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H. M. SRIVASTAVA (%)

A unified presentation of certain classes

of series of the Riemann zeta function (**)

1 - Introduction

An over two-century old theorem of Christian Goldbach (1690-1764), which
was stated in a letter dated 1729 from Goldbach to Daniel Bernoulli (1700-1782),
has recently been posed as the following

Problem (Shallit and Zikan [26]). Let S be the set of nontrivial integer kth
powers, i.e.,

(1.1) S={nn=2, k=2}={4, 8,9, 16, 25, 27, 32, 36, ...} .
Show that
1.2) S (w—1D1=1

wed

the sum being extended over all members « of S.
In terms of the Riemann zeta function (see Titchmarsh [30] and Ivi¢ [13])
1 % 1

5 1
. R >1
2-1 n 1-27¢ 2—1 @n -1y o

s
(1.3) 4(s) =
N1 s
T Zl > Re(s)>0 s#1

(*) Indirizzo: Department of Mathematics, University of Victoria, Vietoria, CDN -
British Columbia V8W 2Y2.
(**y This work was supported, in part, by the Natural Sciences and Engineering
Research Council of Canada under Grant A-7353. — Ricevuto: 23-I11-1987.
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the summation formula (1.2) becomes (cf. [26], p. 403)
(1.4) 2 k) -1} =1.
k=2

More interestingly, since (for k=2)

= 1 2 :
=< o L e S
1<k = 22) Z= poialr <2
giving us 0<g(k) —~1<1, k=2 so that
(1.5) k) — 1 =f(Lk)) k=2

where f(x) = & — [x] denotes the fractional part of the real number , (1.4) can be
rewritten in the elegant form

(1.6) kE:f(Z.(lc)) =1

As a matter of fact, it is not difficult to show also that

3

@.mn S (= DFF(L(R) =—f}3

1.9 3 feen =3 S f@k+1) =+

Formula (1.6), and hence also (1.2) and (1.4), and its interesting variations
(1.7) and (1.8) are, of course, equivalent to various (known or easily derivable)
sums of double series (see, for example, Boole [4], p. 105, Exercise 10; Stieltjes
(28], p. 300; Johnson [14], p. 479; Bromwich [5], p. 526, Example 6; Jordan [15],
p. 340; Chrystal [7], p. 422, Exercise 18; Melzak [21], p. 88; Klambauer [16], p.
120, Exercise 38 and Hansen [12], p. 355). The object of the present paper is to
address several related problems involving sums of series of #(s) and of the
generalized (Hurwitz’s) zeta function ¢(s, @) defined usually by (cf. [8], p. 24,
Equation 1.10(1))

(1.9) s, =3 —2% Re(s)>1 a#0, —1, —2, ...
n=0 (7’L+a)s
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so that, obviously,

(1.10) G5, V=) U =@ =D
a —
1.11) 30 {¢s, o)} =—ss+1, a)
L12)  &s, a+ N =2, )= > —1 N=1,2 3, ...
n=0 (n + a)s

It should be remarked in passing that both ¢(s) and (s, @) are meromorphic
functions everywhere in the complex s-plane except for a simple pole at s=1
(with residue 1), and that

(1.13) 20) = ~ 20, a)= —;- —a.

DO =

2 - Generalizations of the sums (1.6) and (1.7)
In the usual notations for binomial coefficients, let

A w20 =DO=2).. .0 —n+1)
@.1) (=1 ()= -

n=1, 2, 3, ...

for an arbitrary (real or complex) parameter A. Making use of the binomial
expansion

@.2) SATET Lo gy It <1
£=0 k
it is easily seen from the definitions (1.8) and (1.9) that
2.3) s (“’;“ o+ -13¢=20, 2-1 It <2
k=0

or, equivalently, that (cf. Rarhanujan [23], p. 78, Equation (15); Apostol [2], p.
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240, Equation (7))
ol )\ + k - 1 ko

(2.4) > ( I YO+ RE=20, 1-10) It <1.
k=0

For fixed 1 # 1, the series in (2.8) and (2.4) converge absolutely for |¢| <2 and
lt| <1, respectively. Thus, by the principle of analytic continuation, formulas
(2.3) and (2.4) are valid for all values of x+#1.

Formula (2.8) provides a unification (and generalization) of (1.6) and (1.7),
and indeed also of a fairly large number of other summation formulas scattered in
the literature. For example, in view of the relationships (1.10) and (1.12), (2.3)
with t =1 gives us (cf. [12], p. 356, Equation (54.4.1))

)\"}‘k—"l

2.5) ;Z:l ( i

e+ k) -1} =1

which generalizes (1.6), and a special case of (2.3) when t = — 1 yields (cf. [12], p.
356, Equation (54.4.2))

At+k—1

p ek -1p=27

©2.6) 2 (— DF(

which generalizes (1.7).

Several additional consequences of the general summation formulas (2.3) and
(2.4) are worthy of note. First of all, replace the summation index k in (2.3) by
k+1, and set A=s—1, so that

en S CTF - =ts-1, 2-) - D+1 1] <2

which, for ¢ =1, reduces immediately to the following alternative form of (2.5)

S S+k—1

2.8) 20y

Hes+R) -1} =1.

Now it follows from the definition (2.1) that

s+k—1)_ (=10

2.9) ( E+1 7 (k+1)
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where, for convenience,
(2.10) =1 (Eh=s(s+1)s+2)...(s+k—-1) k=1, 2,3, ...

Thus the formula (2.8) can be rewritten in the well-known form (ef. Landau [18],
p. 274, Equation (3); Titchmarsh [30], p. 33, Equation (2.14.1))

= (sh
2 e+ Dl

@.11) o =1+—Lo- {&s+H)—1)

which is usually attributed to Edmund (Georg Hermann) Landau (1877-1938).
For t=—1, (2.7) readily yields

(8
e+ D!

1 1
-1

@.12) U =1+55 707

+ 3 (=1 (s +k)~1)

which provides an interesting (presumably new) companion of Landaw’s formula
(2.11).

Setting ¢ =1/2 in (2.7), and making use of (1.12) with ¢ =1/2 and N=1, we
obtain another series representation for ¢(s)

_2—1 1 & sk _
(2.13) (s) oot w3 gl 1 oF {¢s+ky~1}

which is believed to be new.

In their special cases when s=2, (2.11) and (2.12) reduce simply to the
summation formulas (1.6) and (1.7), respectively, while (2.13) similarly yields the
elegant sum

@.14) > ’“Z‘kl{C(k>—1}=:§—1.

Next we turn to the summation formula (2.4) which (for x =s—1 and with &
replaced by k + 1) assumes the form

S s+ k—1

(2.15) 20

Vs +E) N =2s—1, 1=t — s~ 1) lt<1.
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In view of the identities in (1.10) and (2.9), a special case of (2.15) when t=1/2
readily yields the familiar result (!

(2.16) 1-29%s)= 3 %—" C(‘;:;k)

which is attributed to Ramaswami (cf. [24], p. 166 and [30], p. 33, Equation
(2.14.2)). Furthermore, in its special case when t= —1/2, (2.15) gives us the
following companion of (2.16)

(8) s+ k)
_I{J!_— 23+k

@.17) 1=2"9%s)=1—3 (- )i

which was also given by Ramaswami ([24], p. 166).

Formulas (2.11) and (2.16) were rederived, using Eulerian integrals for
I'functions, by Menon [22].

In case we add (2.4) to itself (with ¢ replaced by —1{), we obtain the
summation formula (cf. [12], p. 357, Equation (54.6.3))

- ()\+2k——1

(2.18) 2 ok

)20, + 2k) t2k=%{<:(>\, 1-8)+20, 1+18) <1

while a similar subtraction yields

d )\+2k

2.19) 2 (215 +1

YO+ 2k + 1) ¥+ = % {€O, 1= =20, 1+1)} It <1.

Various interesting special cases of (2.18) and (2.19) are given in the
literature. In particular, the special cases of (2.18) when t=1/2, ¢=1/3, and
t=1/6 were considered by Ramaswami ([24], p. 167, Equations (1), (3) and (4))
who also gave a special case of (2.19) when ¢ = 1/2 ([24], p. 167, Equation (2)), and
by Apostol [2] who proved various generalizations of Ramaswami’s results.

By assigning suitable numerical values to the variable s in some of the
aforementioned special cases of (2.18) and (2.19), Ramaswami [24] also evaluated

() Formula (2.16) follows directly from (2.4) upon setting t=1/2 and x =s.
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a number of special sums including, for example,

- kD),
2.20) S pat=logz—y
= 2k+1) . 1 5 2%—1%@k+1) 1
@.2D) gl o7k +1 =log2 2 (2.22) 21MH4» ofsl 1 g
@.23) 2 1 8Ck) 1 T43)

, @k+ 1)@k +2) 2% 4 2472)
where y denotes the Euler-Mascheroni constant defined by

2.24) y=lim {1 +%+~31-+ +%— log ) = 0.5772156649... .

It is easy to verify the fact that any two of the summation formulas (2.20),
(2.21) and (2.22) imply the third. Formula (2.20) is contained in a memoir of 1781
by’ Leonhard Euler (1707-1783) (cf. Glaisher [9], p. 28, Equation (8)); it was
rederived by Wilton ([34], p. 92) who showed also that

1 £(2k) _
(2.25) 2 F@E D T =logr—1
s @R @k+1 3 1, 1 ¢ (2)

@26 2 Gkeml @w T8 687 g7

= (2k—1)! Z(2k) &'(3) 11
(2.27) 2 @T3) o T e~ 73
Furthermore, since

- 2k—1
2.9 x 1, 14z
(2.28) Z’: o1 210g1_ | <1
so that, for x=1/2,
= -2k

2.29) S 2 _=log3—1
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the summation formula (2.20) is an immediate consequence of ﬁhe following
result (also contained in Euler’s memoir of 1781 already referred to)

= r@k+1)-1 3
. Lk+rH-1_. 1.3
(2-30) 2 Gripz T LTrley

which was rederived in 1826 by Legendre ([19], p. 434; see also Stieltjes [28], p.
302; Glaisher [9], p. 28, Equation (9) who recalls both (2.20) and (2.30)
erroneously). Legendre ([19], p. 434) also showed that

(@2k+1)—1 1

@2.31) > =1-y—3

2 1 log2.

While presenting alternative (direct) proofs of the summation formulas (2.30)
and (2.31), Johnson [14] obtained a number of results including, for example, the
sum (Johnson [14], p. 480, Equation (8); see also Verma and Kaur [32], p. 181,
Equation (D))

(2.32) S 22T o,

Formulas (2.31) and (2.32), together, imply the well-known result (contained
~ in the aforementioned 1781 memoir by Euler)

(k) —1
k

(2.33) S =1-y
k=2

which has appeared in several subsequent works (see, for example, Glaisher [9],
p. 28, Equation (4); Johnson [14], p. 478, Equation (4); Bromwich [5], p. 526,
Example 6; Wilton [34], p. 93; Barnes and Kaufman [3], where it is posed as a
problem; Verma and Kaur [32], p. 181, Equation (A), where it is rederived in a
standard manner).

We conclude this section by recalling the formula (cf. Glaisher [9], p. 27,
Equation (1); Johnson [14], p. 478, Equation (3))

M

(2.34) Zc—;—l{alc) -1} =y

k=2

#
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which was given in Euler’s memoir of 1769, and also the following results
contained in Wilton’s work [34]

(2.35) Lz kéf"f 5 =log (%) -1 or, equivalently,
2.36) k —E%?T_ll) = log (8) — 3 and
(2.37) ; ;(j];)%log (% ) or, equivalently,
2.38) ;21 E%i= log%.

Obviously, Euler’s formula (2.34) follows immediately upon subtracting (2.33)
from (1.4). Formulas (2.37) and (2.38), on the other hand, complement the sums
(2.20) and (2.30), respectively.

3 - Further consequences of the sums (2.3) and (2.4)

Many of the summation formulas mentioned in the preceding sections would
follow readily by suitably specializing the following straightforward consequen-
ces of (2.3)

ERDS ()‘+§l]z_1){2;()\+2k)—1}t2"=%{<?(/\, 2-f+e0, 240 | <2
S A+ 2k vk 1 e
@2 X Gy [P EOH2E+ D -1 =010, 2-0 L0, 240} [ <2

which are derivable also from (2.18) and (2.19), respectively.
Now we replace the summation index k in (2.3) by k+2, set A=s—1, and
divide both sides of the resulting equation by . We thus find from (2.3) that

S s+k y
3.3) Zo(k+2) {Zs+k+1)—1} ¢

=t2Ls—1, 2—t)— s — D+ 1} —(s— D) - 1)  0<l|f|<2
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and (2.4) similarly yields

= (s+k

x
2 k+2)l(s+k+1)t

3.4

=t2ys—1, 1-B)— s — D} —(s—Dtlgs) O<lt|<1.

Differentiating both sides of (3.3) and (3.4) with respect to ¢, and using the
formulas (1.11) and (2.9), we obtain

(3.5) ; (lz(i)‘g)‘! ({s+k+1)—1) 1
=t2{Ls, 2— 1)+ Ls) — 1}——?L{c(s—1 2—t—ts—-1D+1} 0<lf|<2
and
(3.6) ;j (];C(i)"‘z'*)l! Us+k+ 1)tk
= 12{Gs, 1—t)+z(s)}-2—tl{z(s—1 1-H-ds—1) o<lf<1
respectively.

For t=—1, (8.5) readily yields

E(8)r+1
(k+ 2)!

1

3.7) U =145 52

~21—§( D1 s 4 e+ 1) — 1)

while (3.6) formally reduces, when t— —1, to the sum

k()1
(k+2)!

—

(3.8) 2(s) =-;— z (= 1228 e L4 1) Re(s)<1.

+1
T2

Formula (38.7) follows also from (2.12). As a matter of fact, formulas (3.7) and
(3.8) happen to be the main results in a recent paper by Singh and Verma [27]
who prove each of these results in a markedly different manner.

By assigning suitable special values to the variable ¢ in (3.5) and (8.6), we can
deduce a large number of sums of series involving the zeta function. For
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example, for {=1, (3.5) immediately yields the result

(ke — 1))

1 1 i
2 ,;?:2 (k+ D!

3.9) «s) =%+ - (s +k)—1)

which is derivable also from Landauw’s formula (2.11).

4 - Sums of series involving f(Z(k))/k

In the theory of Ifunctions, it is fairly well known that (see, e.g., Erdélyi et
al. [8], p. 45, Equation 1.17(2); Jordan [15], p. 62, Equation (2))

- )
@.1) logI(1+t)=—yt+ 3 (= I :(lc)% <1

k=2
or, equivalently, that (cf. Abramowitz and Stegun [1], p. 256, Equation (6.1.33))

|t} < 2.

4.2) logI'C+t)=1—y)t+ z (— D {ztk) — 1}%

For t—1, (4.1) reduces immediately to the classical result (see Jordan [15],
p. 62; Erdélyi et al. [8], p. 45, Equation 1.17(3))

(4.3) 2 (- 1)"

and (4.2) with ¢ =1 yields (cf. Verma [31]; see also Verma and Kaur [32], p. 182,
Equation (1))

4.4) z (— oy~ 1+10g2

which is, of course, equivalent to (4.8).

The special case of (4.2) when ¢t = —1 gives us the well-known result (2.33).
Formula (2.33) in conjunction with (4.4) would immediately yield the summation
formulas (2.31) and (2.32).
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Setting t=+1/2 in (4.1), we have

4.5) S (-1 y(k) =L i lign—1og2
b 2772
R | 1 -
(4.6) > lUk)=—==logr—<7v or, equivalently,
Pt ko2 2
@) S (= DHLk) - 1} ~pn+i log, + logi
k=2
- 2% _1 1
4.8) >SH{tky-1}=~==(1—-y)+=logr—log2.
k=2 k2 2

Formulas (4.5) and (4.6), together, yield the results (2.20) and (2.37), and the
summation formulas (2.30) and (2.38) are similar consequences of (4.7) and (4.8).
Finally, we set {=+3/2 in (4.2), and we obtain the sums

, - k

(4.9) S 002 By m10g 4 Liog= -2 )
Ct)-13, 1, 3

(4.10) =, T(E)k - 2 logu + 2 (1 Y) .

With a view to simplifying the derivation of such summation formulas as
(2.20), (2.30), (2.31), (2.32), (2.37) and (2.38), we record here the following
consequences of (4.1) and (4.2):

@.11) i 2k)~—- log (= “t ) <1
- ra-t
4.12) 3 qek+ 1) 2’; +1 o= %log (.r§1 - t;) —yt It <1
4.13) S {2(2k) - 1) ﬁkk =log ('@ — H)[(2 + 1) It <2
and
- re—t
4.14) 3 (1@ +)~1) 2k+1 =%1og(1,§2+t;)-(y~1)t It <2.
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5 - Sums of series involving 7 (Z(k)/(k + 1)

Differentiating both sides of (4.1) with respect to ¢, we obtain (see, e.g.,
Erdélyi et al. [8], p. 45, Equation 1.17(5); Jordan [15], p. 327, Equation (2))

(.1) WL+ =—y+ S (= DF2(k) £ <1

where ¢(z) = I"(2)/I'(z). Now multiply (5.1) by ¢ and integrate both sides between
t=0 and t=2, and we find that

= k+1 ?
5.2) S~V el L= =z logI(1+2) + 2 y22— [ logTA+8)dt  |2| <1.
2, k1 2 1%

In precisely the same manner, we find from (4.2) that

6.3) 3 - - 1) £
=zlogl'@+2)+ %(y e of: logI'(2 + t)dt 2] <2.
Since ([10], p. 661, Entry 6.441(1))
(5.4) :leOgF(q +odt =~;— log @) + (p + ¢) {log(p + @) — 1}
it is readily seen from (5.2) with z—s 1 that
(5.5) k}l(— 1)k£i“—)1=1+%y—%log(2n)

which was proved by Suryanarayana [29], and again by Singh and Verma ([27],
p- 3, Section 4). The method of derivation of (5.5) by these earlier workers is
fairly standard in the theory of the Riemann zeta function. By the same method,
Suryanarayana ([29], p. 143, Equation (14)) claimed to have summed the

obviously divergent alternating series i (= 1*k) whose corrected (conver-
k=2

gent) version is precisely the same as the well-known result (1.7).
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Making use of the elementary integral (5.4), the special case of (5.3) when
2 =1 can easily be rewritten in the forms

hd Lk)-1 3 1 1
— 1y 2 L2 =3 -
(5.6) S V=gl
= k)—1 3 1 1
.7 P ki T SUHCD

which, together, yield the following sums

5 @k -1_3 1

5.8 =2 _Loein

3-8 2 o1 "2 g legln)
< r@k—-1)—1

(5.9) 3 L—k—)—-=1og2~y.
k=2

(5.10) 1- +...=log2

from (5.5). Adding (5.10) to (5.5), we similarly obtain

(ky+1_ 1
E+1 2

il . 1 1 7
(5.11) Zz(— 1)’” +§}'——'§10g§.

In view of the series (5.10), the summation formulas (5.6) and (5.11) are
substantially the same as the known result (5.5). Formulas (5.6) and (5.7) and
indeed also the well-known result (2.33), happen to be the main results in a
recent paper by Verma and Kaur ([32], p. 181, Equations (A), (B), (C)) who also
state an erroneous version of the sum (5.9) above ([32], p. 181, Equation ().
Furthermore, the summation formulas (5.6) and (5.7) appeared more recently as
a problem (see [6]).

Summation formulas like (5.8) would follow more rapidly if we multiply both
sides of (5.1) by ¢ and integrate the resulting equation from ¢t = —z to t =2. We
thus find from (5.1) that

=%log( ez flog]’(1+t)dt 0<z|<1

(6.12) gl ¢Ck) no z

z
2k+1
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or, equivalently, that (cf. Equation (5.3))

(5.13) z (x@ - 1) 5E

=% log T2 + 2) T2 — 2)) — 2—12 flogr@+Hdt 0<le|<2

which would follow directly from (4.2) in precisely the same manner as (5.12)
follows from (4.1).

As an example of the use of the summation formulas (5.12) and (5.13), we set-
#=1/2 in (5.12) and evaluate the resulting integral by means of (5.4). We thus
obtain the sum

(5.14) S ek 2 =1 1.9
Pt 2k+1 2 2
while (56.13) with z=1/2 yields the sum
S -3_1 _
(5.15) E {22k) -1} 2k+ 1=57% log2—1log3.

In view of the series (2.29), this last summation formula is an immediate
consequence of (5.14).
Finally, we subtract the series (5.14) from the series (5.8), and we find that

s (1-2%ek) -1 1
(5.16) > e =1~ log @)

or, equivalently, that (see Robbins [25])

1
17 1 2r)=1- ’
(56.17) 0g (27) = ,;1 {3(21)1 + 1)' 52+ 1)

——

6 - Miscellaneous results and generalizations

Since

e+ _iz_/.__’_)\—‘u
Ek+1) k k+1

(6.1)
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the various summation formulas established in the preceding sections can be

&)
" k(k+1)°

the summation formulas (2.33) and (5.7) lead us in this way to the sum

applied to deduce sums of series involving, for example In particular,

= Ak+u

©.2) Zg k(k+1)

{tk)y—1}=pn *——21‘(7\ + ) 7,-{-%()‘.—#) {3 —log 2m)}
while (4.4) and (5.6) similarly yield the sum

= . )\k—f—y
(6.3) gz(-— 1)¥ RSN

{¢k) — 1}
= u(log2 ~ )+ 402 +@)y+3 0w {3 - log 8}

By assigning suitable special values to the arbitrary constants A and «, we can
obtain a number of interesting summation formulas as immediate consequences
of (6.2) and (6.8). For instance, the special case of (6.2) when A= —u =1 yields
the known sum (see Chrystal [7], p. 872, Equation (18))

&k~

64 22 bk + 1)

{¢k)—1}=2—1og (2r).

An alternative method of obtaining sums of series involving 2 (k(+)1)
Lk
If(gc(%-)l)) is provided by the well-known formulas (4.1) and (4.2). Indeed, if we

merely integrate both sides of (4.1) and (4.2) from t=0 to t=2z, we get

©.5) S (= 1) k) B ;ﬂ+%fbﬂn+ﬂ& 0<ld<1
k=2 0

k(k +1)

6.6) 3 (~ (k) - l@—Dz+%fbgﬁ2+0M 0< e <2.

n—=2
}Mk+n“2

On the other hand, by integrating (4.1) and (4.2) from t= —z to ¢ = 2, we have
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(ef. [12], p. 356, Equation (54.5.5))

=1 f log I'(L + ) dt 0<lzl<1

©.7) 2 YT D k(2k+ D=z

“log '@ + £) dt 0<lz| <2

= 21\
(6.8) EI{C(%)~ }m “i‘ 1)

which obviously generalize Wilton’s formulas (2.35) and (2.36), respectively.

Multiplying (5.3) by 2/z, and (6.6) by «, and adding the resulting equations,
we obtain the following unification (and generalization) of the summation
formulas (6.2) and (6.3), and indeed also of (6.6)

I+
k(k+1)

©.9) > (= 1 {2 — 1} 2*

=2 lOgF(Z'f‘z)-i-%‘()‘-i-‘u.)(y—l)z—)\;M fz log I'(2 + ¢) dt 0<|z|<2
0

which, in view of (5.4), would yield (6.2) and (6.3) in its special cases whenz= —1
and z =1, respectively.

In the special case of (6.7) when z = 1/2, if we evaluate the resulting integral
by means of (5.4), we shall obtain Wilton’s result (2.25), while (6.8) with z=1/2
similarly yields the sum

27/&

(6.10) z (2@k) - = log &1%) -

Ver+D k(2k +1)

Wilton’s result (2.25), which was posed as a problem over four decades later
(see [11]), follows immediately upon setting a = 1 in Burnside’s formula (cf., e.g.,
Wilton [34], p. 91, Equation (3); see also Erdélyi et al. [8], p. 48, Equation
1.18(11); Magnus et al. [20], p. 12)

2~2k

=log (27) + @a — 1) {log (@ — —) 1) —2logI(a) Re(a) > — %
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involving the generalized zeta function defined by (1.9). As a matter of fact,
Wilton [34] rederived Burnside’s formula (6.11) as a consequence of the following
straightforward generalization of the expansion (2.3)

6.12) DG
k=0

YO +E, a)—a Ry tF=20, 1+a—1) It <|1+aql
which is, of course, equivalent to the generalization

6.13) > ARk, o=, a0 14l < la)
k=0

of the expansion (2.4).

In terms of the generalized zeta function (s, a), it is also known that (cf.
Whittaker and Watson [33], p. 276; see also Gradshteyn and Ryzhik [10], p. 1074,
Entry 9.532)

(6.14) i (— Dk Uk, a)%= logI'la + t) — log I'(a) — td(a) lt] < |al
k=2

or, equivalently, that

(6.15) 2 (= DF {¢tk, @)~ a“‘}%f

=logI1+a+t)—logI'l +a) — t{{(a) + a1} lt] < |1+ al.

Since Y(1)= —y, (6.14) and (6.15) reduce immediately to (4.1) and (4.2),
respectively, upon setting a=1. It should also be remarked in passing that,
since (cf. Equation (1.12))

iUs, a)—a~*=Ys, a+1) WD)+ i=dz+ 1)

every result like (6.13) and (6.14) can be restated rather trivially in the
equivalent forms (6.12) and (6.15), respectively, by merely replacing a by a + 1.
By employing the rather elementary techniques illustrated fairly fully in this
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section, and in the preceding sections, we can easily derive appropriate
generalizations of the various summation formulas considered in this paper as
useful consequences of (6.12), (6.13), (6.14) and (6.15). For the sake of
completeness, we choose to record some of these generalizations as follows (see
also [12], p. 358, Equations (54.11.2), (54.11.8) and (54.11.4))

(6.16) AZ= (- D¢k, a)+"— k(k D

=% [ logI'(a + 1) dt — log I'a) '—%ng(a) 0<e <|al
6.17) kzi L2k, a)k_(Z—k-i-—l) P zf log I'(a + t) dt — 2 log I(a) 0<lz]<|al
(6.18) i L2k, a)-tz—k =logI(a +t) +logI'a —t) — 2 log I'(a) [t < |al

6.19) S @k+1, @) 22 - =%{log1‘(a——t)—-log1’(a+t)}+t¢(a) It <lal.

It is easily seen from (6.14) and (6.16) that

= . Ak 4w
1Yk - —,
(6.20) EZ( 1) REED (ky, @)z =2 logI'(a+ 2) —u log I'@)
1 A—u F
—E()\+,u)ng(a)~—?‘- [ logI'(a +t)dt 0<lz|<]al.
0

Setting z= —1 in (6.20), and evaluating the resulting integral by means of
(5.4), we obtain the summation formula

= Ak+u
(6.21) ?:‘,2 m k, a)=2xloglNa—1)—u logI(a) +%()\ +w)a)
- % O — ) log 27) — (A — w(a — D{log (@ — 1) — 1} larg (@ — 1)| <.

For A= —u =1, this last result (6.21) reduces immediately to Binet’s formula
(cf. Whittaker and Watson [33], p. 261, Example 18; see also Erdélyi et al. [8],
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p. 48, Equation 1.18(10), and Magnus et al. [20], p. 12)

(6.22) Lz kfk T4, @

=2 logI(a) — (2a—1) log(a — 1) — log (2=) + 2(a — 1) larg(a — 1| <=

which, for a =2, yields (6.4).
Next we apply the formulas (6.17) and (6.18) with a view to deriving the sum

e+

(6.28) 2: k@k + 1)

— 2k, a)* = %A{logf(a + 2) + log I'(a — 2)}

0<lz| <al.

— 2u log I’

Setting 2 =1/2 in (6.23), and evaluating the resulting integral by means of
(5.4), we deduce the following interesting generalization of several results
including, for example, Burnside’s formula (6.11)

M+ 1

-2k
B2kt 1) Bk @2

6.24) i
=2 logI'a + %) — 2, logI'(a) — %(x 2.) log (27)

1 1 1
- {a—pCa—1)} log(a~ —2-) + (1 —2u)a — E) Re(a) > — 5

which indeed yields (6.11) for 2= —1=0.
Finally, we integrate (6.19) from ¢=0 to t=2, and we find that

22k+2

(6.25) kz::l L2k + 1, a)m

= [ {logIa@ — )~ logI'a+ 1)} dt + 22 4(a) k| <|al
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which, for z=1, yields

= (2k+1, a)

(6.26) 2 s D@TD

=(a—1)logla—1)—a loga+(a)+1 larg (@ — 1| <=

where we have made use of the elementary integral (5.4).
This last result (6.26) reduces, when a— 1, to the summation formula

= (@k+1)
©20 - Z+n@E+D T

which is attributed to Glaisher by Ramanujan [23] (p. 73).

Remark. In addition to the numerous references cited in the preceding
sections, the summation formulas (1.4), (1.7), (1.8), (2.32), (2.33) and (4.4)
appeared collectively in the work of Knopp ([17] p. 271, Exercise 124 (a) to (e),
(g) and (h)). As a matter of fact, Knopp has also recorded the interesting sum (cf.
[17], p. 271, Exercise 124(f)

sinh =
log ( o )

(6.28) i (— 1)1 C(Zklz -1

which follows readily in the special case of (4.13) when {=1, since

2x’i= 2

(6.29) rg—-9r@+ay= S Smho

where we have used the familiar property

(6.30) -2 +z2)=—22
Sin 2

of the I'-functions, Furthermore, in view of the elementary result (5.10), the
summation formula (6.28) is also an immediate consequence of (4.11) when {— <.
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Summary

This paper aims at presenting a systematic account of several interesting classes of

summation formulas involving series of the Riemann zeta function Z(s). Simple proofs
are provided for many useful unifications (and generalizations) of various sums which
have received considerable attention in recent works. Analogous results associated with
the genemlized zeta function (s, a) are also investigated.
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