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CHEN JIAN-NING (*¥)

On Ikenberry’s theorem (*%)

1 - Introduction

Let F(t, x, &) be a molecular density at the place x and time ¢ with velocity &,
& and &, be velocities of two particles before collision and &' and &} be their
velocities after collision. Set w =&, ~ &, w' =& — &', then w and w’ are relative
velocities before collision and after collision, respectiveli, with angle ¢ between
them. Also let = be the angle between the plane of w and w’ and the plane
containing w and a direction fixed in space, and let S(6, w) be the scattering
factor with 6=4(z —¢). Now we can write the following expression for the
Maxwell collisions operator [1]

@) CF = [(F'F', — FFy) S(6, w) sin6d0dedz,.

In this formula Fy, F' and F, stand for F with its argument & replaced by &, &'
and &, respectively. Integration with respect to & is over three-dimensional
velocity space and integrations with respect to 6 and ¢ are from 0 to /2 and 0 to
2z, respectively. For any function g¢(f, x, &), the total collisions operator is
defined by

@ Cg=[gCF dt.

Using the properties of the total collisions operator, under certain conditions
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we can rewrite the operator (2) in the following form [1]

3) Cg=1[FF,Bgdsds,

Bg being given by

(4) Bg=[(g’ + gk —9g—g5) S, w) singdode.

In the kinetic theory of gases, the problem of evaluating Cg for certain
function g is very important, because when we study the system of equation for
moments or carry on approximate calculation for expansion of molecular density
F, we need to evaluate the total collisions operator. In a gas of Maxwellian
molecules, making use of the general structure of the total collision integrals,
existence, uniqueness and a trend to equilibrium to the initial-value problem for
Boltzmann equation can be given (ef. [1]).

The number density = and the velocity field u are defined as follows

n=[FdE u=%IF§d§.

Let ¢=&—~u, Ikenberry [2] introduced polynomials ¥, with components
Y,=Yi4.x. They are harmonic functions obtained by subtracting from
Cr, Cr, - - Ci, that homogeneous symmetric polynomial of degree s in the componen-
ts of ¢ such as to annul the result of contracting the components of Y, on any pair
of indices. The first few Y, are

2
Y(C) =1 Yk(c) =Ck Ykm(c) = CpCp — 23_81»'"1

3 6 4 4
Ykmr(c) = CpCpCr— 7 02 C(ké\mr) Ykmrs(c) =CrpCnCrCs— = 62 CitC,m o\rs) + 4 a(km ars)
5 7 35

in which, parentheses around a set of s subseripts indicates the sum over the s!
permutations of the indices, divided by s!. If A, _,, is an s™order tensor, Agyiy
is the totally symmetric tensor obtained by symmetrizing A, x,. A+, denotes
the totally symmetric traceless tensor constructed form Ay, x,- It is not difficulty
to derive the following general formula for Ay, 4,

[4a)
®) Ay = 2 05 AR breon Stacagstrcsgsz -+ i) where
P : .
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s!@s—2¢+ D! @2s+1)

© by=(=1r -2 Gl @s+ DI @s—2g+ 1)

) —
A;cql...k,_zq - A(kl‘..k,_gqmlm,...mqm‘p .

Using these, we obtain [1]

[£5]
(7) YS(C) = Ykl...k,(c) = C(k1 ee ck,) = Eo bg CZq C(kl ves ck,—zq 3],’_2‘1“;63_2”2 vee Sk‘_lkx, .
9=

In [2], homogeneous polynomials Y;,., of degree 2r+s are defined by
(8) YZris(c) = 021- Y s(c) .

These polynomials form a complete set: any symmetric polynomial can be
expressed uniquely as a linear combination of them. For example [1]

lis]

) Chyoee G, = an; Y gty ke-2,{€) Gy gy srdi-taz ++ sy
z

a; being given by

s1(2s —4q + !

(10) U= (s —2g)! @ @s —2¢ + DI’

Corresponding to each polynomial Y545, the spherical moment Py, is defined
as follows

PZr]s = mIFY2r[3(c) dg

m being molecular mass. The sum 2r + s is the order of the spherical moment
Pays-

Ikenberry [2] revealed the structure of collision integrals for a gas of
Maxwellian molecules. He proved that ¢¥,, = — Cars P2js plus a bilinear combina-
tion of the spherical moments of lower orders, the sum of the orders in each term
being 2r + s. He evaluated explicitly only the coefficient cs,, and did not obtain
the coefficients in the bilinear combination. In this paper, the coefficients in the
bilinear combination are given explicitly. We shall see that the expressions of
these coefficients are very complex. First we state
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Ikenberry’s Theorem. In a gas of Maxwellian molecules, if F possesses
moments of order 1,...,2r+ s and is as to render (3) valid when g =Y,,,, then

mCYZrls = — Corls PZrls + QZrls 2r+s=1.

Qa5 8 @ bilinear function spherical moments the orders of which are positive
numbers whose sum is 2r+s

QZrls = 2 Crimls,ses P2rllsl P2r2[82
2r+822r+85>0 2r+s,+2rt+s,=2r+s.

the tensorial cogfficient C,yo, s @ function of m and g alone, and the scalar
cogfficients Coy, is given as follows

B ‘
Corls = 27 | (1 — cos¥**6P(cos §) — sin®** 6P,(sin 6)) S(6) sin 6 do
0

m which P denotes the Legendre polynomial of order s.
In the next section, we give some formulae which will be used in the

caleulation of Q.. In the last section, we obtain a refined form of Ikenberry’s
theorem which include explicit expression Qars-

2 - Basic formulae

Set v=cy + ¢, w=cy— ¢, from the laws of momentum and energy it follows
that v=v', w=w'. In order to evaluate Qq, we need the following formulae:

Formula 1.
14) JY (W) de =2rP(cos ¢) Y (w).

Formula 2.

r 3
(15) "y ch, + T Chy, .- Chr, = Zo od;;;(vz + WO W)W, .o Wi Viyy-oe Vi
p=0 q=
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dy; being given by

(16) drs = 2W_,,(p)( YA+ (=174,

Obviously, when p +q is odd, dy;=0.

Formula 3. Let p), p; and p; be non-negative integers. If » —p,;, p; — pe
and p, — ps; are non-negative, then

pz r—-p
an (2% + WY P (p - w)PrPryPPa PPy = >3 eybyPaPs C2q cz(r—p e ¢ o
p=0 ¢=0
in which
(18) e;»,lénpams
imi"(Pz“Px-P) min(p; -py, p} riort Ps P2 — p3 pl p2 7~+p2 pL—p
> b (=aywzrrn X X ).
i=max(0, p—pg) F=max(0, p+q+p1—T—pz} q .7
~Formula 4.
(19) Wity ve W, Vg ove Vi) = D T 5T Cty ovv Ch oty o Coky) where
. p=0
min{g, p)
IS4
(20) = (=10 . ).
? i:max(%:zwq—a) ( 1 )(p -1 )

Formula 5. Let Am.--nm-z(,, and By, .n, be two symmetric tensors, whose
orders are p++q—2¢; and p respectively. Set L=k (1<i<q), li,=my
(I=<i<p). If p=gq, then

@1 B

M.y A(ll-"lwq—&n é\lrﬂ-&uﬂ lpsg-2gqe2 """ é‘lp+q-1lp+q)

min(2q), p)

= 2y ‘Mx
. m’% % q)g A‘m;...m,,,_,,l(k;...k,,,,,,l_zql qu+»1—2<n+1'"kv)ml"'mﬁ—m"'lal'"“Prlu‘zprﬂ +R
1=max(gy, 24;—

in which

1
22) gg;q.m: ( )(
(p+q)(2q1_1)!, P 2q1
2q

)(

@ 1@2p, — 2q, — DI,
20; — p) ¢, —p)! 2p, 4 )
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In the expression (21), R denotes a sum each term of which includes at least one

&y, (1<%, j<q), that is to say ¢ has tensorial indices kik;.
We often use the following three special cases:

Case 1. If By, .m,= b, bu,... by, then

(23) bml " bmpA(ll'"lpw-qu é\lp+q-241+llp+q-2m+2 o alwq—llp«‘q)
min2g;, p)
= 0,001 h2e1—q1)
» _mm(% 20 o™ b bml bmp-pxAml-'-mp-m(kl-"kvwl-zn b"vm-&n*l bkq) +R.
1= 1» 41~
Case 2. If By, = b, - bum,s Am._,nm_z‘n = Oy - Qprgezg, LhEN
by ovs O, @y oon Qy, y Brprgpgsrbprg—gprz e Oyt
min(2gy, p)
= D.0:0 h2P1~q1)
= 2 9p; 1 h2er-90) (b - @)P~ p‘a(kl Qg 201 bkﬂﬂr%“'" bkq)) +R.

pr=max(g), 291 -9)

Case 3. If Bml...mp 18 @ traceless tensor, then

(25) Bm, mpA(ll dpyg-2g 3[

prq-2ay+ilpro-2gys2* 8lp+q—llp+y>

PG A
=g —q)ghtt Ay, gy Csen gy By gy areoimyem, o, + R

the function ¥z) being defined by &(x) =<
0 x<0.

Proof. First, Formula 1 can be found in paper [2].
Using v=cy+¢, w=cy—c, v=0' and w=w’, we find that

€' Cy e O, F CF Chty e Che, = s [V + WP — 20 W'Y (0, — W) ... (v, — wy,)

22r+a

+ @+ w + 20 w') (v, + W) ... (0, +wi)].

Next, we expand the terms (v* + w* — 2v - w')" and (v* + w? + 2v - w')" by using
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the binomial theorem

@P+u?—2v-w'y = E,: (; W=1P @2+ w?)?Qv-w')

P +u?+20-w')y = z (; Y@+ wPP2v - w'y? .

For the expressions (v, —wj,)... (v, —wi) and O, + wi) ... (v, +w}), it is
not difficult to see that followmg varlant of the binomial theorem is valid:

8
8
W, = Wi oo W, —wi) =3 ( g M= D)W, oo Wy V- en sy

8
S
(’Ukl +w,@l)... (’l)k"i“w;c‘) = 20( q )'I/U(kl... wkq'qu“...'Uka).
9=

Combining these expressions, we easily obtain Formula 2.
For Formula 3, we have

(V% + WP P (v - w)PrP2 2P 2P

= [2(c® + Q)T P(ck — AP Puch + 2 + 2 - €4 )P (¢ + €2 — 2¢ - € PP

P2mP3 P3

= z z (p2;p3 )(I;c3 )(_ 1) 2r'p‘+i+k(ci — cpi-re (ci + 62)r+p2-p1—i~k (c- C*)“'k

i=0 k=0

Pp=p3 Pz PI7P2 ripp—py~i-k — — T+ Do =Py — 1 —
=3 X z > (pz ; pz)(I;ca)(Pl .PZ)( P2 lpl
i=0 k=0 j=0 1=0 7

- (= 1) Qropititk 24D C.;Zér—i—k-j—l) (c- c*)i+k .

In the above expression, set p=1i+#, g=j+k to obtain

(26) (% + wP)ym (U - w)PrP2 %P3 4y202=py)

po~pg P8t P1=p2 v+pp-pi~p+j

go pzo ]20 Z ( P3 )(Pz Ps)(pl pz)(’l‘-f-p; fl p)

(= 1) 2re-p o 62*(6r~p—q) (c-cy)r.
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Next, we exchange the orders of the following summations

Pe—p3 p3t+i p2  min(py—pg,p) pr~pa TtP2~P1-PH 1P min(py ~pz, 9)
i=0 p=i p=0 i=max(0,p~p3 ji=0 g=j ¢=90 j=max(0, p+g+p1~r—ps)

Putting these two expressmns into (26) and rearranging, we obtain the
Formula 3.

Using w = ¢y~ ¢ and v = ¢4 + ¢, and multiplying out the symmetric tensor
Wity + v Wi, VU, -+ Vky We can show that the equality (19) must hold. Now, it
remains to calculate the coefficients of cg, ... ¢ Cys,,, - Cir)» We take i compo-
nents of ¢ out of the components of w and p —1i components of ¢ out of the

components of v, the total of which is (3)(;13) with 0<<i<gq and

0<p-—i<s—gq, of which the sign is (—1)". Hence, (20) is valid.
Finally, we prove Formula 5. Since A, is a symmetric tensor,
(2¢I1)

é‘(nm,_,...s,,zﬂ_l,,m) has 20

da &

p+q-241+llp+v-2ﬂ+2 pro-tlptg

Mp+rq-241

oy =(2¢,— D!! different terms; hence A, lpsg-2)
1

) has (p2q q)(2q1 — D!! different terms, these terms can
1

be divided into two classes, one including those terms in which two indices of
each ¢ have at least one out of the values m,, ms, ... m,, the other including those
terms each of which has at least one &, (1=<1, j=<¢). When terms in the second
class muliplied by B, ., are summed, they obviuosly become the expression B
in the right hand of (21), and when terms in the first class multiplied by Bi,,...m,
are summed, the result does not include 6. Now we calculate the total number of
the terms of the first class. First, we take 2q, indices out of I, ..., l,4,, in which
p: indices are taken out of my,...,m,, and 2¢,—p, indices are taken out of
ky, ..., ky. Obviously, they must satisfy that 0<p,<p, and 0=<2q, —p,<q. The

total way is ( 5 X 2 7 p ). We put these 2¢; indices on g; ¢, and other p + g — 2¢,
1 1™ A

indices on tensor Anl---np+q-zq,- In order to obtain the first class, we meat have ¢, <p,
and each ¢ at most has one index out of %, ..., k,. From the three inequalities
mentioned above, we obtain that max(q;, 2¢, — ¢) < p, < min(p, 2¢y). By using the
principle of multiplication, the total number of the terms of the first

24, — po)! (2p1 — 2g, — D).
2, — p)(2q 2 )@= ! @pi 20— 1)

Finally, summing the products of B, .., by the terms of the first class and
using the definition of parentheses around a set of indices, we readily derive the

class for fixed p, are ( )(
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following formula

Bm,‘..mx,14(!,...1,,,,‘,_24l 8!p+q—2q1+1 Ip+q-2q 42+ CS\lp+q--1 Ip+q)

min(2qy, )

= 21
2 gpl Aml...m,,_m(k,...kq,,m_qu quﬂl_gﬂﬂ...kq)ml...m,,_ma,al...am_ﬂam_n + R
p=max(qy, 21 ~q)

in which

o = ! (p)( p

)(2¢I1 - py! (2p1 =2¢q,— D!
1

2qp

This is precisely the expressions (21) and (22). Hence we have completed the
proof of the Formula 1 to Formula 5.

We have the following properties for the parentheses and the braces around a
set of indices:

Property 1.

@n Aty dey iy =0.

Property 2. If A 4, is an s™-order totally symmetric traceless tensor,
then

(28) Ay ey = A, -

Property 3. If Croty = Apyok, + By 1,s then
(29) Cltpe) = Aty + By
(30) Clrpy = Aty + By -

Property 4,

@D A((kl...k.,)k.,ﬂ...k,) = A(kl...k,) .

From (5) and (6) it is not difficult to derive (27), and (28)-(31) are obvious.
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3 - Calculation of Q5

Having obtained the basic formulae stated in the proceeding section, we can
proceed to calculate Qyy,- From (3) and (4), we know that the unique difficulty in
calculating @, is to evaluate the integral J(Yarsle) + Yaqlci)) de. We see from
the proof of Theorem 1 in Chapter XIV of [1] that if g is a polynomial of degree m
in the components of ¢, then f(g(c’) + g(ey)) de is a homogeneous polynomial of
degree m in the components of ¢ and c4. Thus if g=Yu(e), [(Xaslc)
+ Y;4(c})) de is a homogeneous polynomial of degree 2r + s, which is also an sth-
order symmetric tensor, and it must have the following form

22

of (YVanle") + Yaqlel)) de = 3 Bl 1p P &g (€ €5 Cty - €, Oty -+ Cky + R
where [ +n+ k=7, B}, is a constant and R is a homogeneous polynomial of
degree 2r + s each of which is an s*-order tensor, which includes at least one &y,
(1<4, j<s). In the rest of the paper, R always has this meaning, although in
each instance R is different. Since the left-hand side of the above expression is
traceless, using (28), (30) and (27) we find that

2=
Of (Vo€ + Yoqeel) de =3 Bis i p P Cr(€ - €4 €ty oo Ck, oy o+ Coty) -

We see from that we need only caleulate the terms which do not include 4,
(1<1, j<s). In virtue of (15), we have

32) § (Tans(€) + Yanslcl)) de

2=
= [ (¢ ci, ... ch,+ CF Cipy -o- Ciar) de + R
0

r 8 2z
= 2 2 d;';fql ('Uz + ,M)Z)r—pl _f (v . w’)”l W(’kl e ’w;,‘q 'quﬂ eee Uny de+R
0

P1=0 ¢1=0

dy; being given by (16).
Now we proceed to evaluate the integrals in the right-hand side of (32). Set
L=k A<i<q), Ly, =m; 1Si<py); in view of (7), (9) and (14), we find that

2= 2z
’ I 14 —— ' ' ? !
of (- wPrw,...w, de= 0_[ Uy -+ Vi Why o+ Wi, W, oo wy,, de.
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2= [pp+qpl

— +

= Uy ees Um, I 3 aprouwy, ,
0 p2=0

(w")e,

P1+q1-2p2+1 lm+v1-2x>2+2

Y

P1+91~2p2 pr+ar=1 bpprey)

min({ip1+q) p1)
— +
=2r ¥ Puug-splcosg) afitrwu, v,

p2=0
X Y(ll"-lpmr?m(w) alpﬁqupzﬂ boyra-2og+2*"" é\lpﬁvrl bpyrqp) +R
miniipy+qp),p)  min(lipy +9i-p2. P12
= P1+q2 ho1+q1~2p2 5 12(pa+q2)
2r 3 > Py, +q,-2p, (COS §) byt bl w?
pz=0 92=0
x Unmy - ’vmm Wy -+ W lp1+¢11—20>z+vz>alpmx-%’z'wz)ﬂ bpyrar-2pprapez 8’}’1«‘41—1 - +R.

a; and b; being given by (10) and (6), P, being the Legendre polynomial of order
! In the above expression, the upper limits of summation indices p, and g, have
been changed from [{(p; +¢p] and [3(p, + ¢1)] — p; to min([k(p, + q1)], py) and
min([¥(p; + q)] — ps, p1— o), respectively because the terms with p,>p, and
¢2>p1 — Pz include at least one k;k; (1 <1, j <) and so are included in expression
R. Using (24), we obtain

2=
(33) Jw-wPw... w, de
0
min((py+qlpy)  mindipy+p)~p2, p1—p2) min(&pg+g2), p1)
— + +q1~2 quPz+
=2 z Z Z ppl_’_ql_zpz(cos ¢) a;; £} bgzl (§] Pzggl quP2tqe
p2=0 92=0 n=max(pa-+qz, 2(p2+92)—qp)

X WPt Z0p0d (p - )Py, v Uy +R

ver wkql+n—2(p2+q2) a1 +n-2pp+gp+1

95,9 being given by (22).
Putting (33) into (32) and using (29), (81), (17) and (19), we see that

2=
(34) J (Venele’) + Yanslel)) de
0
r + minlipy+elp)  minipy +e9))-p2, p1—p2) min@(pa+q2), py)
= Z 2 2 z . 2 2 PP1+‘11'2P2(COS ¢) ag;ﬂh
P1=0 q1=0 p2=0 92=0 n=max(p2+qg, 2pg+g2)—q1)

X bota-teegns gbudubrtle (y? + o2y P (p - )i et e g 2n-pr-g)

X W, eoe Vg +R

e wkql+n—2(pz+q2) vkq1+n—2(pz+qz)+l
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r & minlipy+q) pr)  min{lipy +91))~p2. p1—-p2) min(2(pa+g2), p1) n repy &
=2 2 X 2 2 2 2 2Py (cos¢)
p1=0 q1=0 p2=0 ga=0 n=max(pz+qz, 2pz+el-q1)  pg=0 g93=0 t=0

PrHqL hPta—2p2 Jrs  orpunn—pr=qz £3,q1+0-2p2+q2) 4P1,q1,P2+ G2
X afi* bl Ao Gt fi ga"

X 28 PP (€ €y )PP Cyp, . Ck, Cophyy o+ Cky T R

ephP? and f37 being given by (18) and (20).
In order to simplify the expression (34), we shall use the following formulae,
which are easily verified

min(2(pa+q2), 71) n min(2(p2+g2), pr) min(2pz-+42), py)
(35) 2 = 2
n=max(pe+qz, 2pate2)—~q1) p3=0 pg=0 n=max(pg, pa+92, 2p2+q2)—q1)

min({hpy+g1))~p2, p1-p2) min@lpz+g2),p1) min(2(i(py+q) py) min(lipy+g2))-p2, p1~p2)

(36) > z =

avy
=0 pa=0 Pg=0 go=max(0, {pg+1)I~pg)
s min(ipy+qlpy  min@E)+a),py s
@D S0y = 3 .
0=0 p3=0 pp=0 qr=max(0, p3~25)
r min@Rlipy+9))p1) min(2[}(r+2)),7) *
(38 2 2 = 2 > .
p=0 pg="0 pg=0 pr=max(pg, 2i(pz -2+ 1))
Set
r s min((ipy+qp)), p1) min{lipy+91)1-p2, p1-p2)
(39) Byl = N
py=max(pg, 2(ipg—s+1)]) gy=max(d,p3~265D p2=0 ga=max(0, [i{pg+1)-p2)

min(2(pz+ge), 1)
X E 2n-a§;+th pertam—2pz drs

enPL =T~ f 3,q1+1~2(p2+q2)
92 P19t t
n=max(py, pat+qz, 2pa+e)-q1)

P33

/2
X gﬁn‘]hpz"'% of Ppl""lx“ZPZ (COS ¢) S(@, W) Sill 6 d9 .

Since ¢=r—26, By, is a function of the relation speed w. In case of
Maxwellian molecules, S being a function of 6 alone, Bj;, ., is a constant.
Substituting (35)-(38) into (34) and using (4), (27), (28) and (30), we derive the
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following result

min(r+s,7) r-pg

(40) BYZr[s(c) = 2 Z 2 B;'as,%, ¢ s ngf*ﬂa—%) (c-e)

Pg=0 g3=0 t=0

=/2

X City +ee Cht, oty oo Oty — ZnOf S(6, w) sin 6d6[Y5,i5(€) + Yanelcy)] .

In order to obtain the final result, we need to expand 20 EfP1) (€ - gy )P
Clts...k .y I @ bilinear combination of polynomials in the components ¢ and Cx
defined by Ikenberry. Setting l;=k; (1<is<?), L, =m; (1<i< Ps), in virtue of
(9) and (23) we find that

4D (€ )2y .. k= Comy -+« Copmpy Cay - C, Cmy +++ Conpg

min({i(¢+p3)), p3)

= t+pg p2a.
Cxmy ... Coxmp, 20 Qg P8 C™ Y(ll'"lt-)-pa-hl(c) 6lt+p3—2a1+llt+p3—2al+2 all+p3—ll(+m) +R
al =

minlit+pg)l pg)  min(ay, pg

— i+ o4y A2a; A2(a0—ay)
= E 2 aalpsggg 16 xciaz xc*ml...c*mpa_%
ay=0 ag=max(ay, 2a; )

X le---mps-az(kx--—kt+a2-2a,(c) c*kt-wz-&q-ﬂ oor Ceky +R.
Similarly, using (9) and (25), we obtain

(42) le---mps—agkr‘kuaz-ml(c) C*kt-mz-zqﬂ »+v Copley Coeyyy o0 Cok, Copmy +++ Cokmpy—az

min(s+2a) ~t~a3, p3—-ay)
— Pat+3+2a1~t—2ay oD3—~a, s+2ay~t~ay, ag
> aq; Ga; #T c%gs
ag=0

XY,

x...m,,s_uz..aakl...k,Mz_zalkHaz..gal.,_,...ktﬂz,,‘,s_z,,l(c) Yk‘+aq+a3—2al+1..,k,m1...mpa_n2_,,3(ca|e) +R.
Making use of (41), (42), (27)-(81) and (8), we easily see that

43) c%s Czﬂ(:_pa_q:’) X C*)ps Clleyenkty Coihepyy -2 Cixk,}

min({§(t+p3)], p3) min(2ay, ag) min(s+2a;—¢~ag, pg—ag)
— t+pg yp3+8+2a,~t—2ay
= a/al aas

a;=0 ag=max(ay, 2ay~t) ag=0
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D31 yP3—az,8+2a1—t—ap,03
X gag ‘953 ! Yz(q3+a'l)|ml---”lm—az-ugkl"-kl+a2+as—2al(c)

X Y2(r_QS—al_p3+a2+a3)]kl+ag+ng—2al+l~~-ktml-"’nm-az—a:;(c‘*) .
Exchanging the order of summation, we get

min@{ir+9),7) r~pz 2 min{{it+pg)l, pp) min(2ay, p3) min{s+2ay~t-ag, pg—az)

(44) > 22X 2

p3=0 gg=0 t=0 ayp=0 ag=max(ay, 2a;-1) ag=0

min(ir+8)},7) minr-ay, s+r-2ap) min(ay, r~qg, ZHr+a)l)  mine, r-gz—ag, 2Alr+a)l-ap) min@(r+s)),7-qg) min(s, s+2a)~az—ay)

= 2 > > > 2

ay=0 g3=0 ag=max(ay, 2a;-8) ag=0 p3=ap+ag t=2aj-ag

Let > * denote the summation operator defined by the right-hand side of (44).
Placing (43) into (40) and using (44), we have

' - 'k 7.8
(45) BYZ""? - z Bps,f]a,!,al,ag,a{; Yz(qs""al)lmb--mps-az—a3kl-"kl+az+a3—2nl(c)

X YZ(r—qs-al—p3+a2+a3)]k,+,,2+as_ml+,...k,ml...mm_az_,,z(c*)
=2
=27 [ S(6, w) sin0d6(Yyqs(c) + Yarsley)
[
in which

46) By

= Rn¢ t4py o D3+8+2a1~t—205 4P3,t,01 D3~ 02,8+ 20 10,03
Pa3,4,01,02,05 g, ™ Qg 9o Goi .

P3:q5t

Setting gs+ a; =1, ps—a;—as =k, and t + a + a3 — 2a; = p, and exchanging the
order of summations we find that

min@r+9),n) r—-k ¢

CY)) BYoe= 2 2 2 MALL,

k=0 1=0 p=0
X Y2llm;...m,‘kl...kp(c) YZ(r—-l—k)Ika...k.ml...mk(cale)

=2
—2r I S(B’ w) sin 6d6[Y2,-|3(C) + YZr[s(c-*-)]
L1}
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in which
1 min({itr+8)], {, 20(r+ )]k, s+r—1=k~p, s +1]+ [is—p~k))
78 e
(48) ARlp= 2
m ay=0
xnin(°.a1,2[i(z'+s)}«k,r+al-l—k) min(p,r+a1—l—k~ug.2[3(r+s)]——a3-k)
7,8
X ; 2 Bk+a2+a3,I—al,p+2a1—ag—as,al,ae,ag .
ap=max(ay, 2a; s, p+2a;~25) ag=max(0, p+2a;—s—ag)

It follows from (4) that BY >, is a symmetric funetion in the components of ¢ and
x5 80 ARj,= AR5 4. For Maxwellian molecules, S(6, w) = S(6), and Apd, is
independent of the relative speed w. It follows from (47) that BY,y is a
polynomial in the components of ¢ and ¢y and its linear part is

(MAFS0— 27 [ S(6) sin0d6)(Fanu(c) + Vas(en) -
0

Placing (47) into (3) and using (10) and the Ikenberry’s theorem, we obtain the
following result

Theorem. Under the assumptions leading to Ikenberry’s theorem

(49) mCYZ,.[s = - C27~’s Pg,-}s + Qg,.ls 2r+s=0
n which
min@(r+s)], 1) r—k s )
(50) Q2"%S = 2 z —ZI—A}L',?,p[l - 6Ok(801 3012 + 0\7'1 ’3sp)]
k=0 =0 p=0

X PZlbnl...mk(kl‘..kp PZ(r—k——l)Ik,H.1...k5)ml...mk

Afip being given (48). Using the symmetry of (50), we can write (50) also in the
Jollowing way

min@{(r+5)], 1)

(51) Q2r|3 = Z Z Az’j,p[l - akO arl Oasp - %O\l,v'—k—l ap,s-—p]
k=0 Oslsr-k,0spss

21+p2%+r—k

X P2l[ml...mk(kl,..kp P2(r—l—k)|k,,+1...ks}ml...mk .
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We see from (48), (46) and (39) that the general expression Ajj, is very
complex, but in one special case =0, the result is very simple

(62) QO}s = ZO%Agig,p(l - 301; - asp) POJ{k,...kP POIka...ks}
s
5-1
Z A, 1 =48,5-) Pogay e, Poik, iy in which
[34’1] 7 P
[4s} 2
(53) Ay, = z ( Vel f Po(cos ¢) S(0) sinodo

232

/3% being defined by (20).
The expression (563) is easily obtained from its definition. First, we know from
(48), (46) and (39) that

0,5 — PO — 1o, —p 0.5.0 A0,5—p,0
AgSp = Boipoo =By abai™ go" g0 P

s =2

= E =af by dgs, €80 £ b afag P gdrO gyt [ Py (cos ¢) S(6) singdo.
[

Next, by (6), (10), (16), (18) and (20), we obtain

=2

A= S 2,-;21 L+ (=1 f57 J Py cos $)S©) sinods
1=0

[is] =2

=3 5 zsq F3% ] Palcos 9)S(0) sinodo.
g=0

This is precisely the expression (53).
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