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HUSEYIN BOR (%)

On the absolute summability factors for infinite series (*%)

1 - Introduction

Let > a, be a given infinte series with the sequence of partial sums (s,). Let
(p,) be a sequence of real positive constants such that

1.1) Po=Sp—© as noo (Po=p,=0, k=1).
v=0
The sequence-to-sequence transformation
(1.2) =i Sps,  (PaE0)
Pn u=0

defines the sequence (t,) of the (N, p,) mean of the sequence (s,), generated by
the sequences of coefficients (p,). The series 3 a, is said to be summable [N, .|,
k=1, if (see [1]s)

(1.3) i (%)k_l ltn - tn—l[k< & .
n=1 n

In the special case when p, =1 for all values of n (resp. k=1), then [N, p.l
summability is the same as |C, 1|, (resp. |N, p.|) summability.
The series > a, is said to be bounded [N, p,), k=1, if (see [1]3)

1.4 }nj Dol )f=0P,) as n-—>.
p=l

(*) Indirizzo: Department of Mathematics, Erciyes University, TR-Kayseri-38039.
(**) Ricevuto: 1-VIII-1986.
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If we take k=1 (resp. p,=1/n), then [N, p,); boundedness is the same as
[N, p.] (resp. [R, logn, 1],) boundedness.

2 ~ The following theorems on |N, p,|. summability factors of infinite series
are known.

Theorem A. [1]s. If 3 a, is bounded [N, p,]; and the sequences (2,) and
(p,) satisfy the following conditions

@.1) > p;?n' =0(1)
2.2) Pt =0@n|tn) as m— o

then the series 3 a, 2, is summable |N, p,i, k=1.
If we take k=1 in this theorem, then we get the result of Singh [2].

Theorem B. [1];. Let the sequences (1,) and (p,) satisfy the conditions
(2.1) and (2.2). If

2.3) Splsl=0C) s e
where (y,) is a positive non-decreasing sequence such that
2.9 Prrad(ly) = 0(p) a8 m— o,
then the series 3 a,2,(y,)"! is summable [N, p,|, k= 1.

If we take y, =1 in Theorem B, then we get Theorem A. On the other hand if
we take k=1 in Theorem B, then we get the result of Sinha [3].

3 — The object of this paper is to prove Theorem B under the weaker
conditions. We shall prove the following theorem
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Theorem. Let the sequences (., and (p,) satisfy the condition (2.2) and

m n An
3.1) > p]lj I =0(1) as m—oo,
n=2 n

If the condition (2.3) satisfies, then the series S, a, d(yn) " is summable [N, p.x
k=1, where (y,) is as in Theorem B.

It should be noted that under the conditions of Theorem B and this theorem,
(2.1) implies (3.1) but not conversly. So we are weakening hypothesis replacing
(2.1) by (3.1). Since 2, is bounded, by (2.1) and (2.2) we have

i pn!)‘nlk ad pnlknl 1)‘ V» 1 I)‘n]

62 %P, "2 P

z’f = 0q1) .

Hence (2.1) implies (8.1). To show that the converse it is sufficient to take p,, =1,
P,=mn, »,=1logn, k=2.

If we take y,=1 in this theorem, then we get the result of Bor [1],.

4 — We need the following lemma for the proof of our theorem.

Lemma [1]4. If the sequences (1,) and (p,) satisfy the conditions (2.2) and
(3.1), then

®H A, =0Q) () P,A(x0H=0p/0] as n—o.

5 — Proof of the Theorem. Let T, denote the (N, p,) mean of the series
> ay 2yt Then, by definition, we have

6.1 To=2 35,3 &) =73—— z (Pr = Poey) @y ()™

n v=0 r=0

(5~2) Tn - Tn— 2 P —1 0y v(Yv) 1.

P Pn—l v=1
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Using Abel’s transformation, we get

_ —_ pn n-~1 pn n~1 -1
Tn Tn—l Pn Pn—l vzlpv Sy )\v(Ym) + s Pn Pn-—l 1,21 PvA)\v Sv(?’v)
pn n—1
+ 2 Svvav-{-lA(l/Tv) + (Pn Y’n)_l SnPn An
PnPn-—l v=1

= Tn,l -+ Tn,Z + Tn,B + Tn,4 » Say.

To prove the theorem, by Minkovski’s inequality, it is sufficient to show that

% Py .

(6.3) > (p—)k—l ITn,rlk< o for r=1,2 3 4.
n=1 n

Now, applying Hélder’s inequality, we have

S eomar< g Sl et S oy

n—Z nPn—l vl n— v=1

m 1 1 _ m+1 pn
=0(1 vSvavk*_kl
( )g—lp l [ I l Yv (7’11) n2=2 PnPn—l

—0(1>2]L - Polsilf = ’ '

v Yot 0(1) l)\mlk
=01 3 a2} + 001 z Pl o4 (%)

m—1 v Av k
+0)'S, E—“‘;l——ﬂ—'- +001) [t -
v=1 v+l

Since A(Izvl")=0(%|)\v]") and [1,/*=0(1) (by Lemma) and since

pv+1

YvA(_) = 0( ) (by (2.4)) we have

‘U

Iul

pv+1p\v+1’

z( n)k I]Tnll—o(l)z pv P \

+0(1) Z

+0(1) z —71”"11)]—”” +0(1)=0(1) as m—>
=1 v+1
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by virtue of the hypothesis. Using the fact that P,,|42,,| = 0Pwl2n)), asin Ty, we
have

P, 2y
k~1 k—

2 G Tt =00 3 B Sl
=00 5, 5B S pls o Spy

=0 S plsf s =00 8 m—c.

Similarly, as in T,,,, we have
m+1 2| Sy )\
2( Sht= 0(1)2 plPl 2t =0(1) as m—co.
n=2 ’UY’U

Finally, we have

pnlsnl ¥
= PNE-1 Tn kb _— ( )k 1
g—:! (pn) [ ! n= 1 Pn Yn Y'n

k
o $ Redsi I

=01 as m-—> o,
n=1 P‘IIY'IZ ( ),

Therefore, we get

E( )k 1[T7zr[k<°° for r=1, 2, 3, 4.

n=1 ’)

This completes the proof of the theorem.
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