HÜSEYİN BOR (*)

On the absolute summability factors for infinite series (**)

1 - Introduction

Let $\sum a_n$ be a given infinte series with the sequence of partial sums (s_n) . Let (p_n) be a sequence of real positive constants such that

(1.1)
$$P_n = \sum_{v=0}^{n} p_v \to \infty$$
 as $n \to \infty$ $(P_{-k} = p_{-k} = 0, k \ge 1)$.

The sequence-to-sequence transformation

(1.2)
$$t_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v s_v \qquad (P_n \neq 0)$$

defines the sequence (t_n) of the (\bar{N}, p_n) mean of the sequence (s_n) , generated by the sequences of coefficients (p_n) . The series $\sum a_n$ is said to be *summable* $|\bar{N}, p_n|_k k \ge 1$, if (see [1]₂)

(1.3)
$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |t_n - t_{n-1}|^k < \infty .$$

In the special case when $p_n=1$ for all values of n (resp. k=1), then $|\bar{N}, p_n|_k$ summability is the same as $|C, 1|_k$ (resp. $|\bar{N}, p_n|$) summability.

The series $\sum a_n$ is said to be bounded $[\bar{N}, p_n]_k \ k \ge 1$, if (see [1]₃)

(1.4)
$$\sum_{v=1}^{n} p_v |s_v|^k = 0(P_n) \quad \text{as} \quad n \to \infty.$$

^(*) Indirizzo: Department of Mathematics, Erciyes University, TR-Kayseri-38039.

^(**) Ricevuto: 1-VIII-1986.

If we take k=1 (resp. $p_n=1/n$), then $[\bar{N}, p_n]_k$ boundedness is the same as $[\bar{N}, p_n]$ (resp. $[R, \log n, 1]_k$) boundedness.

2 – The following theorems on $|\bar{N}, p_n|_k$ summability factors of infinite series are known.

Theorem A. [1]₃. If $\sum a_n$ is bounded $[\bar{N}, p_n]_k$ and the sequences (λ_n) and (p_n) satisfy the following conditions

(2.1)
$$\sum_{n=2}^{m} \frac{p_n |\lambda_n|}{P_n} = 0(1)$$

(2.2)
$$P_m |\Delta \lambda_m| = 0 (p_m |\lambda_m|) \quad \text{as} \quad m \to \infty$$

then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

If we take k=1 in this theorem, then we get the result of Singh [2].

Theorem B. [1]₁. Let the sequences (λ_n) and (p_n) satisfy the conditions (2.1) and (2.2). If

(2.3)
$$\sum_{n=1}^{n} p_{\nu} |s_{\nu}|^{k} = 0 (P_{n} \gamma_{n}) \quad \text{as} \quad n \to \infty$$

where (γ_n) is a positive non-decreasing sequence such that

(2.4)
$$P_{n+1}\gamma_n \Delta(1/\gamma_n) = 0 (p_{n+1}) \quad \text{as} \quad n \to \infty ,$$

then the series $\sum a_n \lambda_n(\gamma_n)^{-1}$ is summable $|\tilde{N}, p_n|_k k \ge 1$.

If we take $\gamma_n = 1$ in Theorem B, then we get Theorem A. On the other hand if we take k = 1 in Theorem B, then we get the result of Sinha [3].

3 - The object of this paper is to prove Theorem B under the weaker conditions. We shall prove the following theorem

Theorem. Let the sequences (λ_n) and (p_n) satisfy the condition (2.2) and

(3.1)
$$\sum_{n=2}^{m} \frac{p_n |\lambda_n|^k}{P_n} = 0 (1) \quad as \quad m \to \infty .$$

If the condition (2.3) satisfies, then the series $\sum a_n \lambda_n (\gamma_n)^{-1}$ is summable $|\bar{N}, p_n|_k k \ge 1$, where (γ_n) is as in Theorem B.

It should be noted that under the conditions of Theorem B and this theorem, (2.1) implies (3.1) but not conversly. So we are weakening hypothesis replacing (2.1) by (3.1). Since λ_n is bounded, by (2.1) and (2.2) we have

(3.2)
$$\sum_{n=2}^{m} \frac{p_n |\lambda_n|^k}{P_n} = \sum_{n=2}^{m} \frac{p_n |\lambda_n| |\lambda_n|^{k-1}}{P_n} = 0 (1) \sum_{n=2}^{m} \frac{p_n |\lambda_n|}{P_n} = 0 (1) .$$

Hence (2.1) implies (3.1). To show that the converse it is sufficient to take $p_n = 1$, $P_n = n$, $\lambda_n = 1/\log n$, k = 2.

If we take $\gamma_n = 1$ in this theorem, then we get the result of Bor [1]₄.

4 - We need the following lemma for the proof of our theorem.

Lemma [1]₄. If the sequences (λ_n) and (p_n) satisfy the conditions (2.2) and (3.1), then

(i)
$$\lambda_n = 0$$
(1) (ii) $P_n \Delta(|\lambda_n|^k) = 0 (p_n |\lambda_n|^k)$ as $n \to \infty$.

5 – Proof of the Theorem. Let T_n denote the (\bar{N}, p_n) mean of the series $\sum a_n \lambda_n (\gamma_n)^{-1}$. Then, by definition, we have

(5.1)
$$T_n = \frac{1}{P_n} \sum_{v=0}^n p_v \sum_{r=0}^v a_r \lambda_r (\gamma_r)^{-1} = \frac{1}{P_n} \sum_{v=0}^n (P_n - P_{v-1}) a_v \lambda_v (\gamma_v)^{-1}$$

(5.2)
$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v \lambda_v (\gamma_v)^{-1}.$$

Using Abel's transformation, we get

$$\begin{split} T_n - T_{n-1} &= -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} p_v s_v \lambda_v (\gamma_v)^{-1} + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v \Delta \lambda_v s_v (\gamma_v)^{-1} \\ &\quad + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} s_v P_v \lambda_{v+1} \Delta (1/\gamma_v) + (P_n \gamma_n)^{-1} s_n p_n \lambda_n \\ &\quad = T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4} \;, \; \text{say}. \end{split}$$

To prove the theorem, by Minkovski's inequality, it is sufficient to show that

(5.3)
$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |T_{n,r}|^k < \infty \quad \text{for} \quad r = 1, 2, 3, 4.$$

Now, applying Hölder's inequality, we have

$$\begin{split} \sum_{n=2}^{m+1} & (\frac{P_n}{p_n})^{k-1} \, |T_{n,1}|^k \leqslant \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \, \sum_{v=1}^{n-1} p_v |s_v|^k \, |\lambda_v|^k \, (\frac{1}{\gamma_v})^k \, x \{ \frac{1}{P_{n-1}} \, \sum_{v=1}^{n-1} p_v \}^{k-1} \\ &= 0 (1) \sum_{v=1}^m p_v |s_v|^k \, |\lambda_v|^k \frac{1}{\gamma_v} (\frac{1}{\gamma_v})^{k-1} \, \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \\ &= 0 (1) \sum_{v=1}^m \frac{|\lambda_v|^k}{P_v \gamma_v} p_v |s_v|^k = 0 (1) \, \sum_{v=1}^{m-1} \Delta \, (\frac{|\lambda_v|^k}{P_v \gamma_v}) P_v \, \gamma_v + 0 (1) \, |\lambda_m|^k \\ &= 0 (1) \, \sum_{v=1}^{m-1} \Delta (|\lambda_v|^k) + 0 (1) \, \sum_{v=1}^{m-1} |\lambda_{v+1}|^k \, \gamma_v \Delta \, (\frac{1}{\gamma_v}) \\ &+ 0 (1) \, \sum_{v=1}^{m-1} \frac{p_{v+1} |\lambda_{v+1}|^k}{P_{v+1}} + 0 (1) \, |\lambda_m|^k \, . \end{split}$$

Since $\Delta(|\lambda_v|^k) = 0$ $(\frac{p_v}{P_v}|\lambda_v|^k)$ and $|\lambda_m|^k = 0$ (by Lemma) and since $\gamma_v \Delta(\frac{1}{\gamma_v}) = 0$ $(\frac{p_{v+1}}{P_{v+1}})$ (by (2.4)) we have

$$\begin{split} &\sum_{n=2}^{m+1} \frac{(P_n)^{k-1}}{p_n} |T_{n,1}| = 0(1) \sum_{v=1}^{m} \frac{p_v |\lambda_v|^k}{P_v} + 0(1) \sum_{v=1}^{m-1} \frac{p_{v+1} |\lambda_{v+1}|^k}{P_{v+1}} \\ &+ 0(1) \sum_{v=1}^{m-1} \frac{p_{v+1} |\lambda_{v+1}|^k}{P_{v+1}} + 0(1) = 0(1) \quad \text{as} \quad m \to \infty \end{split}$$

by virtue of the hypothesis. Using the fact that $P_m|\Delta\lambda_m|=0$ $(p_m|\lambda_m|)$, as in $T_{n,1}$, we have

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |T_{n,2}|^k = 0 \cdot 1 \cdot \sum_{n=2}^{m+1} \frac{p_n}{P_n (P_{n-1})^k} \cdot \left\{ \sum_{v=1}^{n-1} p_v |s_v| \frac{|\lambda_v|}{\gamma_v} \right\}^k$$

$$= 0 \cdot 1 \cdot \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \cdot \sum_{v=1}^{n-1} p_v |s_v|^k |\lambda_v|^k \cdot \left(\frac{1}{\gamma_v}\right)^k x \cdot \left\{ \frac{1}{P_{n-1}} \cdot \sum_{v=1}^{n-1} p_v \right\}^{k-1}$$

$$= 0 \cdot 1 \cdot \sum_{v=1}^{m} p_v |s_v|^k |\lambda_v|^k \frac{1}{P_n \gamma_v} = 0 \cdot 1 \quad \text{as} \quad m \to \infty.$$

Similarly, as in $T_{n,1}$, we have

$$\sum_{n=2}^{m+1} \frac{(P_n)^{k-1}}{p_n}^{k-1} = 0 (1) \sum_{v=1}^m \frac{p_v |s_v|^k |\lambda_v|^k}{P_v \gamma_v} = 0 (1) \quad \text{as} \quad m \to \infty \ .$$

Finally, we have

$$\begin{split} &\sum_{n=1}^{m} \frac{(P_n)^{k-1}}{p_n} |T_{n,4}|^k = \sum_{n=1}^{m} \frac{p_n |s_n|^k |\lambda_n|^k}{P_n \gamma_n} (\frac{1}{\gamma_n})^{k-1} \\ &= 0(1) \sum_{n=1}^{m} \frac{p_n |s_n|^k |\lambda_n|^k}{P_n \gamma_n} = 0(1), \quad \text{as} \quad m \to \infty \ . \end{split}$$

Therefore, we get

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |T_{n,r}|^k < \infty \quad \text{for} \quad r = 1, 2, 3, 4.$$

This completes the proof of the theorem.

[6]

References

152

- [1] H. Bor: $[\bullet]_1 On |\bar{N}, p_n|_k$ summability factors of infinite series, Comm. Fac. Sci. Univ. Ankara, Ser. A₁ 31 (1982), 129-133; $[\bullet]_2 On |\bar{N}, p_n|_k$ summability factors of infinite series, J. Univ. Kuwait Sci. 10 (1983), 37-42; $[\bullet]_3 On |\bar{N}, p_n|_k$ summability factors of infinite series, Tamkang J. Math. (1) 16 (1985), 13-20; $[\bullet]_4 On$ absolute summability factors, Analysis (1987) (to appear).
- [2] N. SINGH, $On |\bar{N}, p_n|$ summability factors of infinite series, Indian J. Math. 10 (1968), 19-24.
- [3] R. Sinha, On $|\bar{N}$, $p_n|$ summability factors of infinite series, Comm. Fac. Sci. Univ. Ankara, Ser. A 21 (1972), 100-117.
