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RAVI P. AGARWAL and E. THANDAPANI (%)

On discrete inequalities in » independent variables (**)

1 - Introduction

The discrete inequalities play an important role not only in the field of finite
difference equations and numerical analysis but also in certain areas of
engineering, technology, economics and biological sciences. One of the most used
result in this direction is the discrete analogue of the celebrated Gronwall-
Bellman-Reid inequality [9], [10] and its variants [1], ... [6], [10], [12]. The two
and more independent variable generalizations of this inequality has been
established recently in [7], [8], [9].

In this paper we shall discuss some new discrete inequalities in # independent ’
variables which are further generalizations of some results we have obtained
recently in [2]; for » = 1. Some unified results are also presented which covers
several results of Pachpatte and Singare [7], [8], [9]. Some applications are also
given.

Throughout the paper we shall use the following notations and definitions.
Let No= {0, 1, ...} and the product Ny x Ny X ... X N, (n times) be denoted by

n—1
Ng. The expression u(0) + 3, b(s) represents the solution of the linear difference
s=0 -1
equation Au(n)=wun+1)—u(m). It is assumed that 3 b(s)=0. The
-1 =0
expression %(0) [] c(s) represents a solution of the linear difference equation
8=0

-1
u(n + 1) = e(n) u(n). It is supposed that []c(s)=1. A point (xf, ..., #) in N§ is
. 8=0
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denoted by «'. The first difference with respect to the variable x; of the
funetion on u(x,, ..., %,) is defined as Ay (1, ooy ) = U@y, ouny Ty, T+ 1, Tinq,
vy Tp) — uly, ..., ©,). The second difference with respect to the variables x;, «; is
defined as Azux'.x]m,m,x 0= DU (@1, oy @iy, L @, ., @) — A, .,
L) = W&y, ..y Timgy B+ 1, Bigy, e, By, 5+ 1, Djaty oevy ) = Uy, «.u, Ty, 2+ 1,
Lir1y ooy Bp) = W&y, wovy Biog, B+ 1, Bjaa, .o,y @) + u(@y, ..., 2,). The higher order
differences are defined analogously. The functions which appear in the inequali-
ties are assumed to be real-valued, nonnegative and defined in Nz

2 - Linear inequalities

Theorem 1. Let the following inequality be satisfied

@ (@) < Z o) + > E'w, u)
where

B, 0= S fal) S e S Frle )

a:2=0 2"=0
Jor all x e N} and afx) >0, Aax)=0. Then
| Aay(sy)

@  w@)=<[6O+3 0@ ] 1+ ,,
' = = ai(sy) + ax(0) + 23 ai(x)

+ZAE;1(SI’ Ly «ony Ly 1)] .
r=1

Proof. Let ¢(x) be the right member of (1). Then

8¢, @) = M) + 3, ABL (e, )

and
® A"4,(@) = 3 A B, u)
also

(4) ?5(901, ceey mi-l, 0; mi-i-l, seey xn) = a’z(o) + 2 a'j(wj) .
j=1

J#i
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Sinee u(x) < $(x) and ¢(x) is nondecreasing in z, from (3), we get
®) A4, =3 A Bilw, )= A Eiw, D@ .

From (5), on using the fact ¢(x1, ..., Tu-y, Tn+ 1D =¢(@), We obtain

An_l 21 . &, ((L' 3 eery Tue1, Tn + 1) An_l Lgen Ty O il
Bay... 21 (01 1 _ TN €. <3 NEw D).
¢(x17 weey Ln—1s Lo + 1) ¢(w) r=1

Now keeping @i, ..., %, fixed and setting x,=s, and summing over
$,=0, 1, ..., #,—1 in the above inequality, we find

A™? ¢x1...x,,-l(x) il om n < An—1 T
Al S S B o o Bt 5 D=5 8B e 0.
$p=0 r=1 r=1

Repeating the above arguments successively, to obtain

Ag, (%) - Aay(y)

@) + 2 AEL (@, 1)

@) F a0+ Sa@)

=3

(6).

From (6), we have

$@+1, Ty .oy B[+ Aay(@y) + 3 AEL(z, D1g@) .

G@) + w0) + S @)

i=3

Now Akeeping %y, ..., %, fixed and setting x;=s, and summing over
$,=0, 1, ..., #;— 1, in the above inequality, we find from (4)

n z—-1 A i
$@)=[00) + X @ TT [1+ 0 S AR s D)
e =0 ay(sy) + a2(0) + E_: afe)

The result (2) now follows from u(x) =< ¢(x).

Remark 1. There are n! different conclusions possible for the Theorem 1,
corresponding to » permutations of (2, ..., %,) and corresponding permutations
of a1, ..., Q.
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Remark 2. For n=3, m= 1, the estimate (2) is same as obtained in [7]
(Theorem 1). For n =38, m=2, f;, = f,, the estimate (2) is not comparable to as
obtained in [7] (Theorem 2). For 7 = 2 and m upto 2 some results are given in [8].

Theorem 2. Let the following inequality be satisfied

) W) < al@) + b@) S B, w)

r=1

for all x e N}, where: () a(x)>0 and nondecreasing, (i) b(x)=1. Then

€] W) < alx) blx) xﬁl [1+ }"j AE (81, 3y ..., Xy O)].

s3=0

Proof. From the assumptions on a and b, inequality (7) can be written as
) <1+ ﬁ E(x, bv)
re=l
where v=wu/ab. The rest of the proof is same as in Theorem 1.

Remark 3. For inequality (1) under the assumptions of Theorem 1 we
have from Theorem 2

211

© W)= afe) ] [1+ 3 ABL(sy, @5 .y @ D]

§1=0 T

Remark 4. There are % different conclusions possible of Theorem 2 and
also for (9).

Remark 5. If a; =k (constant), then (2) and (9) are same. In the general
case (2) and (9) are not comparable. In applications (9) require less work to

compute the estimates than (2).

Theorem 3. Let the inequality (1) be satisfied where a,(x;) be same as in
Theorem 1 and

(10) Jl@w)=fx) 1sism Jir1,@) = frrg, @) = ... =7, m, i) = gi()
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for all xeN§ and 1=it=m—1. Then

11 u@)=Px) 11=1,2
where
a2 Pi@) =00 + 3 ai@)] [T g 4 A0

(s + a0 + 3 ae)

xg—1 -l

£33 G U g

sp=0 r=1

a3) Pyo) =3 aed + 3, () U () Pr(o)

245

In (12) and (18) the term i filx) CJ g«{x) represents the sum of all functions
r=1 i=1

except when fi(x) = g,(x) for some 1=k <, 1=[=<m, then g,(x) is taken to be

1]
zero, also \UJ =0.

i=1

Proof. Inequality (1), with (10) is equivalent to the following system

(14) @ =3 ) + 3 (6 11(8) +01(5) (5]
(15); ;1) = Zl -1 uils) + g1 () u(8)]  3=j=m
(16) Un@) = 3 Ful5) o)

Define ¢,(®), ¢;-1(x) B=j=m), ¢.(x) as the right members of (14), (15);

B=j5=m), (16) respectively. Then, we find
am A ¢1() = f1(®) $1(20) + 9:1(%0) ¢a()
(18); At 1(T) = fia(@) $1(2) + g,(x) () 3=j=m
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where ¢,(z) satisfies (4) and ¢,(x) (2=<j=<m), together with all mixed differences
upto order # — 1 are zero at x; = 0 (1 =¢=n). Adding (17), (18); B =j=m), (19),
to find

ﬁ A" ¢ (x) = ﬁj)fr(x) #1(x) + "ijl 9A%) ¢r11()
and hence

S 44 = (S i) Ugia) (S 6@

Now following the proof of Theorem 1, we obtain ﬁ #@) =< Py(x). Using this
in (17), we find -

A" ¢1.(x) = (fix) U g1(2)) P1()

and now once again as in Theorem 1, we get ¢,(x) < Py(x).

Since u(®) = w(@) <&@ =S ¢@), (11) follows.

Remark 6. Asin Theorem 1 there are n! different conclusions possible for
Theorem 3.

Remark 7. For n=3, m =1 Theorem 3 is same as given in [7] (Theorem
. For n=3, m=2, fi=g, Theorem 3 is same as Theorem 2 of [7]. This also

covers some results given in [8] for n =2, m upto 2.

Remark 8. Py(x) and Py(x) cannot be compared.

Our next result is the discrete analogue of Willet’s inequality [11] as
discussed in [2], for n=1.

Theorem 4. Let the following inequality be satisfied

(20) D) S @)+ 3, @) S, h(s) uls)

=0

for all x € N%, where: @) a(®) >0 and nondecreasing, (i) gx)=1 for 1 Sisﬁ‘z
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and nondecreasing for 2=i<m. Then

(21) u(x) < F,, a(x)

where

22) Fow=w Frw=wlF\._19;) :ii[: 1+ ::2;: ?Z;: i (8) Fr 91(9)]
for k=1,

Proof. The proof is by finite induction. For m = 1, we find from Theorem 2
23~1

W)= a@ g [T+ S . S ) gie)] = Fale) .

8y=0 5p=0 8p=0

Now, assume that the result is true for some k such that 1<k <m —1, then
for k+1 we are given

w(®) = a(®) + g () Z Pprr(8) u(s) + E 9x) Z hi(s) u(s)

=0

and we find

wx)=F,a*(@x) where ao*@)=a(x)+gr.(x) le For1(8) u(s).

Thus we find

% 14+ S by Fogra——
a’Fkg/H-l é) k15 i a'Fkng

Now an application of Theorem 2 yields

xp-1 29~1 -1

wE)=a@) Frgen@) [T 1+ X .. 2 Py11(8) Frogsr(8)] = Fpsr )

51=0 sp=0 8p=0
Hence the result follows for all m.
Corollary 5. Let the inequality (20) be satisfied for all x € N}, where: (i)
a(x) >0 and nondecreasing, (i) glx)=1 for all 1<i<m. Then
x~1 T~1 gy

w(x) < a(x) Hm(oc) [T+ 2 C 2 2 h(s) Hyl(S)]

510 sp=0 8p=0 r=1
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Proof. Inequality (20) can be written as

=1 m

w(x) < ) + ﬁgi(rc) > G hds) uls)

§=0 i=1

and now, the result follows from Theorem 2.

3 - Nonlinear inequalitiés

Our first result here is the % independent variable generalization of Theorem 6
and Corollary 7 as given in [2],. We shall consider the following inequality

23) w(@) < p@) e + §mj H, )]

where

*~1_q

2 Jol@) u(2)

2"=0

z—1 a
H'(z, w)= 3 ful@)un(x")...
x1=0
and o,; (1=1=<7, 1=<r=mm), are nonnegative real numbers, the constant ¢> 0.

.
We shall denote o, =3 a,; and o= max o,.
i=1 =ram

Theorem 6. Let the inequality (23) be satisfied for all x e Ni. Then

(24) u(x) = cp(x) mﬁl 1+ ﬁ AHL (81, Ty voey @y PIC] if x=1
@25) @) = p@ [+ 1A —«) }ni H(x, p)cv=ii-= if a<<l.

Proof. Define ¢(x)=c+ iH’(m, u), then since ¢(x) is nondecreasing, we
find » =

N'g@) S 3 A HIw, pg) = 3, A Hi(w, p)¢(a) |



{91

ON DISCRETE INEQUALITIES IN 7 INDEPENDENT VARIABLES 249

Thus, it follows from &(x)=¢ that

A4, @) <3 A Biw, pee)

Hence, we find

An—l ?:1...:0,"1(%17 ceey mn—h xn + 1) An-—l %ﬁmfvnﬂ(x) < i A“H;(x, p) o
@ (xl, ceey Ly, Ty + D @a(m) r=1

Keeping ;, ..., x,-; fixed and setting «, = s, and summing over s, =0, 1, ...,

Z,— 1, we obtain

An—l @.xl xn_l(w) m .
—W— = 21 A”‘" H;l xn_l(ﬁ?, p) P .

Repeating the above procedure, we obtain

L@ _ & AHE(w, p)e™ .
¢(x) =
Now, since
Age *(®) _ =4 dg(s1, By ..oy W) = A (@)
I—a o 458y, @y ey ) 3%(c0)
we find

Ag (@) < (1 — o) S AHL (@, p)ee .
r=1
Hence, we obtain

95(00) = [cl-—a -+ (1 - a) ﬁ H”'(x, p) Ca,—zz]l/l—:z .

Since u(x) = p(x) (), (25) follows. The case « =1 follows as in Theorem 1.
Next we shall require following class of functions.

Def. A function w:[0, «) is said to belong to the .class S if: (i) w(u) is
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positive, nondecreasing and continuous for =0, () (1/v)w(u)=<w(u/v) for
u=0, v=1.

Theorem 7. Let the following inequality be satisfied
5=0

(26) w@) S a@)+ 3 B, 1)+ 3 @) S, h(s) Wials)

for all xeNj, where: (i) alx)=1 and nondecreasing, (i) gx)=1 1=<i=<],
(i) W;e S, 1=<i=I. Then

@ @) < @) 4(w) o) [| Fia)

where
z-1 "

e(x) = Ijgi(x) @)= [T [1+ > AEL(S1, oy ovey Xy, ©)]

51=0 re=l

Fula) = GG + S @0 e [P Fowy=1 1sk=<l

_ ¢ ds
G(6) —%j ) 0<6,<90
as long as G, (1) + xz_l hi(8)Y(s) e(s) ﬁFj(s) e Dom(G;Y) .

Proof. Since ¢g;=1, 1=i=<1, we find from (26)

%(xﬁ <e@+ 3B (” e?u) where  a*(@)=a(®)+ 3 5 h(s) Wiu(s)) .

( i=1 5=0

Since a*(x) is nondecreasing, from Theorem 2 it follows that

uw) = a*(x) ()

(
e(x)
and hence on using the definition of class S

z—-1

V@) <1+ i S () es) 4s) Wi(w(s))

§=



[11] ON DISCRETE INEQUALITIES IN % INDEPENDENT VARIABLES 251

u(x)

a(a) g(x) e(w)

where vx) =

Thus it is sufficient to show that v(x) < HF,(x) and this we shall prove by
finite induction. For =1, we have

@) =1+ z ha(s) e(s) () Wy (o(s)) .

Let ¢:(x) be the right member of the above inequality, then on using
nondecreasing nature of W,, we find

A" $1,(2) = hy() e() Y(a) Wi(¢y())
and hence

An—l ¢1x1 xn_l(xl’ ey By1y, Ty + 1) An—l ¢1x1... x,,_.l(x)
Wiy, ..., %pg, @, +1) Wi(g:1(2))

= hl(x) e(x) () .

Keeping @y, ..., #,_; fixed and settlng z,=s, and summing over
s,=0, 1, ..., #,—1, we obtain

An—l ¢1a: - _l(x) =l
—_—— < - 2 hl(wh veey Epeq,y sn)e(mly veey Lpoy,y Sn)sb(xl: very Ty, Sn) .

Wii(®)) b

Repeating the procedure, we obtain

¢121( ) =1 zl
Z 2 hi(xy, 85, ..., S)e(@y, Sz ooey S)U@L, Sz eev, S) .

@ W@ =2 2,

Now, from the definition of G,, we have

(29) G1(¢1(x1+¥, X2y ey Tw)) — Gi$1())

- =+l d¢1(3, Ly ooy -/L'n) < A¢ml(x)
EN W1(¢1(S, xZ; seey xn))~W1(¢l(x)) )
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Using (28) in (29) and summing over with respect to ; from 0 to x; ~ 1, we
obtain

@)= GG + 5, 1n(s) o) (5]

and hence v(x) < F(x). Now assume that the result is true for some % such that
1=k=[-1, then we are given

-

e xe

@) ST+ S ) o) 6 Wera0(SDT + 3 S 16) e6) 46 Ww(s))
Since the term inside the bracket is nondecreasing, we find
v(@)=[1+ ghk+1(s) e(8) Y(8) Wi (v(s))] ﬁFi(x) or

kv(w) =1+ 2 Py, +1(8) e(s) ¢(s) H Fi(s) Wi LU(S)

H Fy) e H Fi(s)

k+1
and from this v(s) <[] F(x) follows on using the same arguments as for [=1.
i=1

Thus the result is true for all k.

Theorem 8. In addition to the hypothesis of Theorem 7 let gix), 1 <i=<l,
be nondecreasing. Then

u@) = @) @) [ F @)

where

zp~1 m

‘r’Jl(x) = H [1 + 2 AEgl(sly wZ; evey xn; 1)]

§1=0 r=1

Fi@) = @) GG + 3 @U@ e [[FO1  Fua)=1, 1=k=]

as long as G+ Ijl () Y1 (8) grls) ﬁFi(s) e Dom(G;Y) .
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Theorem 9. Let the following inequality be satisfied
(30) w() < a(x) + éE"(m, u)+ gEi(ﬂc, W)
where: (i) a(x); 1 and nondecreasing, (ii) WeS. Then
(3D) o) S 0) @) GG + 3 B, 4]

where Uy(x) is same as in Theorem 8 and the term inside the bracket
of (81) e Dom(G™Y).

The proofs of Theorem 8 and Theorem 9 are similar to the proof of Theorem 7.
Theorem 10. Let the inequality (30) be satisfied, where: (i) a(x) is positive

and nondecreasing, (i) W is positive, continuous, nondecreasing and submulti-
plicative. Then

W(agy)
a

(32) u(@) = ale) ¢ (x) GG + 21 Ez, )]

where (%) is same as in Theorem 8 and the term inside the bracket
of (32) e Dom(G™Y).

Proof. Inequality (30) can be written as
m !
w@) < a*@)+ 3 E(x, w) where  a*(®) = a(x) + Z Eix, Ww)) .

Since a*(x) is nondecreasing, from Theorem 2 we find
u(x) < a*(@) Yi(x) .

Now, since a(x) is positive and nondecreasing, we obtain

u(2x)

(83) @) 6@

=1+ 5_) Ei(x, W ayya) .

ay
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Let ¢(x) be the right side of (33), then
!
At (x) = > A" Ei(w, W ad)la) .
) ad
now using the fact that W is nodecreasing and submultiplicative, we get

A” ?’x(x) ! o i
ey = 2 A Beler, Wala) .

Using the same arguments as in Theorem 7, we find
3
$(x) = GG + 3 E'(w, W(ad/a]

and from this the result follows.

4 - Some applications

The results obtained in 2 and 3 can be directly used to prove the uniqueness
and continuous dependence for the solutions of discrete versions of hyperbolic
partial differential equations involving % independent variables of more general
type than given in [7], [8] and [9], since the arguments are similar the details are
not repeated here. To show the importance of our results we shall provide an
upper bound on the solutions of difference equation of the form

z-1
(34) Aru,(x) = F(z, u(x), 2 K, s, w(s))
5=0
together with the given suitable boundary conditions u(xy, ..., %1, 0, %y, ...,

z,), 1=<i=n.
The function F and K are defined on their respective domains of definitions
and
(36) [P, u@), v(@)] <fu@)|uw@)]| + fil@) [v@)]
(36) Kz, s, u(s))]=rfeuls)|us)|

where fii1, fio, fe2 are same as appear in (1).
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Any solution u(x) of (34) satisfying the boundary conditions is also a solution
of the Volterra difference equation

37 ulw) = g@) + S P, u@), S K@, o, @)

where g(x) takes care of the boundary conditions.
Using (35), (36) in (37), to obtain

()| < |g(a)| + Z aled) Ju@y)] + fia(z?) 2]”22(962) lu@)]] .

zl=0

If |g(w)| < a(x), where a(x) is same as in Theorem 2, we find from (8)

39) )| < ater) i’i 1+ z 2 Faala) + zwm

If |g(x) < Zn a(x;) where a/x;) are same as in Theorem 1, we find from (2)

il

xy~1 A 1
(39) @) < [0:0)+ 3, i T 114 o
A0 g + ag(0) + > aia)
+ 12 Z (fu@) + fra(a") Z fzz(xz))]

also, in case fj,(x) =fi2(x), from Theorem 38 it follows that
(40) lu(@)| <Pix) i=1, 2

where

Aay(a)

Py(x) = [a,(0) + Z adwx)] H [1+4 -
a0 gy(@d) + ag0) + D aulxy)

=3

x9—1 21

+ 2 2 (@) + fala)]

:cé=0 x},=0

Py(x) = Z aix;) + 2 Sulah) Py(a?) .

zt=o
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The estimate (39) cannot be obtained from (88) except when |g(x)| = const,
also (40) cannot be obtained from (39). For n = 38, (40) is same as obtained in [7].
It appears that in general it is not possible to compare any one of the estimates
obtained here, however for a particular situation we have more flexibility to use
these results.

(1]
(2]

(8]
(4]
(5]
[6]

[7]
[81
(91
[10]
[11]

[12]

R.

R.

References

P. AGARWAL, On finite systems of difference inequalities, J. Math. Phys. Sci.
10 (1976), 277-288.

P. AGARWAL and E. THANDAPANL [s]; On some new discrete inequalities,
Appl. Math. Comput. 7 (1980), 205-224; [«]o On discrete generalizations of
Cronwell’s inequality, Bull. Inst. Math. Acad. Sinica 9 (1981), 235-248.
HENRICI, Discrete variable methods in ordinary differential equations,
Wiley, New York, 1962.

E. HuLL and W. A. J. LUXEMBURG, Numerical methods and existence
theorem for ordinary differential equations, Numer. Math. 2 (1960), 30-41.

. 8. JONES, Fundamental inequalities for discrete and discontinuous functio-

nal equations, SIAM J. Appl. Math. 12 (1964), 43-47.

. G. PACHPATTE: [o]; On discrete generalizations of Gronwall’s inequality, J.

Indian Math. Soec. 37 (1973), 147-156; [«] A mnote on some fundamental
discrete inequalities of the Gronwall-Bellman type, Bull. Inst. Math. Acad.
Sinica 5 (1977), 121-128; [o]s On some nonlinear discrete inequalities of
Gronwall type, Bull. Inst. Math. Acad. Sinica 5 (1977), 305-315.

. G. PACHPATTE and S. M. SINGARE, Discrete generalized Gronwall inequali-

ties in three independent variables, Pacific J. Math. 82 (1979), 197-210.
M. SINGARE and B. G. PACHPATTE, Wendraoff type discrete inequalities and
their applications, J. Math. Phys. Sci. 13 (1979), 149-167.

M. SINGARE, Some contributions to finite difference inequalities, Ph.D.
thesis, Marathwada Univ. 1979, India.

SUGIYAMA, On the stability problems of difference equations, Bull. Sci. Engr.
Res. Lab. Waseda Univ 45 (1969), 140-144.

. WILLETT, A linear genmeralization of Gronwall’s inequality, Proc. Amer.

Math. Soe. 16 (1965), 774-778.

. WILLETT and J. S. W. WONG, On the discrete analogues of some generaliza-

tion of Gronwall’s inequality, Monatsh Math. 69 (1964), 362-367.

Summary

The paper deals with some new discrete inequalities in n independent variables. Some
applications are also given.



