curvature . This implies

RXYZ=:11~(,L +300)5 +-i—(#-a2)¢z

where ¢ is replaced by ¢ in the éxpressions (5), (6) for ¢, and ¢,. Moreover, (4)
may be written as

RxvZ =-‘11()\ +3a2)¢1+i—(l—~a2)502 where A =f+8h.
Then we get,
@0 @-N9&X, DY —gY, )X+ (N9 X —9X)n(2)Y
—9X, 2)n(N)E+9(¥, 2)9X) &} + @ — D{9(@Z, N X +9(Z, XD ¢Y
—29(X, oY) @2} — (2 —a{g(oZ, Y)oX +g(Z, ¢X) oY —29(X, oY) 9Z} =0.

Now, take ||X||=|¥]| =1, X orthogonal to &, Y orthogonal to £, X, X and Z =X
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in (27). We obtain

(28) —0g¥, W)+ 3 —HgX, V) gX, W)=0.

Note that u # o since u = «* implies u = A = «* and hence % = 0. So, suppose first
that =2, Then (28) implies g(@X, Y) =0 and hence @X = boX. This yields at
once ¢=t 9. For us# 1 we put W= 30X in (28). We then get

g(?X’ i’y) =0

and hence g(X, $Y) =0. But then, (28) implies by putting Y = Z that u = A, which
is a contradiction.
This concludes the proof of the Theorem,
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Abstrait

On caractérise certaines structures de contact o Paide d'une expression ponctuelle du
tenseur de courbure.

* ok ok






