D. D. BAINOV, A. D. MYSHKIS and A. I. ZAHARIEV (*)

On the oscillatory properties of the solutions of non-linear neutral functional differential equations of second order (**)

1 - Introduction

In the present paper sufficient conditions have been obtained for oscillation or tending to zero of all bounded solutions of equations of the form

$$[A(x_t)]'' + \rho(t)B(x_t) = 0$$

where $x_t(\theta) = x(t+\theta), \ \theta \in [-\tau, \ 0], \ \tau = \text{const} > 0$ and the functionals $A, B: C[-\tau, \ 0] \to \mathbb{R}$ are monotonic.

The oscillatory properties of linear and non-linear ordinary differential and functional differential equations have been an object of investigation by many authors [2]...[5], [8], [10]. The neutral equations of second order have numerous applications (see for instance [1], [6]) but their oscillatory and asymptotic properties are studied comparatively little. Some results in this direction for the case when the function $\rho(t)$ is non-negative have been obtained in [9], [11].

2 - Preliminary notes

Def. 1. We shall say that the function $\varphi: I_{\varphi} \to \mathbb{R}$ $(I_{\varphi} = [t_{\varphi}, \infty), t_{\varphi} \in \mathbb{R}, \infty = +\infty)$ is oscillating if $\sup\{t|\varphi(t) = 0\} = \infty$ and $\sup\{t|\varphi(t) \neq 0\} = \infty$.

^(*) Indirizzo degli AA.: D. D. BAINOV and A. I. ZAHARIEV, Plovdiv University «Paissii Hilendarski», BG-Plovdiv; A. D. Myshkis, Moscow Institute of Railway Engineering, SU-Moscow.

^(**) Ricevuto: 16-II-1988.

Def. 2. A function $x:I_x\to\mathbb{R}$ will be called a solution of equation (1) if $x\in C(I_x),\ A(x_t)\in C^2(I_x+\tau)$ and satisfies equation (1) for $t\in I_x+\tau$.

By $\Omega^{\alpha,\beta}$ $(0 < \beta \le \alpha)$ we shall denote the set of all continuous functionals $A: C[-\tau, 0] \to \mathbb{R}$ which satisfy the following conditions:

A1. For any function $\varphi \in C[-\tau, 0]$ with the property $\varphi(t) \neq 0, t \in [-\tau, 0]$, the following equality holds

$$\operatorname{sgn} A(\varphi) = \operatorname{sgn} \varphi(0)$$
.

- A2. For any $\varepsilon > 0$ there exists $\delta > 0$ such that for any function $\varphi \in C[-\tau, \tau]$ with the property $\min_{[-\tau, \tau]} |\varphi(t)| > 0$ the inequality $\max_{[0, \tau]} |A(\varphi_t)| < \delta$ implies the inequality $|\varphi(0)| < \varepsilon$.
- A3. For all constants b_1 , b_2 , $0 < b_1 \le b_2$, and any function $\varphi \in C[-\tau, \alpha]$ with the property $\min_{[-\tau, \tau]} \varphi(t) > 0$ for which the inequality $b_1 \le |A(\varphi_t)| \le b_2$, $t \in [-\tau, \alpha]$, holds there exists a measurable set $Q \subseteq [-\tau, \alpha]$ and a constant $b_3 > 0$ such that $\mu(Q) \ge \beta$ (μ is the Lebesgue measure), $|\varphi(t)| \ge b_3$ for $t \in Q$ and the following equality holds

$$\operatorname{sgn} \varphi(t)|_{Q} = \operatorname{sgn} A(\varphi_t)|_{[0, \infty]}.$$

Example 1. It is immediately verified that for any α and correspondingly chosen β the functional A defined by the equality $A(\varphi) = \sum_{i=1}^{n} a_i \varphi(-\tau_i), n \ge 1,$ $a_i > 0, 0 \le \tau_i \le \tau, (i = \overline{1, n})$ belongs to the set $\Omega^{\alpha,\beta}$.

For the function $\rho: I_p \to \mathbb{R}$ we introduce the notation

$$E_{\varepsilon}^{+} = \{ z \in I_{\varepsilon} | \rho(t) \ge 0 \} \qquad E_{\varepsilon}^{-} = \{ t \in I_{\varepsilon} | \rho(t) \le 0 \}.$$

By ρ^{γ} , $\gamma > 0$, we shall denote the set of continuous functions $\rho: I_p \to \mathbb{R}$ satisfying the following property:

P1. There exists a number $\varepsilon > 0$ and a point $t_0 \in I_p$ such that for any $t \ge t_0$ for which $\rho(t) > 0$ one can find an interval $[t', t''] \in I_p$ with length $t'' - t' \ge \gamma + \varepsilon$ with

the property $t \in [t', t''] \subset E_{\varepsilon}^+$ (i.e. the intervals in which the function is positive should be large enough).

By Λ we shall denote the set of coontinuous functionals $B: C[-\tau, 0] \to \mathbb{R}$ satisfying the following properties:

B1. For any element $\varphi \in C[-\tau, 0]$ with the property $\min_{t=\tau, 0} |\varphi(t)| > 0$ the following equality holds

$$\operatorname{sgn} B(\varphi) = \operatorname{sgn} \varphi(0)$$
.

- B2. For any $\varepsilon > 0$ there exists $\delta > 0$ such that for any element $\varphi \in C[-\tau, 0]$ with the property $\min_{t=\tau,0} |\varphi(t)| > 0$ for which the inequality $|\varphi(0)| \ge \varepsilon$ holds, the inequality $B(\varphi) \ge \delta$ holds as well.
- B3. $B(s \cdot 1(\cdot))$ is a non-decreasing function for $s \in \mathbb{R}$, $1(t) \equiv 1$ and the following relation holds

$$\int_{0}^{1} \left[\frac{1}{B(s \cdot 1(\cdot))} + \frac{1}{|B(-s \cdot 1(\cdot))|} \right] \mathrm{d}s < \infty.$$

Remark 1. We shall note that from condition B3 it follows that no functional $B \in \Lambda$ can be linear.

Lemma 1. Let the function $h:[a, b] \rightarrow [0, \infty)$ be absolutely continuous, $\varphi \in C^2[a, C]$ and let the function $f \in C[\min \varphi, \max \varphi]$ be non-increasing. Then the following inequality holds

$$\int_{a}^{b} h(t) \varphi''(t) f(\varphi(t)) dt$$

$$\geq h(b) \varphi'(b) f(\varphi(b)) - h(a) \varphi'(a) f(\varphi(a)) - \int_{a}^{b} h'(t) \varphi'(t) f(\varphi(t)) dt.$$

Proof. If f is of class C^1 , then the assertion of the lemma is proved by an integration by parts and in the case when f is of class C by means of uniform approximation of f by non-increasing functions of class C^1 .

Theorem 2. Let for equation (1) numbers α , β (0 < $\beta \le \alpha$) exist such that

the following conditions be fulfilled:

1.
$$A \in \Omega^{z,\beta}$$
 2. $\rho \in \rho^{z+z}$ 3. $B \in \Lambda$.

4. For any constant a > 0 the following relation holds

$$\sup_{\{|\varphi\in C(-\tau,\ \tau||0<|\varphi(t)|\leqslant a\}}\ \frac{B(\varphi)}{B(A(\varphi)\cdot 1(\cdot))}<\infty\ .$$

5. There exists a locally absolutely continuous function $h: I_p \to (0, \infty)$ with the properties $\underset{[l_p, t]}{\text{Var}} h = 0(t)$ for $t \to \infty$, $\underset{[l_p, \infty)}{\text{Var}} h' < \infty$, for which the following relation holds

(2)
$$\int_{E_{\bar{s}}} h(t) |\rho(t)| dt < \infty.$$

6. There exists a number $\varepsilon > 0$ for which the following inequality is satisfied

$$\lim \sup_{t \to \infty} \mu \{ s \in [t, \ t + \alpha + \tau] | h(s) \rho(s) \le \varepsilon \} < \beta.$$

Then each bounded solution of equation (1) either oscillates or tends to zero for $t\rightarrow\infty$.

Proof. Let $x:I_x\to\mathbb{R}$ be a solution of equation (1) which is not identically equal to zero for sufficiently large values of t. Without loss of generality we can assume that x(t)>0 for $t\in I_x$. Multiplying both sides of equation (1) by the expression $\frac{h(t)}{B(A(x_t)\cdot 1(\cdot))}$ and integrating from $t_1=t_x+\tau$ to $t>t_1$ we obtain the equality

$$\int\limits_{t_1}^t \frac{[A(x_s)]''\,h(s)\,\mathrm{d}s}{B(A(x_s)\cdot 1(\cdot))} + \int\limits_{t_1}^t h(s)\, \wp(s) \frac{B(x_s)}{B(A(x_s)\cdot 1(\cdot))}\,\mathrm{d}s = 0\;.$$

Applying to the first integral Lemma 1 and integrating once more from t_1 to $t > t_1$ we obtain the inequality

(3)
$$\int_{t_1}^{t} \frac{h(s)[A(x_s)]'}{B(A(x_s) \cdot 1(\cdot))} ds - \frac{h(t_1)[A(x_t)]'|_{t=t_1}}{B(A(x_{t_1}) \cdot 1(\cdot))} (t - t_1)$$

$$- \int_{t_1}^{t} (\int_{t_1}^{s} \frac{h'(y)[A(x_y)]'}{B(A(x_y) \cdot 1(\cdot))} dy) ds + \int_{t_1}^{t} (\int_{t_1}^{s} h(y) \rho(y) \frac{B(x_y)}{B(A(x_y) \cdot 1(\cdot))} dy) ds \leq 0.$$

Taking into account the properties of the function h(t) and setting $\phi(t) = \int_0^t \frac{\mathrm{d}s}{B(s\cdot 1(\cdot))}$ we obtain for $t\to\infty$ the following relations

$$\int_{t_{1}}^{t} \frac{h(s)[A(x_{s})]' ds}{B(A(x_{s}) \cdot 1(\cdot))} = \int_{t_{1}}^{t} h(s) d\phi(A(x_{s}))$$

$$= h(t) \phi(A(x_{t})) - h(t_{1}) \phi(A(x_{t_{1}})) - \int_{t_{1}}^{t} \phi(A(x_{s})) dh(s) = 0(t).$$
(4)
$$\int_{t_{1}}^{t} \frac{h'(s)[A(x_{s})]' ds}{B(A(x_{s}) \cdot 1(\cdot))} = \int_{t_{1}}^{t} h'(s) d\phi(A(x_{s}))$$

$$= h'(t) \phi(A(x_{t})) - h'(t_{1}) \phi(A(x_{t_{1}})) - \int_{t_{1}}^{t} \phi(A(x_{s})) dh'(s) = 0(1).$$

From inequality (3), in view of relations (2), (4) and condition 4 of Theorem 2, we obtain for $t \to \infty$ the relation

(5)
$$\int_{t_1-t_1}^{t} (\int_{(t_1-s)e^{-t}} h(y) \, \rho(y) \frac{B(x_y)}{B(A(x_y) \cdot 1(\cdot))} \, \mathrm{d}y) \, \mathrm{d}s = 0(t) \, .$$

We shall prove that the following relation holds

(6)
$$\int_{[t_1, \infty) \cap E_z^+} h(t) \, \rho(t) \, \frac{B(x_t)}{B(A(x_t) \cdot 1(\cdot))} \, \mathrm{d}t = \infty$$

which obviously contradicts relation (5).

From condition A2 it follows that $\lim_{t\to\infty}\sup A(x_t)>0$, so let us set $C:=\lim_{t\to\infty}\sup A(x_t)$. On the other hand, from equation (1) it follows that the function $A(x_t)$ is concave (convex) in any interval belonging to $\{I_x+\tau\}\cap E_\varepsilon^+$ ($\{I_x+\tau\}\cap E_\varepsilon^-$). In view of condition 6 of Theorem 2 we conclude that $\sup E_\varepsilon^+=\infty$, hence there exists a sequence $\{t_i\}\subset E_\varepsilon^+$ with the property $\lim_{t\to\infty}(t_{i+1}-t_i)=\infty$ such that $\lim_{t\to\infty}A(x_{t_i})=C$. From condition P1 it follows that there exists a sequence of disjoint intervals $\{l_i\}$, $t_i\in l_i$, with length $\alpha+\tau$ such that the inequality $\inf_{t\in l_i}\min_{t\in l_i}A(x_t)>0$ holds.

Then by condition A3 there exists measurable sets $Q_i \subset l_i$ with the property $\mu(Q_i) \ge \beta$ $(i=1,\ 2,\ \ldots)$, such that the inequality $\inf_{t \in Q_i} \chi(t) > 0$ holds. From last

inequality and condition B2 it follows that $\inf_{i} \inf_{t \in Q_i} B(x_t) > 0$, hence the following inequality holds

(7)
$$\inf_{i} \inf_{t \in Q_{i}} \frac{B(x_{t})}{B(A(x_{t}) \cdot 1(\cdot))} > 0.$$

From condition 6 of Theorem 2 it follows that there exist sets $Q'_i \subseteq Q_i$ for which $\lim_{n \to \infty} \inf \mu(Q'_i) > 0$ and the inequality

$$\lim_{i\to\infty}\inf\inf_{t\in Q_i^i}h(t)\,\rho(t)>0$$

holds. Inequalities (7) and (8) immediately imply relation (6).

Remark 2. If, moreover, it is given that the function $\rho(t) \ge 0$, then each bounded solution which for sufficiently large values of t is not identically zero oscillates. In this case, if $x(t) \ge 0$ for $t \ge t_x$, then the function A(x) for $t \ge t_x$ is concave, hence x(t) may tend to zero for $t \to \infty$ only if it is identically zero for $t > t_x$.

References

- [1] R. Brayton, Nonlinear oscillation in a distributed network, Quart. Appl. Math. 24 (1967), 289-301.
- [2] G. J. Butler, Integral averages and the oscillation of second order ordinary differential equations, SIAM J. Math. Anal. 11 (1980), 190-200.
- [3] W. J. Coles, An oscillation criterion for second order differential equations, Proc. Amer. Math. Soc. 19 (1968), 755-759.
- [4] P. HARTMAN, On nonoscillatory linear differential equations of second order, Amer. J. Math. 74 (1952), 389-400.
- [5] I. V. KAMENEV, Some specific nonlinear oscillation theorems, Mat. Zametki, 10 (1971), 129-134 (in Russian).
- [6] V. B. Kolmanovskii and V. R. Nosov, Stability and periodic régimes of controlled systems with aftereffect, Moscow 1981 (v. p. 446) (in Russian).
- [7] T. KUSANO and H. ONOSE, Nonlinear oscillation of second order functional differential equations with advanced argument, J. Math. Soc. Japan 29 (1977), 541-559.
- [8] A. D. Myshkis, Linear differential equations with delayed argument, Moscow (1972) (v. p. 372) (in Russian).
- [9] A. D. MYSHKIS, D. D. BAINOV and A. I. ZAHARIEV, Oscillatory and asymptotic properties of a class of operator-differential inequalities, Proc. of the Royal Soc. of Edinburgh 96A (1984), 5-13.

- [10] A. WINTER, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115-117.
- [11] A. I. ZAHARIEV and D. D. BAINOV: [•]₁ Oscillating properties of a class of neutral type functional differential equations, Bull. Austral. Math. Soc. 22 (1980), 365-372; [•]₂ On some oscillation criteria for a class of neutral type functional differential equations, J. Austral. Math. Soc. Ser. B, 28 (1986), 229-239.

Summary

In the present paper sufficient conditions have been obtained for oscillation or tending to zero of all bounded solutions of equations of the form $[A(x_t)]'' + \rho(t)B(x_t) = 0$, where $x_t(\theta) = x(t+\theta)$, $\theta \in [-\tau, 0]$, $\tau = \text{const} > 0$, $\rho: \mathbb{R} \to \mathbb{R}$ and the functionals $A, B: C[-\tau, 0] \to \mathbb{R}$ are monotonic.
