PREM CHANDRA (*)

Functions of classes L_p and $Lip(\alpha, p)$ and their Riesz means (**)

1 - Definitions and notations

Let $f \in L(-\pi, \pi)$ and be periodic with period 2π . Let the Fourier series of f at x be given by

(1.1)
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

Let (p_n) be a sequence of non-negative constants such that

$$P_n = p_0 + p_1 + \dots + p_n \neq 0$$
 $(n \ge 0)$.

Then the transformation

(1.2)
$$t_n = (P_n)^{-1} \sum_{m=0}^n p_m s_m$$

where (s_n) is the sequence of partial sums of the series $\sum_{n=0}^{\infty} c_n$ of real numbers, are called the *Riesz means* (R, p_n) or simply (R, p_n) means of (s_n) .

A function $f \in \text{Lip } \alpha \ (\alpha > 0)$ if

(1.3)
$$f(x+h) - f(x) = O(|h|^{\alpha}) \qquad (h \to 0)$$

and $f \in \text{Lip}(\alpha, p)$ $(\alpha > 0, p \ge 1)$ if (see [2], p. 612)

(1.4)
$$(\frac{1}{2\pi} \int_{0}^{2\pi} |f(x+h) - f(x)|^{p} dx)^{1/p} = O(|h|^{\alpha}).$$

^(*) Indirizzo: School of Studies in Mathematics, Vikram University, Ujjain-456010, India.

^(**) Ricevuto: 7-1-1986.

Further, if $f \in L_p$ $(p \ge 1)$, the expression

$$\omega_p(\mathcal{E};f) = \sup_{0 \le h \le \mathcal{E}} \left\{ \frac{1}{2\pi} \int_0^{2\pi} |f(x+h) - f(x)|^p \, \mathrm{d}x \right\}^{1/p}$$

is called integral modulus of continuity of f.

Throughout the paper, $R_n(f;x)$ will denote (R,p_n) means of $(s_n(x))$, the partial sum of (1.1). All norms, to be considered in this paper, will be L_p $(p \ge 1)$ norms with respect to the variable x. We also use ψ (or \uparrow) for non-decreasing (or non-increasing). Some time, for the convenience, we write P(k) for P_k . We also write

(1.5)
$$\varphi_x(t) = \frac{1}{2} \left\{ f(x+t) + f(x-t) - 2f(x) \right\}$$

(1.6)
$$\xi = [\pi/t]$$
 the integral part of (π/t) in $0 < t \le \pi$.

2 - Introduction

Hardy and Littlewood [2] have stated without proof that the class of functions $\operatorname{Lip}(\alpha,p)$ is identical with the class of functions approximable in the L_p -norm with an error $O(n^{-\alpha})$ by trigonometrical polynomials of degree n. With a view to examining the range of values of α and p for which the statement of Hardy and Littlewood holds. Quade [5] has obtained the following amongst other results:

Theorem A. In the function f(x) can be approximated for each $n \ge 1$, by a trigonometrical polynomial, $t_n(x)$, of degree n at most, such that $||f - t_n||_p = O(n^{-x})$ $p \ge 1$, then

(i) if
$$0 < \alpha < 1$$
 $f(x) \in \text{Lip}(\alpha, p)$; (ii) if $\alpha = 1$ $\omega_p(\delta; f) = O\{\delta \log \delta^{-1}\}$.

Moreover there exist functions for which $||f - t_n||_p = O(n^{-1})$ which do not belong to Lip (1, p).

Theorem B. If $f(x) \in \text{Lip}(\alpha, p)$, $p \ge 1$, $0 < \alpha \le 1$, then, for any integer n, f(x) may be approximated in L_p by a trigonometric polynomial $t_n(x)$ of order n such that

$$||f-t_n||_p = O(n^{-\alpha}).$$

With a view to obtaining the degree of approximation of the Riesz-means (R, p_n) to $f \in \text{Lip } \alpha (0 < \alpha \leq 1)$, we [1] proved the following

[3]

Theorem C. If $f \in \text{Lip } \alpha \ 0 < \alpha \le 1$, then

$$\max_{0 \leqslant x \leqslant 2\pi} |R_n(f;x) - f(x)| = \begin{cases} O\{(p_n/p_n)^{\alpha}\} & 0 < \alpha < 1 \\ O\{(p_n/P_n) \log{(P_n/p_n)}\} & \alpha = 1 \end{cases}$$

where $0 \leq (p_n) \downarrow$.

The object of this paper is to obtain the degree of convergence of $R_n(f;x)$ to f(x) in the L_p -norm whenever either $f \in L_p(p > 1)$ or $f \in \text{Lip}(\alpha, p)$. Precisely, we prove the following

Theorem 1. Let $f \in L_p$ (p > 1) and let $0 \le (p_n) \uparrow$. Then

(2.1)
$$||R_n(f) - f||_p = O\{(P_n)^{-1} \sum_{k=1}^n k^{-1} P_k \omega_p(\pi/k; f)\}.$$

Theorem 2. Let $f \in L_p(p > 1)$ and let $0 \le (p_n) \downarrow$. Suppose $\omega_p(t; f)$ satisfies the following as $t \to 0 +$

(2.2)
$$\int_{0}^{\pi} u^{-2} \, \omega_{p}(u; f) \, \mathrm{d}u = O\{H(t)\}$$

where $H \ge 0$ and that

(2.3) (i)
$$tH(t) = o(1)$$
 (ii) $\int_{0}^{t} H(u) du = O\{tH(t)\}$.

Then

Theorem 3. Let f and (p_n) be as defined in Theorem 2 and let $\omega_p(t;f)$ satisfy (2.2) and (2.3) (ii). Then

(2.5)
$$||R_n(f) - f||_p = O\{(p_n/P_n)H(\pi/n)\}.$$

Theorem 4. If $f \in \text{Lip}(\alpha, p)$ $0 < \alpha \le 1$, p > 1 and if $(p_n) \ge 0$, then

(2.6)
$$||R_n(f) - f||_p = O\{(P_n)^{-1} \sum_{k=1}^n k^{-1-\alpha} P_k\}$$
 ((p_n) \(\forall \)

and, whenever $(p_n) \downarrow$,

(2.7)
$$||R_n(f) - f||_p = \left\langle \begin{array}{l} O\{(p_n/P_n)^{\alpha}\} & 0 < \alpha < 1 \\ O\{(p_n/P_n) \log(P_n/p_n)\} & \alpha = 1. \end{array} \right.$$

Theorem 5. Let $f \in \text{Lip}(\alpha, p)$ $0 < \alpha \le 1$, p > 1, $\alpha p > 1$ and let (p_n) be nonnegative. Then, uniformly in x almost everywhere, the following hold

(2.8)
$$R_n(f;x) - f(x) = \begin{cases} O\{(P_n)^{-1} \sum_{k=1}^n k^{1/p - 1 - \alpha} P_k\} & (p_n) \uparrow \\ O\{(p_n/P_n)^{\alpha - 1/p}\} & (p_n) \downarrow . \end{cases}$$

3 - Lemmas

We require the following lemmas in the proof of the theorems.

Lemma 1. If h(x, t) is a function of two variables defined for $0 \le t \le \pi$, $0 \le x \le 2\pi$, then

$$\| \int h(x,t) dt \|_{p} \le \int \|h(x,t)\|_{p} dt (p > 1).$$

For its proof, see [3] (p. 148, 6.13.9).

Lemma 2. Suppose that $f \in \text{Lip}(\alpha, p)$ where $p \ge 1$, $0 < \alpha \le 1$, $\alpha p > 1$. Then f is equal to a function $g \in \text{Lip}(\alpha - 1/p)$ almost everywhere.

For its proof, see [2] (Theorem 5(ii), p. 627).

Lemma 3. Let $0 \le (p_n) \nearrow$. Then uniformly in $0 < t \le \pi$

$$\sum_{k=0}^{n} p_k \sin(k + \frac{1}{2}) t = O(P_{\xi}).$$

This may be obtained by using arguments similar to that of [4] (p. 182).

4 - Proof of the theorems

Proof of Theorem 1. We have

(4.1)
$$R_n(f;x) - f(x) = (\pi P_n)^{-1} \int_0^{\pi} \{\varphi_x(t) / \sin \frac{1}{2} t\} \{\sum_{k=0}^n p_k \sin (k + \frac{1}{2}) t\} dt = I_1 + I_2.$$

Then, by Minkowski's inequality,

[5]

However, $\sin\frac{1}{2}t \ge t/\pi$ $(0 \le t \le \pi)$ and since $\sin(k+\frac{1}{2})t \le (k+1)t$ we have by Lemma 1

$$||I_1||_p \leq (P_n)^{-1} \int_0^{\pi/n} t^{-1} ||\varphi(t)||_p \left| \sum_{k=0}^n p_k \sin(k + \frac{1}{2}) t | dt \leq (n+1) \int_0^{\pi/n} ||\varphi(t)||_p dt \right|$$

where, by Minkowski inequality and the periodicity of f,

$$\begin{split} \|\varphi(t)\|_p &= \{\frac{1}{2\pi} \int_0^{2\pi} |\varphi_x(t)|^p \, \mathrm{d}x\}^{1/p} \\ &\leq \frac{1}{2} \{\frac{1}{2\pi} \int_0^{2\pi} |f(x+t) - f(x)|^p \, \mathrm{d}x\}^{1/p} + \frac{1}{2} \{\frac{1}{2\pi} \int_0^{2\pi} |f(x) - f(x-t)|^p \, \mathrm{d}x\}^{1/p} \\ &\leq \omega_p(t;f) \, . \end{split}$$

Hence, since $\omega_p(t;f)$ is non-decreasing with t, we get

$$||I_1||_p \le 2\pi\omega_p(\pi/n;f) \le (2\pi/P_n) \sum_{k=1}^n k^{-1} P_k \omega_p(\pi/k;f)$$

since $(p_n) \uparrow$. Also, by Lemma 3, we have

$$||I_2||_p = O(1/P_n) \int_{\pi/n}^{\pi} t^{-1} \omega_p(t;f) P([\pi/t]) dt = O(1/P_n) \sum_{k=1}^{n-1} \int_{\pi/(k+1)}^{\pi/k} t^{-1} \omega_p(t;f) P([\pi/t]) dt$$

$$= O(1/P_n) \sum_{k=1}^{n} k^{-1} P_k \omega_p(\pi/k;f).$$

Using the estimates of $||I_1||_p$ and $||I_2||_p$ in (4.2), we get (2.1).

Proof of Theorem 2. We have

(4.3)
$$R_n(f;x) - f(x) = (1/\pi P_n) \left(\int_0^{p_n/P_n} + \int_{p_n/P_n}^{\pi} \right) \frac{\varphi_x(t)}{\sin \frac{1}{2} t} \left\{ \sum_{k=0}^n p_k \sin \left(k + \frac{1}{2}\right) t \right) dt = J_1 + J_2.$$

Then, by Minkowski's inequality,

$$||R_n(f) - f||_p \le ||J_1||_p + ||J_2||_p$$

where

$$\begin{split} \|J_1\|_p & \leq \int\limits_0^{p_n/P_n} t^{-1} \, \omega_p(t;f) \, \mathrm{d}t = [-t \int\limits_t^\pi u^{-2} \, \omega_p(u;f) \, \mathrm{d}u]_0^{p_n/P_n} + \int\limits_0^{p_n/P_n} \mathrm{d}t \int\limits_t^\pi u^{-2} \, \omega_p(u;f) \, \mathrm{d}u \\ & = O(p_n P_n) H(p_n/P_n) + O(1) \int\limits_0^{p_n/P_n} H(t) \, \mathrm{d}t = O\{(p_n/P_n) H(p_n/P_n)\} \end{split}$$

by (2.2) and (2.3). And since $0 \le (p_n) \downarrow$, we obtain, by Lemma 1 and Abel's Lemma and by (2.2)

$$\|J_2\|_p = O\{(p_n/P_n) \int\limits_{p_n/P_n}^{r} t^{-2} \, \omega_p(t;f) \, \mathrm{d}t\} = O\{(p_n/P_n) \, H(p_n/P_n)\} \; .$$

Using the estimates $||J_1||_p$ and $||J_2||_p$, we may get (2.4).

Proof of Theorem 3. Proceeding as in Theorem 1, we have

$$||I_1||_p \leq (n+1) \int_0^{\pi/n} \omega_p(t;f) dt$$

where integration by parts yields that

$$\int_{0}^{\pi/n} \omega_{p}(t;f) dt = \left[-t^{2} \int_{t}^{\pi} u^{-2} \omega_{p}(u;f) du \right]_{0}^{\pi/n} + 2 \int_{0}^{\pi/n} t \int_{t}^{\pi} u^{-2} \omega_{p}(u;f) du$$

$$= O\{n^{-2} H(\pi/n)\}$$

by (2.2) and (2.3) (ii), and hence

$$||I_1||_p = O\{(p_n/P_n)H(\pi/n)\}$$

since $(n+1)p_n \ge P_n$. Also by Abel's lemma

$$||I_2||_p = O\{(p_n/P_n) \int_{-1}^{\pi} t^{-2} \omega_p(t;f) dt\} = O\{(p_n/P_n) H(\pi/n)\}$$

by (2.2). Hence the proof of (2.5) may be completed.

Proof of Theorem 4. Since $f \in \text{Lip}(\alpha, p)$, $0 < \alpha \le 1$, p > 1, implies that $\omega_p(t; f) = O(t^{\alpha}),$

we get (2.6) by using (4.4) in (2.1). Further, by using (4.4) in (2.2), we get

(4.5)
$$H(t) = \begin{cases} O(t^{\alpha - 1}) & 0 < \alpha < 1 \\ O(\log \frac{\pi}{t}) & \alpha = 1. \end{cases}$$

Finally, by using (4.5) in (2.4) with $t = p_n/P_n$, we get (2.7).

Proof of Theorem 5. By Lemma 2 the hypothesis $f \in \text{Lip}(\alpha, p)$, where p > 1, $0 < \alpha \le 1$, $\alpha p > 1$, implies that there exists a function $g \in \text{Lip}(\alpha - 1/p)$ such that

$$f = g$$
 almost every where.

Hence we can conclude that

(4.6)
$$\varphi_x(t) = O(t^{\alpha - 1/p})$$
 almost every where.

We first consider the case when $(p_n) \uparrow$. Using the notation of (4.1), we have

$$I_1 \leq (n+1) \int_0^{\pi/n} |\varphi_x(t)| dt = O(n^{1/p-\alpha}) = O(1/P_n) \sum_{k=1}^n k^{1/p-1-\alpha} P_k$$

by (4.6) and the fact that $(P_n/n) \uparrow$. By Lemma 3 and (4.6)

$$I_2 = O(1/P_n) \int_{\pi^{\setminus n}}^{\pi} t^{-1/p - 1 + \alpha} P([\pi/t]) dt = O(1/P_n) \sum_{k=1}^{n} h^{1/p - 1 - \alpha} P_k.$$

Combining I_1 and I_2 , we get (2.8) in the case when $(p_n) \uparrow$. Now, we consider the case $(p_n) \downarrow$. Using the notation of (4.3), we get by (4.6)

$$J_1 = O(1) \int_{0}^{p_n/P_n} t^{-1} |\varphi_x(t)| dt = O\{(p_n/P_n)^{\alpha - 1/p}\}$$

and by Abel's Lemma and (4.6)

$$J_2 = O(p_n/P_n) \int_{p_n/P_n}^{p} t^{-2} |\varphi_x(t)| dt = O\{(p_n/P_n)^{x-1/p}\}.$$

Combining J_1 and J_2 , we get (2.8). This completes the proof of Theorem 5.

References

[8]

- [1] P. CHANDRA, On the degree of approximation of functions belonging to the Lipschitz class, Nanta Math. 8 (1975), 88-91.
- [2] G. H. HARDY and J. E. LITTLEWOOD, A convergence criterion for Fourier series, Math. Z. 28 (1928), 612-634.
- [3] G. H. HARDY, J. E. LITTLEWOOD and G. POLYA, Inequalities, Cambridge, 1967.
- [4] L. Mc Fadden, Absolute Nörlund Summability, Duke Math. J. 9 (1942), 168-207.
- [5] E. S. QUADE, Trigonometric approximation in the mean, Duke Math. J. 3 (1937), 529-543.
- [6] A. ZYGMUND, Trigonometric series (I), second edition. Cambridge, 1968.

Summary

The object of this paper is to obtain the degree of convergence of $R_n(f;x)$ to f(x) in the L_p -norm whenever either $f \in L_p$ (p > 1) or $f \in \text{Lip}(\alpha, p)$.

* * *