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DANUT MARCU (%)

Note on the algebraic matroids (*%)

Introduction

When we use the word geometry, we mean an independence structure with
the exchange property on a possible infinite set. We shall call matroid, a
geometry on a finite set.

Let F be a field and K an extension of . Algebraic independence in K over F'
gives a geometry. If F' and K are algebraically closed fields, we have a full
. algebraic geometry or FAG, for brevity.

‘ The points in a FAG have the form F(x), where « is transcendental over F and
the bar denotes algebraic closure.

The lines of a FAG have the form F(x, y), where x and y are algebraically
independent transcendentals over F. More generally, a flat of rank » has the
form F(z,, ..., x,), with xy, ..., x, algebraically independent over F.

Lindstrom [5]; did prove the converse of Desargues’ Theorem for FAG’s, by
applying a Lemma of Ingleton and Main [3]. The Ingleton-Main Lemma was
generalized by Dress and Lovasz [2] (for full algebraic matroids) to the Series
Reduction Theorem, and a further generalization gave the concept of pseudomo-
dular lattice, in the paper of Bjorner and Lovasz [1]. Among many equivalent
formulations for pseudomodularity of a semimodular lattice, we choose one
which comes quite close to the Ingleton-Main Lemma: let u, v, w be flats in the
lattice and assume that % covers uAw and v covers vAw. Then,
riuNv)—riuAvAw)<1.

The Ingleton-Main Liemma is the special case 7(u) = r(v) = r(w) = 8. The proof
that we shall give of pseudomodularity for FAG’s is elementary and is construc-
tive.

(*) Indirizzo: Str. Pasului 3, Sect. 2, R-70241-Bucharest.
(**) Ricevuto: 24-V-1988.
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1 — In the sequel, I denotes one of the rings Z or GF(p), for a prime p.
A main tool in the proofs will be the following result ([7], Theorem 1 or [4],
Theorem 5.6).

Seidenberg’s Theorem. Consider a system
1) Fi=0,.,F;=0 G+#0

where the F; and G are elements of the ring I[ay, ..., a,; Xi, ..., X,]. There
exists a finite number of systems

(RJ) f}1=0, eeny f}sj‘—‘O g]¢0

where f; and g; are elements in the ring I[ay, ..., a,], having the following
property: for any field K containing /, any extension field L of K and any values
@; in K of the a;, the system (1), obtained from (1) by replacing the a; by @;, has a
solution in some algebraic extension field of L if and only if for at least one j the
@; form a solution of (R;).

Moreover, the (R;) can be computed within a finite number of steps,
depending only on the F; and G.

Before we give the proof of Piff's Conjecture, we would like to discuss a
simple example, which is much of a clue to the proof.

Example. We consider a matroid of rank 2 with three elements z, ¥y, 2
which form a circuit of the matroid. Hence, all 2-sets are bases of the matroid.
For an algebraic representation of this matroid, let « and y be algebraically
independent over F(f) and let the third element z satisfy the equation
Z—@+yz+A—txy=0. It is not hard to see that this gives an algebraic
representation of the matroid. Suppose we wish to substitute a number for ¢
from F or an algebraic extension of F'; we want another algebraic representation
of the matroid, if possible one over F.

Question. Which numbers should be avoided, and how do we find them?

Guess. Choose t, such that coefficients do not disappear. If we substitute 0 for
t, we shall get 2 — (x + y)z + 2y = 0. Hence, z=2x or y. Not the same matroid!

Another guess. Choose ¢, such that the polynomial becomes irreducible over
F(z, y). Wrong again! Take t=1; z=x+y is acceptable.
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In fact, it turns out that ¢ = 0 is the only exceptional value. How do we find it?

Suppose we postulate that x and y are algebraically independent transcen-
dentals over F(f). Solving the equation in x, we get = (22— y2)/(z — (1 — D) y).
Hence, x and y are in the algebraic closure of the field Fi(f) (y, 2). This implies
that y and z are algebraically independent over F(f). Similarly, we can prove that
x« and z are independent. There are two restrictions: z— (1 — 8y +#0 and
2— (1 — ) x #0, which contain the unknown z. By using Seidenberg’s Theorem,
we can eliminate z and get conditions of the form fi(t, z, y)=0, g,(¢, », y)#0.
The first one is an identity; it can be dropped.

The second one, g,t, =, y)#0, gives a necessary and sufficient condition for
the existence of 2, such that x, y, z will be an algebraic representation of the
matroid. Hence, we choose a number «, such that g,«, , y)#0. It may be
necessary to choose « in an algebraic extension of F, if F' is finite. Then, we apply
the following lemma of Piff [6].

Lemma. If amatroid M is algebraic over Fa), where a is algebraic over F,
then M is algebraic over F.

Proof. Consider a circuit {,, ..., a,} in the algebraic matroid M over F(x).
Then, we have P(a,, ..., a,) =0, for some non zero polynomial P(X;, ..., X,)
over F(a). It follows that a, is algebraic over F(«, as, ..., a,). Since « is algebraic
over F, it follows that a, is algebraic over F(as, ..., a,). There exists, therefore,
a polynomial Q(X;, ..., X,), over F, such that Q(a,, ..., a,)=0.

2 - The main results
The following result was conjectured by Piff [6].

Theorem 1. Assume that the matroid M is algebraic over a field F(t),
where t is transcendent over F. Then, M is algebraic over F.

Proof. Letx, ..., 2, be a fixed basis of the algebraic matroid M over F(z).
Let y1, ..., y. be the remaining elements of the matroid. For each circuit C of the
matroid, there exists a polynomial Py(X; ..., X,, Y, ..., Y,), over F(f), such
that Pe(xy, ..., &, %1, --., ¥2) =0. The polynomial P, contains, explicitely, only
those variables which correspond to elements of C. Let K;eF(f) be the
coefficient of a non constant term in Pg.
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For each basis B of M and each «; not in B, there exists a fundamental circuit
C = C(x;, B), containing x; and some elements from B. Let K ; be the coefficient
of the highest power of X; of the polynomial P, regarded as a polynomial in the
variable X;. K¢; is a polynomial in the variables which correspond to the
elements of B n C. The set of all circuits in M is denoted by &. The subset of
circuits of type C(x;, B) is denoted by .

Any solution X, =2, ..., ¥, =v,, with x;, ..., x, algebraically independent
over F'(t), to the system of equations and inequations P¢(X;, ..., Y,) =0, Ko #0
for Ce G and K¢;#0 for C e & will be an algebraic representation of M over
F(?). This is also true, if we substitute a number in some algebraic extension of I
for ¢ (we may assume that all coefficients belong to F[t]).

The condition K;#0 implies that the polynomial P,+0, after such a
substitution, and the elements of C will be a dependent set in the new
representation. The condition K¢ ;+# 0 implies that ; is algebraic over the field
F(@)B), when 1<i<r, and B will become algebraically independent over F(t),
since it is a basis.

We may regard ¢, X, ..., X, as parameters and eliminate Y, ..., Y, by the
theorem of Seidenberg, applied to the above system of equations and inequa-
tions. Then, we get a finite collection of systems (R;) of equations and
inequations, with the f; and g; polynomial functions of the parameters. For at
least one j, (R; has a solution X;=u,, ..., X, =x,. The equalities f; =0 are
necessarily identities in ¢. Only the inequality g; # 0 gives a restriction on ¢. It is
clear that we can find a number « in some algebraic extension of F, such that
9;% 0, when this number is substituted for ¢. It follows then, by Seidenberg’s
Theorem, that the first system of equations and inequations has a solution
Y=y, ..., Y, =Y., in some algebraic extension of F(x)(x;, ..., x,). Therefore,
we have an algebraic representation of the matroid over F(«) and, then, also over
F, by Piffs Lemma.

Theorem 2. Full algebraic combinatorial geometries (FAG's) have the
pseudomodular property.

Proof. Let u, v, w be flats of a FAG, such that % covers u A w, v covers
vAw and ruAv)—rw AvAw)=2. This will give a contradiction and the
theorem follows.

We may assume that w= (uw Aw)V (v Aw). For, in other case, we may use
(uAw)V (v Aw) as a new w, and coverings are preserved and the inequality also
in the assumptions. Since 7(u A v) — r(u Av A w) =2, we can find two numbers z,
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y in the field w Av, algebraically independent over the field u Av Aw. Let
A cuAwand B cvAw be maximal subsets algebraically independent over the

field u Av Aw.
Since u covers u Aw and v covers v/\w it follows that Ay {x, y} and

Bu{x, y} are algebraically dependent over the field uAvAw. Write
A={a,, ..., a,} and B= {by, ..., b,} (A and B are non zero). Now, there are non
zero polynomials P(X, Y, X;, ..., X,,) and Q(X, Y, Y3, ..., Y,), over the field
uAvAw, such that P(z, y, a,, ..., a,) =0 and Q(x, y, by, ..., b,)=0.

P and @ contain the variables X and Y, explicitely, since x and y are
transcendentals over # A w and v A w (x, y belong to « A v and are transcenden-
tal over u Av A w). Since A and B are algebraically independent over the field
uAvAw, we have PX, Y, a,, ..., a,)#¥0 and QX, Y, by, ..., b,) #0. Let Cp
and C be the coefficients of the highest power of X in P and Q, respectively. Let
C(X, Y) be the coefficient of a non constant term in P(X, Y, Xy, ..., X.),
regarded as a polynomial in the X/s.

Now, X=2,Y=y, Xi=a;, ..., Xpn=0an, Y1=0, ..., Y, = b, is a solution to
the system of equations and inequations

PX, Y, Xi) ooy X)) =0 QX, Y, Yy, ..., 7)=0
Co(Y, X1, .oy X,)#0 Co¥, Y, ..., V) #0 C(X, Y)#0.

If we eliminate X, we obtain, by Seidenberg’s Theorem, a finite number of
systems (Ry): fj1=...=f;,,=0, g;#0. At least (R;) has a solution Y=y, X;=a;
(I=sism), Y;=b (1 <j<mn). If Y appears explicitely in the polynomial f;, it
follows that ye(wAw)V (WA w)=w, which is a contradiction. Hence, the
variable Y does not appear explicitely in the polynomials f;. Therefore, we can
find beF, such that, by Seidenberg’s Theorem, the system

PX, b, ay,...,a,)=0 QKX, b, by, ..., b)=0
Co(b, i, ..., @) #0 Colb, by, ..., b #0 CX, b)#0

has a solution X = a, in some field. By the first four of these relations, we find
that ce uAWAWAW =uAvAw.

Note that P(a, b, a,, ..., a,)=0 and P(a, b, X, ..., X,,) #0, since
C(a, b)+#0. This implies that {a,, ..., a,} is algebraically dependent over the
field u Av Aw, which is a contradiction.
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We think that this proof is an interesting application of the Theorem of
Seidenberg.

Acknowledgement. I wish to thank the referee for his helpful comments,
kindness and interest concerning this paper.
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Résumé

Dans ce travail, nous démontrons la conjecture de Piff [6] et nous donnons une
nowvelle démonstration de la sémimodularité des matroides algébriques.
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