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On the range of |-decomposable measures (**)

1 - Introduction

The central result in the study of the structure of the range of a measure is
Lyapunov’s convexity theorem [11]. It was reproved and generalized by several
Author’s {1], [5], [9] and finds interesting applications in mathematical econo-
mics, especially in dealing with the main equilibrium concepts, as the core and
the set of Walras allocations (see, e.g., [2], [6]). Let us consider Lyapunov
theorem in the following form: the range of a strongly continuous measure is
convex and compact. Various issues induce to consider set functions in which
additivity assumptions are weakened (recall, for instance, Choquet’s capacity
theory [4]). Here we focus our attention on the measures which are decomposa-
ble with respect to an archimedean t-conorm.

These measures have the important feature that it is possible to define a
related integration that results in an actual extension of the Lebesgue theory.
(For related results see also [13], [15] and [18].)

It is worth recalling that some set functions, decomposable with respect to
associative operations, were used in [7], [8] in order to generalize the concept of
information of events. (See also [17].) The operations of t-norm (triangular norm)
and t-conorm have their origin from generalized triangle inequalities, due to
Menger [12]. (For further developments see, e.g., [14].)
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Feonomia e Commercio, Universitd, Via Rosmini, 42, I-38100 Trento; MASSIMO
SQUILLANTE e ALDO G. 8. VENTRE, Istituto di Matematica, Facoltd di Architettura,
Universita, Via Monteoliveto 3, 1-80134 Napoli.
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Our present concern is to state some properties of the range of the measures
which are decomposable with respect to an archimedean ¢-conorm. In particular
we shall prove that Lyapunov’s theorem in the form above can be restated.

2 - Prerequisites

Let us recall some definitions and results, following [14], [18] and references
therein. For the other basie notions of measure theory see [3].

A binary operation L on the real unit interval J=1[0, 1] is said to be a t-
conorm if L is non decreasing in each argument, commutative, associative and
has 0 as unit.

A f-conorm L is said to be archimedean if it is continuous and such that
Lz, x)>w, for every x € (0, 1). Therefore the structure (J, L) is an archime-
dean abelian semigroup with unit 0.

An archimedean {-conorm 1 is called strict if it is strictly increasing in
0, 1)x (0, 1).

The following Ling’s representation theorem holds.

Theorem 2.1 [10]. A binary operation L onJ is an archimedean ¢-conorm
if and only if there exists an increasing and continuous function g:J - [0, «],
with g(0) =0, such that

L, y)=g"(g) + g(y)
where g™V is the pseudo-inverse of g defined by
{~1) — 1 3
9 (@) = g~ (min(zx, g(1))).
Moreover L is striet if and only if g(1) = co.

The function g, called an additive generator of 1, is unique up to a positive

constant factor.

Let (X, A) be a2 measurable space. A set function u: A —J, with x(@) =0 and
nw(X) =1, is called [18]

(a) decomposable measure with respect to a t-conorm L, or L-decomposable
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measure, if
w(a O B) =u(A) Lu(B).
(b) o-L-decomposable measure, if
WU A)= 1 w4y,

The notation (s-).L-decomposable will stand for L-or o-1-decomposable.

Proposition 2.2 [18]. (a) If x is L-decomposable, then u is monotone. (b) x«
is 1-decomposable if and only if

#(AUB) L(ANnB)=u(A) LuB)

for every A, Be A.
For any t-conorm 1, the following operations are defined

b=a=inf{y/a Ly=b} a=1+a.

The following classification is valid for (¢-) 1-decomposable measures with
respect to archimedean ¢-conorms [18].

(s): L strict. Then gop:A—[0, »] is an infinite (o-) additive measure,
whenever u is a (s-) L-decomposable one.

(NSA): L non-strict archimedean and gou: A — [0, g(1)] a finite (¢-) additive
measure with (gou) (X) =g(1).

(NSP): 1 non-strict archimedean and gou a finite measure with
(g o) (X) = g(1), which is only pseudo (¢-) additive, i.e., it is possible that

Gom)( L,\J Ak)=g(1)<2k(go,,4)Ak.
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Let L be an archimedean t-conorm and z a L-decomposable measure. Then
[18]:

Pl. AcB implies u(B —A4)=u(B) ~u(4). Under the additional conditions
for (S) with x(4) <1 or (NSP) with u(B) <1, resp., it is u(B — A) = u(B) ~ u(4).

Let us mention finally the following properties.

P2. If » is a l-decomposable measure, for every A, BeA it is
w(A v B)<sp(A) Lu(B). '

If {A,} is a sequence of measurable subsets of X, with A;n A;=0 (i+)) for
every A e A such that 4> ,}; A,, it is

I wA)=<uA).

In particular )E_l ,u(An)Sy(niJl A,). If u is o-L-decomposable and {4,} is an
arbitrary sequence of measurable subsets of A, then

w( }2 A) s ;J-I n(A,) .

P3. For any non-strict archimedean ¢-conorm with additive generator g we
have

b-a=gYgb)—gla) for a<b.
For any strict archimedean t-conorm L with additive generator g it is
/g‘l(g(b) —g(a) ifae<band a<l
b-a=
N 0 otherwise
3 - Finite and infinite ranges
Let « be a L-decomposable measure on a measurable space (X, A). Under

suitable hypotheses on u it is possible to infer that A is necessarily finite, and
therefore the range R(u) of u is finite.
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Lemma 38.1. Let (X, A) be a measurable space, in which a decomposable
measwure . with respect to an archimedean non strict t-conorm L is defined. If
there exists a constant d such that
@O 0<u(l)<d de(0, 1)

Jor every Ae A~ {X, 0}, then the s-algebra A is finite.
Proof. Let us start by proving that if {4}, is a disjoint family of elements

in A, then the index set F' is finite. From (1) it follows the existence of ¢ € (0, 1),
such that

wA)>c VAe A - {0};
indeed, by proposition P3,
pA)=uX - X -AN=1=-pX-A)=1-d>0.

Let us put
Fo={ieF:—t<uay<iy,
" n+1 )

The set F, is finite for every n. Indeed if there is {1y ..., in} ¢ F, such that

Y Ay =X, then card F' = card F, = m. Otherwise let us suppose that for every
m-tuple in F, it is J'C='Jl A, #X. Put

1 1 1
o Rt SR
It is li}_fn( ni 7 Y =1, and so there is k, such that
@) (—2)>d

n+1
(k, will denote the minimum integer satisfying (2)). It is easy to check that

3) cardF,<k,.
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Indeed card F, =k, + 1 implies
= 1 e
(1,40 = g, wA) > (D>

for some F,cF,, cardF,=k,+ 1, that contradicts (1). Let » be the integer
1/(r+1)<c¢<1/r, then

F= U F; card F<ky+ko+...+k,.

qa=

P

Let now put
D={(4,, ..., A):A;e A and A;nA;=0}

and show that there exists a maximal family (4,, ..., 4y in D, i.e. if (B, ...,
B)eD, then g=<gq.
As in the discussion above, the following cases occur for (4,, ..., A)eD:

1. For every n and (Jy, ..., Jm) C Iy, it is
O A #X
p=1 7P

and therefore q<k;+... +k, where r and the ks are independent of the
particular family (4,, ..., 4p).

2. There are 7€ {1, ..., 7} and (4y, ..., jm) ¢ F'» such that

U A

4 jp = X .
Then A, ..., A, coincide with A;, ..., 4; with g=m. Let now show
q<k;+ 1. Indeed (4;, ..., 4; ) consists of disjoint elements and furthermore

ZQAJ‘,,*X; by 8) q—1l=m-—1<k; ie g<k;+1.

Also in this case the upper bound for g is independent of the particular family
in D.

Let observe that a maximal family in D is a partition of X and furthermore it
is unique Gf (4, ..., Ay and By, ..., By) were two distinct maximal families,
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then the family of their intersections should be in D). Finally A coincides with
the c-algebra generated by (4, ..., A).
Thus the range R(u) of the measure u« is finite, as it is

R@={0}u{l v, Uy i) <1, s @)

The following is a topological property of the range of some L-decomposable
measures.

Theorem 8.2. Letu be a L-decomposable measure on (X, A), with respect
to an archimedean mon strict t-conorm L, such that 0<u(A)<1, for every
AeA— {8, X}. If R(u) is infinite, then 1 is an accumulation point of R(u).
Under the additional condition (NSa), R(u) is dense in itself.

Proof. Observe first that 1 is an accumulation point of R(u). Indeed if 1
were not an accumulation point of R(u), then, for some de (0, 1), 0<u(A)<d
Jor every A e A — {0, X} and R(u) would be finite by the previous Lemma. Then
there exists a sequence {A,} in A, with 0<u(d,)<1, and limu(A,)=1. If

condition (Nsa) is satisfied, by property P1 and continuity of =,
lim (X — A,) = lim («(X) + w(4,) = 0.

Furthermore u(X) ~u(A,) =g Xg(1) — gu(A,)) >0 and 0 is an accumula-
tion point of R(u) too.

Assign now the value u(A), 0 <u(A) < 1; as R(u) is infinite u will take infinite
values either on A, or X — A. Let x take infinite values on A. Then the set
funetion uy:Be A, BcA—> u(B) has an infinite range and 0 <wpaB) <p(4d), for
every Be A — {0, A}.

It does not occur 0<us(B)<d<p(A), for some d and for every BcA,
Be A — {0, A}, because the o-algebra A4 ,, formed by the measurable subsets of
A, contains infinite elements. Therefore u(A) is an accumulation point of R(u,)
and R(u). ‘

If 42 takes infinite values on the complementary of A, applying the same line of
the argument above to the restriction uy_, of  to (X —A)N A, one can prove
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that 0 is an accumulation point of the range of ux_,. Then there exists a sequence
{B,} in X—A)n A, with lipy(B,z) =0 and u(B,)>0. We have

lima(A U B,) = im (s(4) Lu(B.) = w(A)..
Furthermore, as u(B,)— 0 and w(4) <1,
w(A U By =g (g(A)) + g(B)) > g Hg(A)) = +(4) .
Thus «(4) is an accumulation point of R(u).

Example. Let us exhibit a measure fulfilling the hypotheses of the
previous theorem. First define the binary operation on J

L: (a, b) € TP min(Ulog($)" + (5)), D

with the assumptions 1/0 = + o, (1/2)"* =0, log»(0) = + .
The operation 1 is a non-strict archimedean t-conorm with additive
generator:

0 ife=0
g: a:eJ=/
@2y if x>0

whose pseudo-inverse is
0 ify=0
4 .
g0 yel0, +o]l= 1ogpy ifO<ysli2=¢g(1)
AN
1 ify>1/2.

Let us consider the set S ={1/n},.v and the measurable space (S, £(S)).
Define the set function 1

0 ifA=0
/
@ Ae_@"(S)=\x0 if A= {x}

Lx otherwise.
red

One can check that u(S)=1, 0<u(A)<1 for 0#A+S and u is o-L-
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decomposable of type (NsA). Indeed: if {4,} is a sequence in 2(S), with
ArnA,=0 and VA, =S,

@ 2 gu@)=3g( L m)=39g7( 3 goi))
k=1 k=1 ey k=1 rg)k;])_mk

=3 3 g0 =3 gty =g(1)
k=1 rrﬁjEAk n=1

because g(”r{ilj)< g(1) and (4) is with positive terms. On the other hand
9w 9, AD) = g(S) = g(1).

Then the additivity of gou. By Theorem 3.2, R(u) =J.

4 - A Lyapunov-like theorem for L-decomposable measures

The definition of strong continuity for a L-decomposable measure is the same
for additive measures [3]. A L-decomposable measure p is strongly continuous
on A if for every >0, there is a finite partition P = {A,, ..., 4.}, A;€ A, of X,
such that u(4)<e (1=1, ..., n).

Let us state a 1-dimensional version of Lyapunov’s theorem for 1-decompo-
sable measures

Theorem 4.1. Let (4, A) be a measuradble space and p a 1-decomposable
measure with respect to the archimedean t-conorm L. If u is strongly
continuous, then R(u)=1[0, 1].

Proof. The proof develops analogously to the additive case (see, e.g. [3]).
Let a € (0, 1). By the strong continuity of x there is a finite partition P of X into
measurable sets such that the measure of every element in P is less than 1/2. Let
A, denote the largest union of elements in P such that u(A,)<<a. Evidently
A #X.

If u(A;) = a, then the theorem follows. If u(A;) <a, let B, be an element of P
disjoint from A,. Of course 0 <u(By and x(A; U By) > a. Since the restriction of u
to By n A is strongly continuous, there exists a finite partition @ of B, having all
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elements with measure less than 1/(2%). Let A, denote the largest union of
elements in @ such that u(4,) <a -+ u(4,). Observe that a = u(4,) >0, by P3. If
w(Ay) = a~u(4,), then u(A; VA =a, by P3, and the theorem follows. Let
u(Az) <a +u(4,). Observe first that a ~ u(A;) <u(B;) and therefore A, B,. Let
B; be an element of @ which is disjoint from A,. It is 0 <u(B,) <1/(2%) and
w(Az U Bg) > a +u(A,). Therefore u(A;) L u(Ay) L 1(Bs) > a. The procedure can be
iterated and the sets As, Bs, Ay, By, ... constructed. One of the following cases
occurs: either u( é}l Ay = a, for some k, or two infinite sequences {A,} and {B,}
are determined such that

(@ A,nB,+0 ®)  Ay1UBuacB,
(© wllpL.. lpA)<a () wpA)L..Llu)LluB)>a
(&) 0<uB,)<1/@2".
Let us show that nj; w(4,) = a. Indeed, by (c), 1:_1_1 w(A,) <a. The reverse
inequality is implied by P1 and (d)
lim 1 w(4) 2 Hn (L w4 LeB) = uB) >a = lmuB) = a.

Let us observe that if measure u is o-L-decomposable, u( u A= _L u(A,)
and, obviously, nu A, is a measurable set on which u takes value a. Also in the
general case, when p is L-decomposable; it happens that

®) w( G A)=a
Indeed

WO A)< T A LuBr) < L wA) Lo 2“1

Finally, for k— o, u( ng A< ;Ll @(4,) = a and, recalling P2, equality (5)
follows.
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Abstract

Topological properties of the range of measures which are decomposable with respect
to an archimedean t-conorm are studied. A Lyapunov’s theorem is proved for such a class
of measures.






