ANNA BENINI (*)

Sums of near-rings (**)

1 - Introduction

In this paper sums of near-rings are defined and studied in order to characterize near-rings whose additive group is the direct sum or the semidirect sum of additive groups.

2 - Preliminaries

A left near-ring is indicated by N; for the definitions and the fundamental notations we refer to $[3]_2$ without express recall. In particular the additive group of N is indicated by N^+ ; if A is a substructure of N, $\mathscr{F}(A) \subseteq \operatorname{AUT}(N^+)$ denotes the subset of automorphisms of N^+ which transforms A in itself. If f, g are functions from S to T and $H \subseteq T$, we write $f = {}_H g$ for $f(x) - g(x) \in H$ $\forall x \in S$.

Moreover $\gamma_a: x \to ax \ \forall x \in N$ is a left translation of N determined by a; $A_d(N) = \{x \in N/Nx = 0\} \ (A_s(N) = \{x \in N/xN = 0\})$ is right (left) annihilator of N. In the following we call a near-ring $N = N_0 + N_c$ with $N_0 \neq \{0\} \neq N_c$ mixed.

3 - Semidirect sum of groups

We recall (see [4]) that if A and B are additive groups and $\varphi: B^+ \to AUT(A^+)$ is a homomorphism with $\varphi(b) = \varphi_b$, the structure $[A \times B, +]$ with $\langle a, b \rangle + \langle a', b' \rangle = \langle a + \varphi_b(a'), b + b' \rangle$ is an additive group, called the *semidi*-

^(*) Indirizzo: Facoltà di Ingegneria, Università, Via Valotti 9, I-25060 Brescia.

^(**) Work supported by the Italian M.P.I. - Ricevuto: 8-III-1988.

rect sum of A and B with homomorphism φ and we will indicate it with $A + {}_{\varepsilon}B$. If $A^0 = \{\langle a, 0 \rangle | a \in A\}$ and ${}^0B = \{\langle 0, b \rangle | b \in B\}$ we know that:

- (a) A^0 and 0B are subgroups of $A + {}_2B$; (b) $A + {}_2B = A^0 + {}^0B$;

(c) $A^0 \cap {}^0B = \{\langle 0, 0 \rangle \}$:

(d) $A^0 \cong A$ and $A + B/A^0 \cong B$.

Proposition 1. Let G = A + B, $\bar{A} \subseteq A$ and $\bar{B} \subseteq B$, then: $[\bar{N} = \bar{A} \times \bar{B}, +]$ is a subgroup of G iff \bar{A} and \bar{B} are subgroups of A and B respectively and $\varphi(\bar{B}) \subseteq \mathcal{F}(\bar{A}); \bar{N}$ is a normal subgroup of G iff \bar{A} and \bar{B} are normal subgroups of A and B respectively, $\varphi(B) \subset \mathcal{F}(\bar{A})$ and $\varphi(\bar{b}) = i \text{id} \quad \forall \bar{b} \in \bar{B}$.

Proof. Easy verification.

Corollary 1. Let $G = A + {}_{z}B$, then ${}^{0}B$ is a normal subgroup of G iff $\ker \varphi = B$.

Corollary 2. Let $G = A + {}_{\sigma}B$ and $\varphi(B) = \{id\}$, then: G is a direct sum of A and B, $\bar{N} = [\bar{A} \times \bar{B}, +]$ is a (normal) subgroup of G iff \bar{A} and \bar{B} are (normal) subgroups of A and B respectively.

4 - Near-rings whose additive group is a semidirect or direct sum

Def. 1. Let N = A + B be a semidirect sum of A of B with homomorphism φ ; we define in N: $\langle a, b \rangle \cdot \langle a', b' \rangle = \langle f_{a,b}(a'), b' \rangle$ where $f_{a,b} = \psi(\langle a, b \rangle)$ and $\psi: A \times B \to \text{END}(A^+)$ is a function for which the following conditions hold:

(1)
$$f_{a,b} \cdot f_{a',b'} = f_{f_{a,b}(a'),b'}$$
 (2)
$$f_{0,0} = \underline{0}$$
 (3)
$$f_{a,b} \cdot \varphi_{b'} = \varphi_{b'} \cdot f_{a,b}.$$

Proposition 2. The structure $N = [A + B, \cdot]$ as in Def. 1, is a left nearring in which $A^0 = N_0$, ${}^0B = N_c$ and N_0 is a two-sided ideal.

Proof. Easy verification.

The structure above mentioned will be called α -sum of A and B and will be indicated by $A + _{\alpha}B$.

Theorem 1. A mixed near-ring N has N_0 as a two-sided ideal iff it is isomorphic to an α -sum of N_0 and N_c .

Proof. Let N be a mixed near-ring and N_0 a two-sided ideal of N; then N^+ is isomorphic to $N_0 + {}_{\varphi}N_c$, where $\varphi: N_c^+ \to \operatorname{AUT}(N_0^+)$ is defined by $[\varphi(n_c)](n_0) = n_c + n_0 - n_c$.

Moreover we consider the function $\psi: N_0 \times N_c \to \text{END}(N_0^+)$ defined by $\psi(\langle n_0, n_c \rangle) = \gamma_n$ where $n = n_0 + n_c$; ψ fulfills the conditions of Def. 1:

- (1) $(\gamma_n \cdot \gamma_{n'})(\bar{n}_0) = (n_0 + n_c)[(n'_0 + n'_c)\,\bar{n}_0] = [(n_0 + n_c)\,n'_0 + n'_c]\,\bar{n}_0 = \gamma_{\gamma_*(n'_0) + n'_c}(\bar{n}_0)$
- $(2) \gamma_0(n_0) = 0 \forall n_0 \in N_0$
- (3) $(\gamma_n \cdot \varphi_{\bar{n}_c})(\bar{n}_0) = (n_0 + n_c)(\bar{n}_c + \bar{n}_0 \bar{n}_c) = \bar{n}_c + (n_0 + n_c)\,\bar{n}_0 \bar{n}_c$ $= \varphi_{\bar{n}_c}(\gamma_n(\bar{n}_0)) = (\varphi_{\bar{n}_c} \cdot \gamma_n)(\bar{n}_0) .$

We can easily verify that the correspondence $h: n_0 + n_c \rightarrow \langle n_0, n_c \rangle$ is an isomorphism from N to $N_0 + {}_zN$.

The converse follows from Proposition 2.

Obviously the multiplication of N infers a multiplication in A and B if we define $a \cdot a' = \pi_A$ ($\langle a, 0 \rangle \cdot \langle a', 0 \rangle$) and $b \cdot b' = \pi_B$ ($\langle 0, b \rangle \cdot \langle 0, b' \rangle$) and with respect to such operations A and B are a zero-symmetric and a constant nearring respectively.

Proposition 3. Let A be a zero-symmetric near-ring, B a constant near-ring and $N = A + {}_{\alpha}B$. The multiplication inferred in A by multiplication of N and multiplication of A coincide iff we define $f_{\alpha,0} = \gamma_{\alpha} \quad \forall \alpha \in A$.

Proof. Easy verification.

Proposition 4. Let $N = A + {}_{x}B$; a subset \overline{N} of N is:

- (a) a subnear-ring of N iff $\bar{N} = \bar{A} \times \bar{B}$ where \bar{A} and \bar{B} are subnear-rings of A and B respectively, $\varphi(\bar{B}) \subseteq \mathscr{F}(\bar{A})$ and $\psi(\bar{N}) \subseteq \mathscr{F}(\bar{A})$;
- (b) a left ideal of N iff $\bar{N} = \bar{A} \times \bar{B}$ where \bar{A} and \bar{B} are left ideals of A and B respectively, $\varphi(B) \subseteq \mathscr{F}(\bar{A})$, $\varphi(\bar{b}) = {}_{\bar{A}}\mathrm{id} \ \forall \bar{b} \in \bar{B}, \ \psi(N) \subseteq \mathscr{F}(\bar{A})$;
- (c) a right ideal of N iff $\bar{N} = \bar{A} \times \bar{B}$ where \bar{A} and \bar{B} are right ideals of A and B respectively, $\varphi(B) \subseteq \mathscr{F}(\bar{A}), \ \varphi(\bar{b}) = {}_{\bar{A}}\mathrm{id} \ \forall \bar{b} \in \bar{B}, \ f_{a+\varphi_b(\bar{a}),b+\bar{b}} = {}_{\bar{A}}f_{a,b} \ \forall a \in A, \ \forall \bar{a} \in \bar{A}, \ \forall b \in B, \ \forall \bar{b} \in \bar{B}.$

Proof. (a) Let \bar{N} be a subnear-ring of N; since $\forall \langle a, b \rangle \in \bar{N}$ $\langle 0, 0 \rangle \cdot \langle a, b \rangle = \langle 0, b \rangle \in N$, it follows that $\bar{N} = \bar{A} \times \bar{B}$, where $\bar{A} = \{a \in A/\exists b \in B, \langle a, b \rangle \in \bar{N}\}$ and $\bar{B} = \{b \in B/\exists a \in A, \langle a, b \rangle \in \bar{N}\}$.

In this case, by Proposition 1, we know that \bar{A} and \bar{B} are additive subgroups of A and B respectively and $\varphi(\bar{B}) \subseteq \mathscr{F}(\bar{A})$.

Moreover $\langle a, 0 \rangle \cdot \langle a', 0 \rangle = \langle f_{a,0}(a'), 0 \rangle \in N$ $\forall a, a' \in \bar{A}$, so $f_{a,0}(a') = \gamma_a(a') = a \cdot a' \in \bar{A}$ and \bar{A} is a subnear-ring of A. Lastly $\langle a, b \rangle \cdot \langle a', 0 \rangle = \langle f_{a,b}(a'), 0 \rangle \in \bar{N} \ \forall \langle a, b \rangle, \ \langle a', 0 \rangle \text{ of } N, \text{ so } \psi(\bar{N}) \subseteq \mathcal{F}(\bar{A}).$

The converse follows easily by Proposition 1 and $\psi(\tilde{N}) \subseteq \mathscr{F}(\tilde{A})$.

(b) Let \bar{N} be a left ideal of N; obviously, by Proposition 1 and Proposition 4(a), we have $\bar{N} = \bar{A} \times \bar{B}$ where \bar{A} and \bar{B} are subnear-rings of A and B respectively, $\varphi(B) \subseteq \mathscr{F}(\bar{A})$ and $\varphi(\bar{b}) = \bar{A}$ id $\forall \bar{b} \in B$, moreover $\langle a, 0 \rangle \cdot \langle a', 0 \rangle = \langle f_{a,0}(a'), 0 \rangle \in \bar{N} \quad \forall a \in A \quad \text{and} \quad \forall a' \in \bar{A}, \quad \text{so} \quad f_{a,0}(a') = \gamma_a(a') = a \cdot a' \in \bar{A}$ and \bar{A} is a left ideal; obviously \bar{B} is a left ideal of B; lastly $\langle a, b \rangle \cdot \langle a', 0 \rangle = \langle f_{a,b}(a'), 0 \rangle \in \bar{N} \quad \forall \langle a, b \rangle \in n \quad \text{and} \quad \forall \langle a', 0 \rangle \in \bar{N}, \quad \text{so} \quad \text{we have} \quad f_{a,b}(a') \in \bar{A} \quad \text{and} \quad \psi(N) \subseteq \mathscr{F}(\bar{A}).$

The converse follows easily by Proposition 1 and Proposition 4(a).

(c) Let \bar{N} be a right ideal of N; by Proposition 1 and Proposition 4(a), we have $\bar{N} = \bar{A} \times \bar{B}$ where \bar{A} and \bar{B} are subnear-rings of A and B respectively, $\varphi(B) \subseteq \mathscr{F}(\bar{A})$ and $\varphi(\bar{b}) = \bar{A}$ id $\forall \bar{b} \in \bar{B}$.

Lastly, if $\langle \bar{a}, \bar{b} \rangle \in \bar{N}$ we have $(\langle a, b \rangle + \langle \bar{a}, \bar{b} \rangle) \cdot \langle a', b' \rangle - \langle a, b \rangle \cdot \langle a', b' \rangle$ = $\langle f_{a+\varphi_b(\bar{a}),b+\bar{b}}(a'), b' \rangle + \langle \varphi_{-b'}(-f_{a,b}(a')), -b \rangle = \langle f_{a+\varphi_b(\bar{a}),b+\bar{b}}(a') - f_{a,b}(a'), 0 \rangle \in N$, so $f_{a+\varphi_b(\bar{a}),b+\bar{b}} = \bar{A}f_{a,b}$.

The converse is as above.

Corollary 1. Let $N = A + {}_{z}B$; ${}^{0}B$ is a left ideal of N iff $B = \ker \varphi$ and it is a right ideal of N iff $B = \ker \varphi$ and $f_{a,b} = f_{a,0} \quad \forall b \in B$.

Def. 2. Let $N = A \oplus B$ be a direct sum of additive groups A and B; we define in $N \langle a, b \rangle \cdot \langle a', b' \rangle = \langle f_{a,b}(a'), \bar{f}_{a,b}(b') \rangle \ \forall a, a' \in A, \ \forall b, b' \in B, \ \text{where}$ $f_{a,b} = \psi(\langle a, b \rangle), \quad \bar{f}_{a,b} = \bar{\psi}(\langle a, b \rangle) \quad \text{and} \quad \text{where} \quad \psi: A \times B \to \text{END}(A^+),$ $\bar{\psi}: A \times B \to \text{END}(B^+)$ are functions for which

(1)
$$f_{a,b} \cdot f_{a',b'} = f_{f_{a,b}(a'), \bar{f}_{a,b}(b')}$$
 $\bar{f}_{a,b} \cdot \bar{f}_{a',b'} = \bar{f}_{f_{a,b}(a'), \bar{f}_{a,b}(b')};$ (2) $f_{0,0} = \underline{0} = \bar{f}_{0,0}.$

Proposition 5. The structure $N = [A \oplus B, \cdot]$ as in Def. 2, is a zero-symmetric left near-ring in which A^0 and 0B are left ideals.

Proof. Easy verification.

The structure above mentioned will be called β -sum of A and B and will be indicated by $A + {}_{g}B$.

Theorem 2. A near-ring N is zero-symmetric with $N^+ = I \oplus J$, where I and J are left ideals with trivial intersection, iff it is isomorphic to a β -sum of I and J.

Proof. Let N be a zero-symmetric near-ring with $N^+ = I \oplus J$ where I and J are left ideals of N and $I \cap J = \{0\}$.

We consider the functions $\psi: I \times J \to \text{END}(I^+)$ and $\bar{\psi}: I \times J \to \text{END}(J^+)$ defined by: $\psi(\langle i, j \rangle) = \gamma_{i+j}/I^+$ and $\bar{\psi}(\langle i, j \rangle) = \gamma_{i+j}/J^+ = \bar{\gamma}_{i+j}$, that is we consider the left translation γ_{i+j} restricted to I and J respectively.

Such restrictions are obviously endomorphism of I^+ and J^+ respectively, because I and J are left ideals of N; ψ and ψ fulfil the conditions of the Def. 2:

(1)
$$(\gamma_{i+j} \cdot \gamma_{i'+j'})(i'') = (i+j)(i'+j')i'' = [(i+j)i' + (i+j)j']i''$$

$$= (\gamma_{i+j}(i') + \gamma_{i+j}(j')))i'' = \gamma_{\gamma_{i+j}(i') + \tilde{\gamma}_{i+j}(i')}(i'').$$

We can prove the same for $\tilde{\gamma}$;

(2)
$$\gamma_{0+0}(i) = 0 \cdot i = 0 \quad \forall i \in I \quad \bar{\gamma}_{0+0}(j) = 0 \cdot j = 0 \quad \forall j \in J.$$

Called $f_{i,j} = \gamma_{i+j}/I^+$ and $\tilde{f}_{i,j} = \gamma_{i+j}/J^+$, we can easily verify that the correspondence $h: i+j \rightarrow \langle i, j \rangle$ from N to $I+_{\beta}J$ is an isomorphism.

The converse follows directly from Proposition 5.

The multiplication of N infers a multiplication in A and B if we define $a \cdot a' = \pi_A(\langle a, 0 \rangle \cdot \langle a', 0 \rangle)$ and $b \cdot b' = \pi_B(\langle 0, b \rangle \cdot \langle 0, b' \rangle)$ and with respect to such operations A and B are zero-symmetric near-rings.

Proposition 6. Let A and B be zero-symmetric near-rings and $N = A + {}_{g}B$. The multiplications inferred in A and B by multiplication of N and the multiplications of A and B coincide iff we define $f_{a,0} = \gamma_a$ and $\bar{f}_{0,b} = \bar{\gamma}_b \ \forall a \in A$, $\forall b \in B$.

Proof. Easy verification.

Proposition 7. Let $N = A + {}_{\beta}B$; a subset $\tilde{N} = \tilde{A} \times \tilde{B}$ of N is:

- (a) a subnear-ring of N iff \bar{A} and \bar{B} are subnear-rings of A and B respectively, $\psi(\bar{N}) \subseteq \mathcal{F}(\bar{A}), \ \bar{\psi}(\bar{N}) \subseteq \mathcal{F}(\bar{B});$
- (b) a left ideal of N iff \bar{A} and \bar{B} are left ideals of A and B respectively, $\psi(N) \subseteq \mathcal{F}(\bar{A}), \ \bar{\psi}(N) \subseteq \mathcal{F}(\bar{B});$
- (c) a right ideal of N iff \bar{A} and \bar{B} are right ideals of A and B respectively, $f_{a+\bar{a},b+\bar{b}} = {}_{\bar{A}}f_{a,b}; \ \bar{f}_{a+\bar{a},b+\bar{b}} = {}_{\bar{B}}\bar{f}_{a,b} \ \forall a \in A, \ \forall \bar{a} \in \bar{A}, \ \forall b \in B, \ \forall \bar{b} \in \bar{B}.$

Proof. Analogous to Proposition 4.

Def. 3. Let $N = A \oplus B$ be a direct sum of additive groups A and B; we define in $N = \langle a, b \rangle \cdot \langle a', b' \rangle = \langle \lambda_{b'}(a), f_b(b') \rangle$, where $\lambda_b = \lambda(b)$ with $\lambda: B^+ \to F(A)^+$ is a homomorphism such that $\lambda_b \cdot \lambda_{b'} = \lambda_{f_b(b)}(1)$ and $f_b = \psi(b)$ with $\psi: B \setminus \{0\} \to \text{AUT}(B^+)$ is a function such that $f_b \cdot f_{b'} = f_{f_b(b')}(2)$ and $f_0 = \underline{0}(3)$.

Proposition 8. The structure $N = [A \oplus B, \cdot]$, as in Def. 3, is a left zero-symmetric near-ring in which $A^0 = A_d(N)$ and 0B is an integral right ideal of N; 0B is a two-sided ideal iff $B = \ker \lambda$.

Proof. Easy verification.

The structure above mentioned will be called γ -sum of A and B and will be indicated by A + B.

Theorem 3. A near-ring N is a zero-symmetric near-ring with $N^+ = A \oplus B$, where $A = A_d(N)$ and B is a right ideal without zero divisors iff it is isomorphic to a γ -sum of A and B.

Proof. Let N be a zero-symmetric near-ring with $N^+ = A \oplus B$, where $A = A_d(N)$ and B is a right ideal without zero divisors. Consider the homomorphism $\lambda: B^+ \to F(A)^+$ defined by: $\lambda(b) = \lambda_b: A \to A$ with $\lambda_b(a) = a \cdot b$ and the function $\psi: B \setminus \{0\} \to \operatorname{AUT}(B^+)$ defined by: $\psi(b) = \gamma_b$ and $\psi(0) = \underline{0}$. ψ fulfills (2) and (3) of Def. 3, moreover $(\lambda_b \cdot \lambda_{b'})(a) = \lambda_b(ab') = (ab') b = a(bb') = a\gamma_{b'}(b) = \lambda_{\gamma_b(b)}(a)$ and (1) of Def. 3 holds.

Now we can easily prove that the correspondence $h: a+b \rightarrow \langle a, b \rangle$ from N to $A+_{r}B$ is an isomorphism.

The converse follows directely from Proposition 8.

The multiplication of N infers a multiplication in A and B if we define $a \cdot a' = \pi_A(\langle a, 0 \rangle \cdot \langle a', 0 \rangle)$ and $b \cdot b' = \pi_B(\langle 0, b \rangle \cdot \langle 0, b' \rangle)$ and with respect to such operations A and B are near-rings.

Proposition 9. Let A be a zero-near-ring, B an integral near-ring and $N = A + {}_{\gamma}B$. The multiplications inferred in A and B by multiplication of N and the multiplications of A and B coincide iff we define $f_b = \gamma_b \ \forall b \in B$.

Proof. Easy verification.

Proposition 10. Let N = A + B be a zero-symmetric near-ring; a subset $\bar{N} = \bar{A} \times \bar{B}$ of N is:

- (a) a subnear-ring of N iff \bar{A} and \bar{B} are subnear-rings of A and B respectively, $\lambda_{\bar{b}}(\bar{A}) \subseteq \bar{A} \ \forall \bar{b} \in \bar{B}, f_b \in \mathscr{F}(\bar{B}) \ \forall b \in \bar{B};$
- (b) a left ideal of N iff \bar{A} is a normal subgroup of A^+ , \bar{B} is a left ideal of B and $\lambda_{\bar{b}}(A) \subseteq \bar{A} \ \forall \bar{b} \in \bar{B}$;
- (c) a right ideal of N iff \bar{A} is a normal subgroup of A^+ , \bar{B} is a right ideal of B and $\lambda_b(a + \bar{a}) = {}_{\bar{A}}\lambda_b(a) \ \forall b \in B, \ \forall a \in \bar{A}, \ \forall \bar{a} \in \bar{A}.$

Proof. Analogous to Proposition 4.

References

- S. Ligh, Near-rings with identities on certain groups, Monatsh. Math. 75 (1971), 38-43.
- [2] C. Maxson, Dickson near-rings, J. Algebra 14 (1970), 157-169.
- [3] G. Pilz: $[\bullet]_1$ On the construction of near-rings from a Z- and a C-near-ring, Oberwolfach, 1972; $[\bullet]_2$ Near-rings, North Holland N.Y., 1977.
- [4] M. Weinstein, Example of groups, Poligonal Publishing House, 1945.

Summary

See Introduction.