M. FEDRIZZI, M. SQUILLANTE and A. G. S. VENTRE (*)

On the range of \(\percap{1}\)-decomposable measures (**)

1 - Introduction

The central result in the study of the structure of the range of a measure is Lyapunov's convexity theorem [11]. It was reproved and generalized by several Author's [1], [5], [9] and finds interesting applications in mathematical economics, especially in dealing with the main equilibrium concepts, as the core and the set of Walras allocations (see, e.g., [2], [6]). Let us consider Lyapunov theorem in the following form: the range of a strongly continuous measure is convex and compact. Various issues induce to consider set functions in which additivity assumptions are weakened (recall, for instance, Choquet's capacity theory [4]). Here we focus our attention on the measures which are decomposable with respect to an archimedean t-conorm.

These measures have the important feature that it is possible to define a related integration that results in an actual extension of the Lebesgue theory. (For related results see also [13], [15] and [18].)

It is worth recalling that some set functions, decomposable with respect to associative operations, were used in [7], [8] in order to generalize the concept of information of events. (See also [17].) The operations of t-norm (triangular norm) and t-conorm have their origin from generalized triangle inequalities, due to Menger [12]. (For further developments see, e.g., [14].)

^(*) Indirizzo degli AA.: MARIO FEDRIZZI, Istituto di Informatica, Facoltà di Economia e Commercio, Università, Via Rosmini, 42, I-38100 Trento; MASSIMO SQUILLANTE e ALDO G. S. VENTRE, Istituto di Matematica, Facoltà di Architettura, Università, Via Monteoliveto 3, I-80134 Napoli.

^(**) Ricevuto: 10-X-1988.

Our present concern is to state some properties of the range of the measures which are decomposable with respect to an archimedean *t*-conorm. In particular we shall prove that Lyapunov's theorem in the form above can be restated.

2 - Prerequisites

Let us recall some definitions and results, following [14], [18] and references therein. For the other basic notions of measure theory see [3].

A binary operation \perp on the real unit interval J = [0, 1] is said to be a *t-conorm* if \perp is non decreasing in each argument, commutative, associative and has 0 as unit.

A t-conorm \bot is said to be *archimedean* if it is continuous and such that $\bot(x, x) > x$, for every $x \in (0, 1)$. Therefore the structure (J, \bot) is an archimedean abelian semigroup with unit 0.

An archimedean t-conorm \perp is called *strict* if it is strictly increasing in $(0, 1) \times (0, 1)$.

The following Ling's representation theorem holds.

Theorem 2.1 [10]. A binary operation \bot on J is an archimedean t-conorm if and only if there exists an increasing and continuous function $g: J \to [0, \infty]$, with g(0) = 0, such that

$$\pm(x, y) = g^{(-1)}(g(x) + g(y))$$

where $g^{(-1)}$ is the pseudo-inverse of g defined by

$$g^{(-1)}(x) = g^{-1}(\min(x, g(1))).$$

Moreover \perp is strict if and only if $g(1) = \infty$.

The function g, called an *additive generator* of \bot , is unique up to a positive constant factor.

Let (X, \underline{A}) be a measurable space. A set function $\mu: \underline{A} \to J$, with $\mu(\emptyset) = 0$ and $\mu(X) = 1$, is called [18]

(a) decomposable measure with respect to a t-conorm \perp , or \perp -decomposable

measure, if

$$\mu(a \circ B) = \mu(A) \perp \mu(B)$$
.

(b) σ - \perp -decomposable measure, if

$$\mu(\bigcup_{n=1}^{\infty} A_n) = \prod_{n=1}^{\infty} \mu(A_n).$$

The notation $(\sigma_{-})\perp$ -decomposable will stand for \perp -or $\sigma_{-}\perp$ -decomposable.

Proposition 2.2 [18]. (a) If μ is \perp -decomposable, then μ is monotone. (b) μ is \perp -decomposable if and only if

$$\mu(A \cup B) \perp \mu(A \cap B) = \mu(A) \perp \mu(B)$$

for every $A, B \in \underline{A}$.

For any t-conorm \perp , the following operations are defined

$$b - a = \inf\{y/a \perp y \ge b\}$$
 $a' = 1 - a$.

The following classification is valid for $(\sigma$ -) \perp -decomposable measures with respect to archimedean *t*-conorms [18].

(S): \bot strict. Then $g \circ \mu : \underline{A} \to [0, \infty]$ is an infinite $(\sigma$ -) additive measure, whenever μ is a $(\sigma$ -) \bot -decomposable one.

(NSA): \perp non-strict archimedean and $g \circ \mu : \underline{A} \to [0, g(1)]$ a finite (σ) additive measure with $(g \circ \mu)(X) = g(1)$.

(NSP): \bot non-strict archimedean and $g \circ \mu$ a finite measure with $(g \circ \mu)(X) = g(1)$, which is only pseudo (σ) additive, i.e., it is possible that

$$(g \circ \mu)$$
 $(\ \ \ \ \ \ \ A_k) = g(1) < \sum_k (g \circ \mu) A_k$.

Let \bot be an archimedean t-conorm and μ a \bot -decomposable measure. Then [18]:

P1. $A \subseteq B$ implies $\mu(B-A) \geqslant \mu(B) - \mu(A)$. Under the additional conditions for (S) with $\mu(A) < 1$ or (NSP) with $\mu(B) < 1$, resp., it is $\mu(B-A) = \mu(B) - \mu(A)$. Let us mention finally the following properties.

P2. If μ is a \perp -decomposable measure, for every $A, B \in \underline{A}$ it is $\mu(A \cup B) \leq \mu(A) \perp \mu(B)$.

If $\{A_n\}$ is a sequence of measurable subsets of X, with $A_i \cap A_j = \emptyset$ $(i \neq j)$ for every $A \in \underline{A}$ such that $A \supseteq \bigcup_{n=1}^{\infty} A_n$, it is

$$\prod_{n=1}^{\infty} \mu(A_n) \leqslant \mu(A).$$

In particular $\prod_{n=1}^{\infty} \mu(A_n) \leq \mu(\bigcap_{n=1}^{\infty} A_n)$. If μ is σ - \perp -decomposable and $\{A_n\}$ is an arbitrary sequence of measurable subsets of \underline{A} , then

$$\mu(\bigcup_{n=1}^{\infty} A_n) \leq \prod_{n=1}^{\infty} \mu(A_n)$$
.

P3. For any non-strict archimedean t-conorm with additive generator g we have

$$b \doteq a = g^{-1}(g(b) - g(a)) \quad \text{ for } a \leq b \,.$$

For any strict archimedean t-conorm \perp with additive generator g it is

$$b - a = \begin{cases} g^{-1}(g(b) - g(a)) & \text{if } a \leq b \text{ and } a < 1 \\ 0 & \text{otherwise} \end{cases}$$

3 - Finite and infinite ranges

Let μ be a \perp -decomposable measure on a measurable space (X, \underline{A}) . Under suitable hypotheses on μ it is possible to infer that \underline{A} is necessarily finite, and therefore the range $R(\mu)$ of μ is finite.

Lemma 3.1. Let (X, \underline{A}) be a measurable space, in which a decomposable measure μ with respect to an archimedean non strict t-conorm \bot is defined. If there exists a constant d such that

(1)
$$0 < \mu(A) < d \qquad d \in (0, 1)$$

for every $A \in \underline{A} - \{X, \emptyset\}$, then the σ -algebra \underline{A} is finite.

Proof. Let us start by proving that if $\{A_j\}_{j\in F}$ is a disjoint family of elements in \underline{A} , then the index set F is finite. From (1) it follows the existence of $c \in (0, 1)$, such that

$$\mu(A) > c \qquad \forall A \in \underline{A} - \{\emptyset\};$$

indeed, by proposition P3,

$$\mu(A) = \mu(X - (X - A)) \ge 1 - \mu(X - A) \ge 1 - d > 0$$
.

Let us put

$$F_n = \{i \in F : \frac{1}{n+1} < \mu(A_i) \leq \frac{1}{n}\}.$$

The set F_n is finite for every n. Indeed if there is $\{i_1, ..., i_m\} \subseteq F_n$ such that $\bigcup_{j=1}^m A_{i_j} = X$, then card $F = \operatorname{card} F_n = m$. Otherwise let us suppose that for every m-tuple in F_n it is $\bigcup_{j=1}^m A_{i_j} \neq X$. Put

$$(\frac{1}{n+1})^{(k)} = \frac{1}{n+1} \perp_{(k \text{ times})} \perp \frac{1}{n+1}.$$

It is $\lim_{k} (\frac{1}{n+1})^{(k)} = 1$, and so there is k_n such that

$$(2) \qquad (\frac{1}{n+1})^{(k_n)} > d$$

 $(k_n$ will denote the minimum integer satisfying (2)). It is easy to check that

$$\operatorname{card} F_n \leq k_n.$$

Indeed card $F_n \ge k_n + 1$ implies

$$(\bigcup_{i \in F_n} A_i) = \coprod_{i \in F_n} \mu(A_i) \ge (\frac{1}{n+1})^{(k_n+1)} > d$$

for some $F'_n \subseteq F_n$, card $F'_n = k_n + 1$, that contradicts (1). Let r be the integer $1/(r+1) \le c \le 1/r$, then

$$F = \bigcup_{i=1}^r F_i$$
 card $F \leq k_1 + k_2 + \dots + k_r$.

Let now put

$$D = \{(A_1, \ldots, A_g) : A_i \in \underline{A} \text{ and } A_i \cap A_j = \emptyset\}$$

and show that there exists a maximal family $(A_1, ..., A_{\bar{q}})$ in D, i.e. if $(B_1, ..., B_q) \in D$, then $q \leq \bar{q}$.

As in the discussion above, the following cases occur for $(A_1, ..., A_q) \in D$:

1. For every n and $(j_1, ..., j_m) \subseteq F_n$, it is

$$\bigcup_{p=1}^{m} A_{j_p} \neq X$$

and therefore $q \leq k_1 + ... + k_r$, where r and the k_i 's are independent of the particular family $(A_1, ..., A_q)$.

2. There are $\bar{n} \in \{1, ..., r\}$ and $(j_1, ..., j_m) \subseteq F_n$ such that

$$\bigcup_{p=1}^m A_{j_p} = X.$$

Then A_1, \ldots, A_q coincide with A_{j_1}, \ldots, A_{j_m} with q=m. Let now show $q \leq k_{\bar{n}}+1$. Indeed $(A_{j_1}, \ldots, A_{j_{m-1}})$ consists of disjoint elements and furthermore $\sum_{j=1}^{m-1} A_{j_p} \neq X$; by (3) $q-1=m-1 \leq k_{\bar{n}}$; i.e. $q \leq k_{\bar{n}}+1$.

Also in this case the upper bound for q is independent of the particular family in D.

Let observe that a maximal family in D is a partition of X and furthermore it is unique (if $(A_1, ..., A_{\bar{q}})$ and $(B_1, ..., B_{\bar{q}})$ were two distinct maximal families,

then the family of their intersections should be in D). Finally \underline{A} coincides with the σ -algebra generated by $(A_1, ..., A_{\bar{q}})$.

Thus the range $R(\mu)$ of the measure μ is finite, as it is

$$R(\mu) = \{0\} \cup \{ \prod_{i=1}^{p} \mu(A_{j_i}), \{j_1, ..., j_p\} \subseteq \{1, ..., \bar{q}\} \}.$$

The following is a topological property of the range of some \perp -decomposable measures.

Theorem 3.2. Let μ be a \perp -decomposable measure on (X, \underline{A}) , with respect to an archimedean non strict t-conorm \perp , such that $0 < \mu(A) < 1$, for every $A \in \underline{A} - \{\emptyset, X\}$. If $R(\mu)$ is infinite, then 1 is an accumulation point of $R(\mu)$. Under the additional condition (NSA), $R(\mu)$ is dense in itself.

Proof. Observe first that 1 is an accumulation point of $R(\mu)$. Indeed if 1 were not an accumulation point of $R(\mu)$, then, for some $d \in (0, 1)$, $0 < \mu(A) < d$ for every $A \in \underline{A} - \{\emptyset, X\}$ and $R(\mu)$ would be finite by the previous Lemma. Then there exists a sequence $\{A_n\}$ in \underline{A} , with $0 < \mu(A_n) < 1$, and $\lim_n \mu(A_n) = 1$. If condition (NSA) is satisfied, by property P1 and continuity of $\dot{-}$,

$$\lim_{n} \mu(X - A_n) = \lim_{n} (\mu(X) - \mu(A_n)) = 0.$$

Furthermore $\mu(X) \div \mu(A_n) = g^{-1}(g(1) - g(\mu(A_n))) > 0$ and 0 is an accumulation point of $R(\mu)$ too.

Assign now the value $\mu(A)$, $0 < \mu(A) < 1$; as $R(\mu)$ is infinite μ will take infinite values either on A, or X - A. Let μ take infinite values on A. Then the set function $\mu_A : B \in \underline{A}$, $B \subseteq A \to \mu(B)$ has an infinite range and $0 < \mu_A(B) < \mu(A)$, for every $B \in \underline{A} - \{\emptyset, A\}$.

It does not occur $0 < \mu_A(B) < d < \mu(A)$, for some d and for every $B \subseteq A$, $B \in \underline{A} - \{\emptyset, A\}$, because the σ -algebra \underline{A}_A , formed by the measurable subsets of A, contains infinite elements. Therefore $\mu(A)$ is an accumulation point of $R(\mu_A)$ and $R(\mu)$.

If μ takes infinite values on the complementary of A, applying the same line of the argument above to the restriction μ_{X-A} of μ to $(X-A) \cap \underline{A}$, one can prove

that 0 is an accumulation point of the range of μ_{X-A} . Then there exists a sequence $\{B_n\}$ in $(X-A)\cap\underline{A}$, with $\lim \mu(B_n)=0$ and $\mu(B_n)>0$. We have

$$\lim_{n} \mu(A \cup B_n) = \lim_{n} (\mu(A) \perp \mu(B_n)) = \mu(A).$$

Furthermore, as $\mu(B_n) \to 0$ and $\mu(A) < 1$,

$$\mu(A \cup B_v) = g^{(-1)}(g(\mu(A)) + g(\mu(B_v))) > g^{-1}(g(\mu(A))) = \mu(A)$$
.

Thus $\mu(A)$ is an accumulation point of $R(\mu)$.

Example. Let us exhibit a measure fulfilling the hypotheses of the previous theorem. First define the binary operation on J

$$\perp$$
: $(a, b) \in J^2 \rightarrow \min(1/\log_{1/2}((\frac{1}{2})^{1/a} + (\frac{1}{2})^{1/b}), 1)$

with the assumptions $1/0 = +\infty$, $(1/2)^{+\infty} = 0$, $\log_{1/2}(0) = +\infty$.

The operation \bot is a non-strict archimedean t-conorm with additive generator:

g:
$$x \in J = \begin{cases} 0 & \text{if } x = 0 \\ (1/2)^{1/x} & \text{if } x > 0 \end{cases}$$

whose pseudo-inverse is

$$g^{(-1)}: y \in [0, +\infty] = \begin{cases} 0 & \text{if } y = 0 \\ 1/\log_{1/2} y & \text{if } 0 < y \le 1/2 = g(1) \\ 1 & \text{if } y > 1/2. \end{cases}$$

Let us consider the set $S = \{1/n\}_{n \in \mathbb{N}}$ and the measurable space $(S, \mathcal{L}(S))$. Define the set function

$$\mu \colon A \in \mathscr{L}(S) = \begin{pmatrix} 0 & \text{if } A = \emptyset \\ x_0 & \text{if } A = \{x_0\} \\ \underset{x \in A}{\perp} x & \text{otherwise.} \end{pmatrix}$$

One can check that $\mu(S) = 1$, $0 < \mu(A) < 1$ for $\emptyset \neq A \neq S$ and μ is σ - \bot -

decomposable of type (NSA). Indeed: if $\{A_k\}$ is a sequence in $\mathcal{L}(S)$, with $A_k \cap A_k = \emptyset$ and $\bigcup A_k = S$,

(4)
$$\sum_{k=1}^{\infty} (g(\mu(A_k)) = \sum_{k=1}^{\infty} g(\underset{r_{m_j}^{(k)} \in A_k}{\perp} r_{m_j}^{(k)}) = \sum_{k=1}^{\infty} g(g^{-1}(\underset{r_{m_j}^{(k)} \in A_k}{\sum} g(r_{m_j}^{(k)}))$$
$$= \sum_{k=1}^{\infty} \sum_{r_{m_j}^{(k)} \in A_k} g(r_{m_j}^{(k)}) = \sum_{n=1}^{\infty} g(r_n) = g(1)$$

because $g(r_{m_i}^k) < g(1)$ and (4) is with positive terms. On the other hand

$$g(\mu(\bigcup_{k=1}^{\infty} A_k)) = g(\mu(S)) = g(1)$$
.

Then the additivity of $g \circ \mu$. By Theorem 3.2, $\overline{R(\mu)} = J$.

4 - A Lyapunov-like theorem for ⊥-decomposable measures

The definition of strong continuity for a \perp -decomposable measure is the same for additive measures [3]. A \perp -decomposable measure μ is *strongly continuous* on \underline{A} if for every $\varepsilon > 0$, there is a finite partition $P = \{A_1, ..., A_n\}, A_i \in \underline{A}$, of X, such that $\mu(A_i) < \varepsilon$ (i = 1, ..., n).

Let us state a 1-dimensional version of Lyapunov's theorem for ⊥-decomposable measures

Theorem 4.1. Let (A, \underline{A}) be a measurable space and μ a \perp -decomposable measure with respect to the archimedean t-conorm \perp . If μ is strongly continuous, then $R(\mu) = [0, 1]$.

Proof. The proof develops analogously to the additive case (see, e.g. [3]). Let $a \in (0, 1)$. By the strong continuity of μ there is a finite partition P of X into measurable sets such that the measure of every element in P is less than 1/2. Let A_1 denote the largest union of elements in P such that $\mu(A_1) \leq a$. Evidently $A_1 \neq X$.

If $\mu(A_1) = a$, then the theorem follows. If $\mu(A_1) < a$, let B_1 be an element of P disjoint from A_1 . Of course $0 < \mu(B_1)$ and $\mu(A_1 \cup B_1) > a$. Since the restriction of μ to $B_1 \cap \underline{A}$ is strongly continuous, there exists a finite partition Q of B_1 , having all

elements with measure less than $1/(2^2)$. Let A_2 denote the largest union of elements in Q such that $\mu(A_2) \leq \alpha - \mu(A_1)$. Observe that $\alpha - \mu(A_1) > 0$, by P3. If $\mu(A_2) = a - \mu(A_1)$, then $\mu(A_1 \cup A_2) = a$, by P3, and the theorem follows. Let $\mu(A_2) < a - \mu(A_1)$. Observe first that $a - \mu(A_1) < \mu(B_1)$ and therefore $A_2 \neq B_1$. Let B_2 be an element of Q which is disjoint from A_2 . It is $0 < \mu(B_2) < 1/(2^2)$ and $\mu(A_2 \cup B_2) > \alpha - \mu(A_1)$. Therefore $\mu(A_1) \perp \mu(A_2) \perp \mu(B_2) > \alpha$. The procedure can be iterated and the sets A_3 , B_3 , A_4 , B_4 , ... constructed. One of the following cases occurs: either $\mu(\bigcup_{i=1}^k A_i) = a$, for some k, or two infinite sequences $\{A_n\}$ and $\{B_n\}$ are determined such that

(a)
$$A_n \cap B_n + \emptyset$$

(b)
$$A_{n+1} \cup B_{n+1} \subseteq B_n$$

(c)
$$\mu(A_1) \perp \ldots \perp \mu(A_n) < a$$

(c)
$$\mu(A_1) \perp \ldots \perp \mu(A_n) < a$$
 (d) $\mu(A_1) \perp \ldots \perp \mu(A_n) \perp \mu(B_n) > a$

(e)
$$0 < \mu(B_n) < 1/(2^n)$$
.

Let us show that $\prod_{n=1}^{\infty} \mu(A_n) = a$. Indeed, by (c), $\prod_{n=1}^{\infty} \mu(A_n) \leq a$. The reverse inequality is implied by P1 and (d)

$$\lim_{k} \prod_{n=1}^{k} \mu(A_n) \ge \lim_{k} \left(\prod_{n=1}^{k} \mu(A_n) \perp \mu(B_k) \right) \dot{-} \mu(B_k) \ge a \dot{-} \lim_{k} \mu(B_k) = a.$$

Let us observe that if measure μ is σ - \perp -decomposable, $\mu(\bigcup_{n=1}^{\infty}A_n)=\bigcup_{n=1}^{\infty}\mu(A_n)$ and, obviously, $\bigcup_{n=1}^{\infty}A_n$ is a measurable set on which μ takes value a. Also in the general case, when μ is \perp -decomposable; it happens that

Indeed

$$\mu(\bigcup_{n=1}^{\infty}A_n)\leqslant \underset{n=1}{\overset{k+1}{\perp}}\mu(A_n)\perp\mu(B_{k+1})\leqslant \underset{n=1}{\overset{k+1}{\perp}}\mu(A_n)\perp \frac{1}{2^{k+1}}.$$

Finally, for $k \to \infty$, $\mu(\bigcup_{n=1}^{\infty} A_n) \le \bigcup_{n=1}^{\infty} \mu(A_n) = a$ and, recalling P2, equality (5) follows.

References

[1] M. A. Arbib, Generalizations of Lyapunov's theorem on the range of a vector measure, J. Math. Mech. (4) 15 (1966), 609-616.

- [2] R. J. AUMANN and L. S. SHAPLEY, Values of non-atomic games, Princeton University Press, Princeton, NJ, 1974.
- [3] K. P. S. Bhaskara Rao and M. Bhaskara Rao, *Theory of charges*, Academic Press, London, 1983.
- [4] G. Choquet, Theory of capacities, Ann. Inst. Fourier, Grenoble (5) (1953/1954), 131-292.
- [5] P. R. HALMOS, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948) 416-421.
- [6] W. HILDENBRAND, Core of an economy in "Handbook of mathematical economics", vol. 2 (K. J. Arrow and M. D. Intriligator, eds.) North-Holland, 1982.
- [7] J. KAMPÉ DE FÉRIET and P. BENVENUTI, Sur une classe d'informations, C. R. Acad. Sc. Paris 269 (1969), 97-101.
- [8] J. KAMPÉ DE FÉRIET and B. FORTE, Information et probabilité, C. R. Acad. Sc. Paris (1967), 110-114.
- [9] J. LINDENSTRAUSS, A short proof of Lyapunoff's convexity theorem, J. Math. Mech. (6) 15 (1966), 971-972.
- [10] C. H. LING, Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189-212.
- [11] A. A. LYAPUNOV, Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. URSS Sér. Math. 4 (1940), 465-478.
- [12] K. MENGER, Statistical metrics, Proc. Nat. Acad. Sci. USA 28 (1942), 535-537.
- [13] E. PAP, On non additives set-functions, Atti Sem. Mat. Fis. Univ. Modena (to appear).
- [14] B. Schweizer and A. Sklar, *Probabilistic metric spaces*, North-Holland, Amsterdam, 1983.
- [15] M. SQUILLANTE and A. G. S. VENTRE, A Yosida-Hewitt like theorem for \(\precedef \) decomposable measures, Ricerche Mat. (to appear).
- [16] M. SQUILLANTE, A. G. S. VENTRE and S. WEBER, Closure and convergence properties for classes of decomposable measures, Riv. Mat. Univ. Parma (to appear).
- [17] A. G. S. Ventre, Evaluations of fuzzy sets based on orderings and measures, Stochastica XI (1987), 35-44.
- [18] S. Weber, \(\perp \)-decomposable measures and integrals for archimedean t-conorm, J. Math. Anal. Appl. 101 (1984), 114-138.

Abstract

Topological properties of the range of measures which are decomposable with respect to an archimedean t-conorm are studied. A Lyapunov's theorem is proved for such a class of measures.
