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WiLLiaM D. L. APPLING (%)

A transformation of variables characterization theorem

for Stielfjes integrals (*¥)

1 - Introduction

In recent papers, various authors [1], [4], [5] have carried on the long
standing and continuing investigation of the interplay between the differentiabi-
lity, absolute continuity, continuity, bounded variation and integrability proper-
ties of real-valued functions defined on certain «standard» subsets of the real
numbers.

In this paper we investigate, for the setting and notions given above, a
question involving transformation of variables for Stieltjes integrals. In
«standard» Stieltjes integral (see [2], [3] and 2) transformation of variables
theorems, i.e., theorems having conclusions of the form

s us)
J @) dgw@®) = [ flx)dg(=)
v o)
subjeet to various conditions on f, g and v, one of the primary questions that arise
is that of the existence of the integral on the left, given that the integral on the
right exists. An example of such a theorem is the following, which is well known
and routinely shown.

Theorem 1.1. Suppose that p<q, a<b, v is a continuous monotonic
function from [p ; ql into [a ; b], and each of f and ¢ is a function from [a ; b] into
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b
R such that the integral (see 2) f S dg(®) ewxists. Then the integral
vg)

f Sw@) dgu(®)) exists and is [ flx) dg(%)

z(p)

A stronger version of Theorem 1.1., which we shall be using in this paper, is
the following corollary, for which we give an indication of proof.

Corollary 1.1. Suppose that r<s, a<b, D is a subdivision (see 2) of
[r; 8], v is a continuous function from [r; sl into [a ; b] such that if [p;qlisinD,
then v is monotonic on [p ql, and each of fand gis a function from [a ; b into R

such that the integral f S@) dg(x) exists. Then the integral f fl®) dgv(t)) exists
(s}

and is | flx)dg(x).

wr)

Indication of proof. By Theorem 1.1.,, for each [p;q] in D,
wg)

f S(®) dg(w(®)) exists and is [ flx)dg(x). We therefore have the following
(p)

eXIStence and equality

(s} g}

[ ) dga)=3 [ fia)dg@)=3 | " Rt dg (it = [ Fole)) dgule) -

©r) D (p)

Notice that in the above corollary, because of the monotonicity conditions on
b
v, the only requirement on f and g is that the integral [ fiz)dg(x) exist. We ask

the following question: what kind of transformation of variables theorem can we
have if we replace the monotonicity conditions of the corollary on v with bounded
variation? As we shall see, even as restrictive a condition as f continuous and g of
bounded variation is not enough to ensure that for v as immediately described

above, the integral [ f(v(®))dg(v(?)) exists. Indeed, we shall see from
Theorem 8.1., stated below, that if ¢ is such that for every f continuous on [a ; b]

and v, once again, as described above, the integral f J(@) dg(v(t)) exists, then g
must be Lipschitz on [a; b].

Before stating Theorem 8.1. we give some definitions.

If i<j and S¢R, then:

(@) C[i;418 is the set of all functions from [i;4] into S continuous on [%;7].
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(ii) BVIt;J1S is the set of all functions from [7;7] into S having bounded
variation on [7;7].

(i) CBVT; 418 is Cli;71S nBVTi; 18S.

(iv) AC[i;71S is the set of all functions from [7;5] into S, absolutely
continuous on [7;7].

We note that AC[7;j1S ¢ CBVIi;jl18S.

Theorem 3.1. Supposethat a<b, r<s and g is a function from [a ; b] into
R. Then the following five statements are equivalent:

1) If f is in Cla; bIR, and v is in CBV]r;sl{a;bl, then fsf(v(t)) dg(w(t))
exists. 7
@) If fisin Cla; bR and v is in AC[r; slla; b], then [ f(v(@®)) dg(v(t)) exists.

8) g is in Cla; b1R and, if v is in AC[r; s]la; bl, then g(v) is in BV[r;slR
(and therefore trwially in CBV[r;slR).
(4) There is K>0 and d>0 such that if {I}ie, is a finite sequence of

subinterval of [a;b] such that ﬁ Arx=<d, then ﬁ AL 9| =K.
k=1 k=1

(5) g is Lipschitz on [a;b].
Furthermore, if g satisfies such conditions, then for each f and v as given in
€y

u(s)

Jfo®)dgw®) = [ f)dg(x) .
T wr)
We pause here to note a small fact. Theorem 3.1 could have asserted the
equivalence of six statements, the additional statement placed between state-
ments (2) and (3) above and given as follows:

2.5) If fis in Cla;blR and v is in AC[r;slla;bl, then for some
subdivision D of [r; s], {3 fv@I)) 4;9W): E a refinement of D, z an interpola-
ting function on E} is bounded.

Clearly (2.5) follows from (2) and only the most minor modifications in the
argument showing that (2) implies (3) are required to show that (2.5) implies (3).
However, in the interests of orthodoxy we refrain from this insertion.

In the final section of this paper we extend the final remark of Theorem 3.1.
and prove, with some labor, the following theorem.
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Theorem 4.6. Suppose that r<s, a<b, v is in CBV[r; slla; bl, each of u
and g is a function from [a; b] into R, g is Lipschitz on [a ; b] and u is quasi-

s ©(s)

continuous on [a;b). Then [ u(@(®)dgw®) exists and is [ () dg(x).

» w(r)

2 - Preliminary definitions, lemmas and theorems

If p < g, then the statement that D is a subdivision of [p ; ¢] means that D is a
finite collection of nonoverlapping (number) intervals whose union is [p; g].

If p<q and D is a subdivision of [p;q], then the statement that E is a
refinement of D means that E is a subdivision of [p ; q] such that each element of
E is a subset of some element of D. We shall let «P << @Q» mean that P is a
refinement of Q.

Throughout this paper all integrals will be refinement-wise limits of the
appropriate sums. We shall use standard notation and shall assume and use basic
properties and conventions.

The remainder of this section consists of 6 lemmas and a theorem that we
shall use to prove Theorem 38.1. Some of these are sufficiently self evident to
warrant omitting proof.

Lemma 2.1. Suppose that a<<b, p is in [a;b], {w,}i- is a sequence of
numbers of [a; b] such that i lw, —pl <o, r<s, qisin[r;s] and {x;}2, is a
k=1

monotonic sequence of distinct elements of [r; s] such that x,— q as n— «. Then
there is a function v in AC[r;slla;b] such that for each positive integer n,
v(x,) =w, if n is even, and v(x,) =p if n is odd.

Lemma 2.2. Suppose that a<b, p is in [a;b], {2} is a sequence of
distinct numbers of [a; bl, all distinct from p, such that z,—p as n— , and
{yi}i1 is a sequence of numbers which converges. Then there is an element f of
Cla; bIR such that if n is a positive integer, then f(z,) =Y,

Lemma 2.3. Suppose that l<m, a<b, 0<d,, 0<ds, S is a finite number
set, u is an element of AC[l; m]la; bl, « is in [a; b] and |u(m) — x| <ds. Then
there is an element w* of AC[l; mlla;b] having some element in common with

u, such that w*(m) = x, u*(l) is not in S, [u(l) —w*()| <d, and [ |du — du*| < d,.
tm]
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Lemma 2.4. Suppose that r<s, r<k<s, a<b, {l}2, is a monotonic
sequence of distinct numbers of [ s] such that I,— k as n— o, and such that,
Jor each positive integer n, u, is in AC[l,.y; Llla; bl or AC[l,;l,.1[a; b], as the
case may be. Suppose further that if wm 1is a positive integer, then
Unii(lped) = Wllyr), amd S, [ |du,l<corS [ |du,| <, as the case may

=l [epils) n=1 [yl

be. Then there is an element u of AC[r;slla;b] such that U Uy, C U.

n=1

Lemma 2.5. Suppose that r<s, v is in CBV[r;s]R, D is a subdivision of
[r; 8], Sisa finite subset of v([r; s]) and 0 < c. Then there is a refinement E of D,
a subset E' of E and a reversible function X from E' onto S such that if [p ; ql is
n E', then

Xp; 1= vl + |Xlp; gl =@l + [ldvl<c.

Proof. There is a refinement E of D such that if [p;q] is in E, then
S |dv] <min{¢/8, min{|x —y|:x, yin S, x#y}}. Suppose that zis in S. There is
9

w in [r; s] such that z = v(w). There is [p ; ¢l in E such that wisin [p;q]. If w' is
in [p;q] and v(w') is in S, then

[ow) —vw")| < [|dv]<min{lx—y|:x, y in S, x £y}
[p; g

so that 0 = [v(w) — v(w")|. Thus there is a function Y from S into E such that if z is
in S, then z is the only element of S in v(Y(z)). Y is clearly reversible. Let X = Y's
inverse and E' =Y's range. X is a reversible function from E' onto S. Now, if
[p;qlis in E’, then for some w in [p;q], XIp;ql=v(w), so that

IXIp; g1 —v@)| + | XIp; g1~ v(g)| + [|dv|
fpiql
= [u(w) — v(p)| + Jvw) — v+ [|dw|=3 [|dv]|<c.
Ip;q1 [iA1]
Lemma 2.6. Suppose that r<s, v is in CBV[r;s]R, v([r; s]) contains two

elements, D 1s a subdivision of [r; s, {x,}}=1 is a finile sequence of elements of
v([r; s]) and 0 <c. Then there is a refinement E of D and a reversible function X
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Sfrom a subset E' of E onto {1, ..., n} such that if [p;q] is in E', then

|xipsq0 = V()| + [x — (@] + [p.{] v <c .

Proof. Clearly, there is a reversible function W from {1, ..., »} into
v([r;s]) such that if & is in {1, ..., n}, then [W(k)— x| <c/6. From Lemma
2.5. it follows that there is a refinement E of D and a reversible function X
from a subset £’ of E onto {1, ..., »} such that if [p;q] is in E’, then
[WXIp; gD —v@)| + [WX(p; gD —v(@| + [|dv]<c/3 so that

[piq)

lxX[p;q] —v(p)| + lxX[p;q] ~v(g)| + Lp.f] dv| = lmX[p;q] —WXlp; gDl + |W(Xlp; gD —v(p)|
+|@xp g — WXIp; gD + [WXIp; ) —v(@)| + [|dv|<c/l6+c/6+c/3<c.
;91

Theorem 2.1. Suppose that r<s, v is in AC[r; s]1R, v([r; s]) contains two
elements, D is a subdivision of [r;s], m is a positive integer, {[x;; yil} iy 1 @
sequence of subintervals of v([r; s]) and 0 <c. Then there is a refinement E of D,
a reversible function X from a subset E' of E onto {1, ..., m} and sequences
{up}iey and {t}7%, such that:

O ¥ [p;ql is in B, then |uxgyg—v()| + g —v@] + J |dv]<c;
[piq)

@ o [p;ql is in B, then uxyq is in AClp;qlv(r;s]), uxpqa®) =v(p),
U@ =01, P<lxing<q Uxpmalxma) = Yxmqyr | [Abxipql = ’Y'/X[:ﬂ;q] —v(p)|
. pigd
+ l?/X[p;q] - v((])l,

@ii) o, for each [p;ql in E', vy is the restriction of v to [p;ql and

a=[v—Up vpglUlUp Uyyqgl, then o is in AC[r;slv(r;sD), «@)=v@),
a(8)=v(s), if x is in [p;ql in E—E', then o(x)=v(x) and

[ f]]d“ —dv| = % [pJ; IduX[p;q] - dv[p;q]] 5% [I?/X[p:q] —v(p)| + lyX[p;q] —v(g)| + [pf] !dvfp;qll]
7. " Ipig] 4 ' . ig

= % Uyxima — Cximal + 18xm0 = 9O + Yxpg — Cxial + [%xma — v(@)] + [pf] |dvg; ]
R 14

< ; [2|yx[p;q] - xX[p;qll +c].
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Proof. By Lemma 2.6 there is a refinement E of D and a reversible
function X from a subset £’ of E onto {1, ..., m} such thatif [p;qlisin E’, then
[Cxiq — V)| + |x g — (@] + [ |dv] <c. Thus @) is satisfied.

q

For each [p;q] in E’, there is tyy,, such that p <ty ,<g and an element
Uzxpqg of AC[p;qlv(r;s]) such that if p=sw=<gq, then wuxyy)=v(p)
+ {Wxip 0 — V0 Cxpp g — 2] max{min{z —p, txpq—p}, 0} +[(W(g)— Yxm; /(@
— by )] max{min{x — txp, 4, ¢ — txpa), 0}. Routine considerations imply that
(i) is satisfied.

Finally, (iii) is an obvious and self explanatory consequence of conditions (i)
and (i) and the definition of wuyy,, for each [p; ¢l in E'.

We end this section by stating a notational convention: If, in a given
discussion, an expression is to be repeated and is of sufficient complexity, it will
be enclosed in square brackets with a subscript attached; thereafter only the
brackets with subscript need be written.

3 - A transformation of variables theorem
In this section we prove Theorem 8.1, as stated in the introduction.

Proof of Theorem 3.1. Obviously (1) implies (2).
We now show that (2) implies (3). Suppose that (2) is true. First,

fs (a+[(b—a)(s—n]{Et—r)dgla+[(b—a)(s— ol (t — 7)) exists, which implies
that fs tdg(a + [(b — a)/(s — 1] (t — 1)) exists, so that, from routine considerations,

gla + (b~ a)/(s — 1] (¢ — 7)) is bounded on [r; s]. Therefore, clearly, ¢ is bounded
on [a;b]l. Let M =sup{|g(®) —g@)|: {x, y} cla;bl}.

We now show that g is continuous on [a ; b]. Suppose, on the contrary, that
there is p in [@; b] such that g is not continuous at p. Then there is ¢>0 and a
sequence {w;}i-; of distinct numbers of [a; b], all distinct from p such that for
each positive integer k, 0<|w;, —p| <27* and |g(w;) — g(p)| = c.

Therefore i |wy—p| <. By Lemma 2.1 there is an element v of
k=1

AC[r;slla; b] such that for each positive integer n, v(r+ (s — r)/n) =w, if n is
even and v(r + (s — r)/n) = p if n is odd. By Lemma 2.2, there is a function f, from
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[a; b] into R, continuous on [a;b], such that if » is a positive integer, then
J(r + (s — r)in)) = (sgnlg(w,) — gp)/n if n is even and fw@+ (s —7¥n)) =0 of n
is odd. Now suppose that D is a subdivision of [7; s] and 0 < Q. There is an even
positive integer N such that r + (s — r)/N <h, where [r; h] is D. There is an even
positive integer N’ > N such that

o 3 Ve>Q+[ 3 f@)dyag|l+2HM

k even D—{[r; 1]}
Nsk=N'

where H=sup{[fw)l:a<x=<0b}. Let E denote {r;r+(s—n/N'+1)],
[r+GE—rM/N'+1); r+E—1IN'], .., [r+E—1IN+1); r+(s—r)N],
[r+(s—7)N;h]}. Clearly, Eu (D —{[r;h]})<<D. Now

> f(v(Q))A[k;q]g(v)lzl%f(v(q))‘d[’c;q}g(v)[—[ h

Eu(D-{{r;h1})

= |[fw(r + (s — NIN' + D)) (gl(r + (s = /(N + 1)) — gw()))

+ [Av(r + (s — PIN)) (gl + (s = )IN')) — glo(r + (s —~ YN+ 1)) + ...
+ flw(r + (s — NN (gl + (s — r)IN)) — glolr + (s — /(N + D))
+ fw(m) (glo() — glv(r + (s =N —[ h=—HM+|[ Ll -HM—-|[ 1

=—2M—[ L+]| 3 fob+(s—nk) g+ (s—nik)

k even
N=k<sN'

—gO@r+ (s —D/k+1N)|=—-2HM [ L+ 3 (k) |gw) — g(p)|

k even
N=<k=<N'

=-2HM - i+c( > A/R)>Q.

k even
- N=k=sN'

Thus [ flw())dg(v(t)) does not exist, a contradiction. Therefore g is conti-

nuous on [a; b].

We now show the second part of the conclusion of (3). We shall carry out a
constructive proceedure. So suppose, on the contrary, that there is a function v
satisfying the stated conditions such that g(v) does not have bounded variation on
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[r: s]. By routine methods it follows that there is an element k of [r; s] such that
either k<s and for each y in (k;s], g(v) does not have bounded variation on
[k ;yl, or »< and for each y in [r; k), g(v) does not have bounded variation on
[y;k]. Without loss of generality we shall assume that former condition.
Suppose that 0< K and k <y =<s. There is a subdivision D of [k ;y] such that
S |ag)| > K + M. We see that D contains at least 2 elements. There is w such
D

that [k;w] isin D. M+ 3 |dgw)|=3 |4gw)|>K+ M, so that 3 |ag()]

D~ {[k;w]} D D-{{k; w]}

> K. It therefore follows that there is a decreasing sequence {l;}7; of elements of

(% ;s] such that l,—k as n— o and i]g(v(lm)—g(v(li)ﬂ—)w asn—> . So
i=1

far our argument has been almost identical to the corresponding portion of a
standard argument for a well-known Stieltjes integrability vs. bounded variation
theorem. However, the desire to find, for this situation, a certain element of
Cla; b]R suggests a modification of v. We proceed accordingly. There are

positive number sequences {c;}i; and {d;}iZ, such that Z(cl+d)<oo and if

a<x<y<b, nis a positive integer and |x — y|<d,, then Ig(w) gl <e,. For
each positive integer 7, let v, denote the contraction of v to [l.+1;0.]. Note,
trivially, that if n is a positive integer, then v, 1(lps1) = va(lus1)- Thus, by
induction, Lemma 2.3, and one small routine consideration, there is a sequence
{vi}e_, such that if » is a positive integer, then vj is an element of
AC[lus1; Ldla; bl, v and v, have an element in common, VE (L) = VE0),
V5l s mot in  {wk), vFQ), .., Vi), (Vi) — 0] <d
[ |dv, — dvi| <d,-, and vi(ly) #v(k). Now, if m is a positive integer, then

M)

z f ]d’l),ﬂ = 2 [dn 1 + f Idvnl]<[2 dn—l] -+ f |d/U! = [2 dn 1] + f ld’l)!

n=1 {lsp31) n=1 iyl flns1ily] n=1 fr;s]

Therefore, by Lemma 2.4, there is an element » of AC[r;s][a; b] such that

U vEC u.
n=l

Now, since for each n, u(l,) = v¥(l,), it follows that {u(l,)}:-, is a sequence of
distinet numbers of [a ; b], all distinet from v(k) such that w(l,) — u(k) as n— .
The inequality |u(lps1) — v(psd)| = [0EUps) — Vpllpsn)| <d, clearly implies that
u(k) = v(k), so that each u(l,) is distinet from u(k); further, this inequality implies
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that |g(u(ly+1)) — gw(l,+1))| <c,. Therefore, if m is a positive integer =2, then

m

2 ’g(u(ln-i-l)) - g(u(ln))l

= § [= [9us)) = g@War))| + lg@sn)) — gD ~ lg () — gu(l))|]

n=2

>3 =t 3 |g0)) ~ gL + 3, — s>

n=2 n=2

as m—> . Let us note that if {a}f, is a sequence of nonnegative numbers such
n n k

that > ay— » as n— o, then 3 [a,(1+ 3 @) ®]— @ as n—s w. Now, since
k=1 k=1 j=1

S lgulin)) — gl —©  as m—co, it follows that @+ lgluld)

=gl ))) 20 as m— o, so that, by Lemma 2.2 there is an element fof
Cla; b1R such that if » is a positive integer, then

Sully)) =1+ Zn lg(u(®) - gu(les DD sgnlg(ul,) — gul,sr)))

so that if n is a positive integer, then

3. Fulle) (0u(h) — gl )

= §_‘, 1+ }f, lgu(@)) — g D)2 1g(ud) — gl 1)1 — o

as n—> . Clearly, to reach a contradiction, it will be enough to show that
I

J fu®) dgu(t)) does not exist. Let W =sup{|fx):a<x=<b). Suppose that
k

0 <K and D is a subdivision of [k ; [,]. There is a refinement D’ of D such that for
some positive integer N, [k ; ly] is in D'. There is a positive integer N’ > N such
that

é Sullis)) (@) — g(u(lin))) > WM + K + . zl ) [fu(@)] lg(u(@)) — g(ulp))| .

' {k;

Let E =[D' = {lk; LUk ; lysrdy Uss; Idy ooy [wer; ]}, Clearly B is a
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refinement of D. Now,
>, faup)) (gulg) — g(u(p)))
= flu(k)) (g(ulln-11)) — glu(k))) + éf (1)) (gal) — g(ulli)))

+ 2 flu@) (@) — gup)) = flulk)) (gully 1)) — gluk))

D' {tk; L1}

+ iN )] lgu@) — gl + 3 )f(u(q)) (g(u(g)) — gup)))

D' {tk; 1IN}

=-WM+WM+K
+ 3 @)l lgule) — gu@)| + D'_(%l nf (@) (9lu(@) —guPN) =K .

D'~ {tk; In1}

Therefore [ flu(t)) dg(u(t)) does not exist, and we have a contradiction.
LAY

Therefore the second part of the conclusion of (8) holds. Therefore (2) implies (3).
We now show that (3) implies (4). Suppose, on the contrary, that (3) is true,
but that if K> 0 and d> 0, then there is a finite sequence {I;}1%, of subintervals

of [a; b] such that iA,koch, but § A1, 9> K.
k=1 k=1

It follows that for each positive integer n there is a finite sequence {I{}7® of
m(n) min)
subintervals of [a;b] such that > Apwax=<2""*3 but > |Amg|>n; we shall,
k=1 k=1
when appropriate, express I explicitly as [x”; ¥™].

This is to expedite matters: There is a function, ¢, from the positive numbers
into the positive numbers, such that of 0 <e¢, each of w and z is in [a; b] and
|w — 2] <&c), then |gw) — g(2)| <c.

There is a function u, in AC[7;s]{a; b] such that u,(r) =a and u,(s)=b.

By Theorem 2.1. and induction there are sequences {D,}m1, {Di}nei,
{X.eoh, {Uatpe1, and {{tf}7P}s.,, such that if » is a positive integer, then:

@' D, A{[r;sl}, D, cD,, X, is a reversible function from D, onto {1, ...,
m(n)}, u, is in ACIr;slla; bl, u(r)=a and u,(s) =b.

)’ For all [p;ql in D, p<t@Pua<q and D, <L[Up{lp;tPual,
(tPmq ql}]V [D,— Dyl

(iﬁ)’ If [p;ql is in D), then [2@40— %]+ [tal@) — ePpql + [ |duss]
< min{(m(n) 272", a(mn)™H}. e
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V)’ If [p;gl i in D, then u,a()=up), %@ =1(@), UnerlPps)
=Ymar I |t = [y — O + [y¥0 — @), i 2 is in [p; ¢l in D, — D;,
then u”;p(,;) =u,(x) and [ |du, — du,.| < 2 RlyPiaq — 2P gl + (m(n) 204271
<o@ ) poa <o :

We now have the following three consequences:

(a) From routine considerations, it follows that there is a function % in
ACl[r;slla; b] such that [ |du — du,|— 0 as n—s co.

[r:s}

(b) If each of n and %' is a positive integer, n' > n, and x is in Up {p, q}, then
(%) = 1,(x), which implies that wu(x) = u,(x).

(¢) If » is a positive integer and [p;q] is in D), then

|9 G115 ) — 9@t s @V + |91t ) — 900112 |90 ) — 9@ )|
- Ig (w%z{p;ﬂ) = Ui ()| + lg(y%?[p;q]) -9 (xS?Z[p;q])l - ’g (x%?[p; D=9 (un+l(q))‘
>2 !g ('!/%[p; =g (9&3@; q])[ —2/m(n) .

It follows from (b) and (c) above that if » is a positive integer, then
2 gt — 9] + |9u(@) — gt )1
> 2210 — 9@l — 2mm] =123 1940 ~ 9@l — 2mm)/m(n)

>2n-2.

This clearly implies that g(x) does not have bounded variation on [»;s], a
contradiction. Therefore (3) implies (4).

We now show that (4) implies (5). Suppose that (4) is true. We first show that
if each of m and 7 is a positive integer, I is a subinterval of [a ;bland A; ¢ < md/n,
then |4;g|<mK/m. So suppose that I is a subinterval of [a;b] such that
Az =md/mn. Then nd;x<md. For I=[w;z], let E = {lw; w+ (z —w)m],
[w+GE—wym;w+2=—wm), ..., [w+(m-1) —w)im;z]}. If [p;qlisin E,
then ndy, v =nAx/m=md/m=d, so that n|Ay,9|=<K. Therefore nla,g|
=0 A9l =3 n|dg a9l =mK, so that |4;g| <mK/n.

E E

Now, again, suppose that I is a subinterval of [a ; b]. Clearly, 4,2 =< (4, z/d)d.
There is a decreasing sequence {k,}2., of rational numbers such that k,— Ay xld
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as n— «. Now, since 4; x < k,, d for all »n, it follows from the preceding paragraph
that |A;g|<k,K for all n, so that |4,g| < (4;w/d) K = (K/d) A, .

Therefore g is Lipschitz on [a; b]. Therefore (4) implies (5).

Finally we show, quite routinely, that (5) implies (1). Suppose that (5) is true
and v in CBV[r;slla; b]l. Clearly, f(v) is continuous on [r;s]. Let K’ denote a
Lipschitz constant for g. If D << {[r;s]}, then 3 |4g(w)| =3 K’ lav| <K’ [ |dul:

D D

(18]
Therefore g(v) has bounded variation on [r;s], so that, as is well known,
[ fw®) dg(v(®)) exists. Therefore (5) implies (1). Therefore (1), (2), (3), (4) and

[r3s]
(56) are equivalent.

We now prove the final statement of the theorem. Suppose that g is Lipschitz
on [a; bl, K’ is a Lipschitz constant for g, and fand v are as given in (1). g(v) isin
BV[r;s]R.

Suppose that 0 < ¢. There is d > 0 such that if each of # and ¥ is in [a ; b] and
|z — y| < d, then |[fiz) — fly)| <c. There is D << {[r;s]} such that if I is in D and
each of w and z is in I, then |v(w) — v(2)| <d.

Let % denote the function from [r;s] into R such that if ¢ is in [r; s], then

w(t) = v() + 3 [(w(g) — v@)/(q — p)lmax{min{t - p, ¢—p}, 0} .

Routine considerations tell us that if [p; ¢] is in D, then u(p) = v(p), u(q) = v(Q),
and that the contraction of u to [p;¢] is monotonic. It therefore additionally
follows that % is a function from [7; s] into [a ; b]. We also observe that if [p; qlis
in D and psw<y=g, then w(y) — u(x) = [(v(g) — v(p))/(g —P)I(y —x), so that
if psh<k=q and E<[h;k], then 3 |du|=|w(g)—v@)(g—p)|> A
E E
= [v(g) —v@)| [(k — R)/(g —p)], so that [|du| = v(g) —v(@)| [(k — k)/(g — p)].
v T .

Now, suppose that [ is % or v. Suppose that £ << D and for each [p; gl in D,
Elp;ql={J:Jin E, Jclp;ql}. If, for each [h; k] in E, 2y, is in [k ; k], then,
letting z = 2zp,.,3, we have that

| %f U= lg(Uk)) — gL - %f UpNlgUg) — 9]

=13 3 (fUe) —fUp) (g — gUEN)|

D Elp;q]

D Elp;ql D (p9q)

= % E%‘ ] [f@) — fA@)] |glE) — gQIN| =S S K |[Ik) — k)| <cK'Y, [|dv].
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It therefore follows that

| JAUE) dge) = S AUp) (9U) — gl < cK' [ |dv] .

{r;s) D [r;s}

Thus

(s)

| fro®) dgwiy) — [ Sl dga)

v(r)

=] fsf (w(®)) dg(w(®) — };,f wp)) (gw(@) — glw@)) + %f (u(p)) (9(u(@)) — g(u(p))

#(s)

— J feu) dg@u®) + | fu®) dgu®) — | fw) dg(e)|

v(r)

=cK' [|dv|+cK' [|dv]|+0

frsst [r;s]

the value of the last term of this sum a consequence of the definition of u and
Corollary 1.1. , o)
Therefore [ @) dgv@®) = | flx)dgx) .

1{s)

4 - Transformation of variables and quasi-continuity

In this section we prove Theorem 4.6. as stated in the introduction. We
precede the argument, or rather, as we shall see, the indication of the argument,
with some preliminary theorems.

Theorem 4.1. Suppose that p<q and v is a function whose domain
includes [p; ql, whose range cR, the contraction of v to [p;qlis in Clp;qlR and
[v(@)| >0 for all & in (p;q). Then, if p<p' <q'<gq, there is d>0 such that if
p=x=gq and |v()|<d, then x is in [p;p'lulq ;ql

Indication of proof. Thereis d> 0 such that if p’ <& =<gq’, then d < jv(x)|.

Theorem 4.2. Suppose the hypothesis of Theorem 4.1. with the added
condition that the contradiction of v to [p; ql is in CVBIp;qlR. Then, if 0<c,
then there is d>0 and.D << {[p;ql} such that if E<D and E'={I:I in E,
[v(@)| <d for some % in I} (if any), then S, [ |dv| <ec.

T
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Indication of proof. There are p' and ¢’ such that p<p’'<qg’'<q and
f|dv]|+ [ |dv|<ec. By Theorem 4.1. there is d>0 such that if p<x=<gq and

;"] fg'iql

|v(x)| < d, then x is in [p;p'lulq’; ql. Let D denote {[p;p’], [p’;q'], [q";ql}.

Theorem 4.3. Suppose that »<s, v is in CVB[r; s]R, for some x in [r; s,
(@) # 0, and G is the set to which X belongs iff X a subinterval [u;w] of [r;s]
such that if x is in (u;w), then v(x) # 0 and [u;w] satisfies one of the following
consditions:

@) w=r and either v(w)=0 or w=s, (i) v(u)=0=v(w), or (i) w=s and
either v(w) =0 or w=7r. Then [|dv|= }G‘,If |dv|.

(73}

Proof. Clearly G is a countable collection of nonoverlapping subintervals of
[r; s]. We shall take the usual liberties with set intersections and adopt the usual
conventions involving variation evaluations. For each subinterval V of [r; s], let
G(V)={V nI:Iin G}; we see that if G'(V) is a finite subcollection of G(V), then
> f |dv| = f |dv|, so that Z f |dv| = f |dv|.

&

It follows that 2 f[dv[ = Hdv] We shall now show that [ |dv] <2 f]dvl

[r; s8] [ri8]

For each submterval V of [r; s], we shall, when feasible, let > = > | |dv[ wh1ch

GV) G(V) J

can also be expressed as > [|dv|.
G vVl

First suppose that r<j<k<I=<s. We shall show that

Z+H X =2

Gk G([%; 1D G{; 1)
There is at most one element W of G overlapping both [7; k] and [k ; []; we shall
assume the more difficult alternative. Suppose that 0<c. There are finite
subcollections H, and H, of G, having no element other than W in common, and
having W in common iff W overlaps both [ ; k] and [k ; [], such that no element of
H, other than W overlaps [k ; [], no element of H, other than W overlaps [7; k]
and 3 <c¢2+3 [ |dv]and 3 <e2+> [ |dv|, so that

G kD Hy Gikindy Gk Hy 00l

S+ 3 <etS [ |a|+S [ |l

G{lj; kD) Gk H g, Knly Hy (kilnly
=c+ > [ f[dvl-i— fldv[]—c+ > [ldvl=sce+ 3 .
HyoHg Gkl HyuHy Gillnl GG;

Therefore > + > = 3 .
G(U; k) Gk 1) GW; Iy
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We now grant that, inductively, it follows that if D<< {[r;s]}, then
2IxI=s3. :

D Glpiq] Glr; s}
Now suppose that r=j<l!=s. We shall show that p()—v()|= I . If
v(l) = v(j), then the inequality follows. o
Suppose that v(l) # v(j). If v(j) = 0, then v(l) # 0 and we leave it to the reader
to show that for some x, j <2 </, v(x) = 0 and for some I in G, [x; []=[j;1]1n],
so that [v()) —v()| = |v() —v(@)|= [|dv]= [ |dv|=< 3 . For the case v(l) =0,
0 .

Ustlnd G

it follows in a similar fashion that Jo(l) —v()|= 3 .
GG Iy

Finally, suppose that 0+ v(j) # v(l) # 0. If, for each z in (5; ), v(x) # 0, then
forsome I'in G, [7;11=1[7; N1, sothat p() —v()|= [|dv|= [ |dv|]= 5 .0On
)] ji

;0 GG
the other hand, suppose that for some w in (j; 1), v(w) =0. Again, in a fashion
similar to that of the immediately preceding paragraph, with respect to [J; w]
and [w; 1], it follows that

o) ~ v = @) —v@)| + ) —vD= T + T = 3 .

Gllw; 1)) G(lj; w0l G

We now see that if D« {[r; sl}, then X @ —v@| =3[ 1= 3

D Gp;iqD Gllr;s)

=, [|dv|. This implies that f|dv|=<3 [|dv|. Therefore [|dv|=T [|dv|.
G I G I G I

[r;8] Ins)

Theorem 4.4. If r<s, v is in CBV[r;slR, for some x in [r;s], v(x)#0
and 0 <c, then there is d>0 and D << {[r; sI} such that if E<<D and E' = {I:1
in B, v®)| <d for some t in I} (if any), then S, [ |dv| <c.

ET

Proof. For G defined for v, as in Theorem 4.3, [|dv|=3 [|dv|, so that
G1I

fr;s}

there is a finite subcollection G’ of G such that 0= [|dv| -3 [|dw| <c/2. There
G I

[r 8]
is a subdivision H of [r; s] including G'. Let N = the number of elements of G.
By Theorem 4.2, for each [p;q] in G’, there is D[p; ¢l << {[p;¢1} and dp, 4>0
such that if S« D[p;qland 8’ ¢ {I:Iin S, |v(x)| < d,, for some x in I} (if any),

then 3 [|dv| <c/2N. Let D=H~-G)y Dip;ql and d=min{dy:[p;q] in
s r

G'}. Suppose that £ << D. For each [p; ¢]in G' there is E[p ; ¢1 < D[p ; ] and for
each [p;q] in H— G’ there is E[p;ql< {[p;ql} such that E = Y] Elp;qll
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ulu_ Elp;qll. Suppose that E' = {I:] in E, |v(t)| <d for some ¢ in I} (if any).
H~G'

For each [p; gl in G there is a subset E'[p; q] of E[p; q] and for each [p;q] in

H—G' there is a subset E'[p;q] of Elp;q] such that E'=ly E'lp;qll
u[u E’lp;qll. It follows that

%Jﬂd’u[ =3 > [ldv|+ 3 > [ldv]<Nec2N+ 2 f}dvl

' E'lpql J H-G" E'lpiq} J

=c/2+ f[dv[—Zf]dv]<c/2+c/2=c.

fr; 8]

Theorem 4.5. Suppose that r<s, a<b, v is in BVC[r;slla ; b, each of f
and g is a function from [a ; b] into R such that g is Lipschitz on [a ; b] and there

ishinla; bl suchthat if asaz <w<horh<u, <x,<b, thenf(xl) = fla,). Then
«s)

f S®) dg(v(@)) exists and is [ fla)dg().

wr)

Proof. There is K=0 such that if I is a subinterval of [a;b], then
|4;9| =K |A;%). If v(x) =k for all  in [r; s, then the conelusion is immediate. So
suppose that for some « in [r; s] v(x) # k. Suppose that 0 < c. Letting v* =v — &,
we see by Theorem 4.4 that there is d> 0 and D « {[r; s]} such that if E << D and
E'={I: I in E, w@)—h|=|v*@®)|<d for some t in I} (f any), then
> fldo| =3 [|dv¥| <e/16(1 + K) (1 + M), where M =max{|f(x)|:a <z <b}.

E'I Er

Let ¢’ =min{d, ¢/16(1 + K)(1 + M)}. There is a function, w, in C[a ; b] R such
that:

() If a<h, then there is 2, such that max{a, h—c'} <z;<hand ifa<wx <z,
then w(x) = flz).

(i) If 2 <b, then there is 2, such that A<z, <min{h +¢’, b}andifz,<x<b,
then w(x) = flx).

(i) If 2, <x =<2, then |w(x) <M.
Now, suppose that a<j<k=<b, H*<«< {[j; k]} and if ] is in H*, then either

Iclz; 2] or I and [2;; 2,] are nonoverlapping. Suppose that H < H*. Let
H ={I:Iin H, I c[z; 2,1} (if any). Then, if [ is an interpolating function on H,
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then
@f(lz)AIg - % w(lp4drgl = 24 [y —wdp| |Arg] + HE_:H, [f@) — w(ipl |4, g]

=2MK2¢' +0<=4MKc/16(1 + M) (1 + K) <c/4.

It therefore follows that ]f fx)dg(x) — fw(a;) dg(x)| < c/4.

(s)

By Theorem 3.1, fw(v(t)) dg((®)) ex1sts and is [ w(®)dg(x). There is

wr}

D'« D such that if E « D' and y is an interpolating function on E, then
| fsw(v(t)) dgw(®) — > w(y,)) A;gW)| < c/4, so that, letting E" = {J:J in E, v(yp)
i; [z1; 2]}, we seeEthat E'cE'={J:J in E, |h—v(y)|<c¢' =d} and conse-
quently

us)

| f f(w) dg(x) — Zﬂv(yJ))AJy(v)l<| f ﬂw) dg(x) — f w(z) dg(@)] + | f W(w) dg(x)

(r)

— [ (o) dgoE] + | § 0 ) dgo(®) — S w0y 4:90)] + |3 vty
—flyN]Arg@)| <cld+ 0+ cld+ 3 fwwys) =yl 14:9@)] + 3, [y,

—foy)| |4,9@)| S c/2 + 2MKe/16(1 + K) (1 + M) + 2, 0 |4, 9@)| <cl2+cl8<c.

u(s)

Therefore f Fo@®)dg(u(®)) exists and is [ flw)dg().

v(r)

Theorem 4.6. Suppose that r<s, a<b, v is in CBV[r;slla; b], each of u
and g is a function from [a; b] into R, g is Lipschitz on [a; b] and % is quasi-

continuous on [a;b]. Then Iu(v(t)) dg(v(t)) exists and is f u(x) dg(x).

wr)

Indication of proof. Asis well known, u is the uniform limit of a sequence
of (finite) linear combinations of functions of the type described in the hypothesis
of Theorem 4.5. Further and consequently, u(v) is the uniform limit of a
sequence of (finite) linear combinations of functions of the aforementioned type
composed with v. It is obvious that g(v) is of bounded variation on [r;s]. It is
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therefore a simple matter to show that Theorem 4.5, together with the above
mentioned facts and routine consequences about uniform convergence, integral
convergence and integral existence, imply Theorem 4.6; we leave the details to
the reader. '
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Abstract

Suppose that r<s, a<b and g is a function from la; b] into R. It is shown, among
other things, that the following statements are true.
(1) The following two statements are equivalent:
O If fis a function from [a ; b] into R, continuous on [a; b] and v is a function from
[r;s] into [a;b], continuous and of bounded variation on [r;s], then [ Ro@®))dg(u(t))
exists; (i) g satisfies a Lipschitz condition on [a; bl
(2) If g satisfies (ii) above, v is as given in () and u is o Junction from [a; 8] into R,

v{g)

quasi-continuous on [a;b), then fsu(v(t)) dg(v(®)) exists and is [ wu(x)dg(z).
r r)
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