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PrREM CHANDRA (¥)
Functions of classes L, and Lip («, p) and their Riesz means (**)

1 - Definitions and notations

Let fe L(— =, =) and be periodic with period 2z. Let the Fourier series of f
at « be given by

(1.1) —;-ao + ”z; (a, cosnx + b, sinnx).
Let (p,) be a sequence of non-negative constants such that
P,=py+p+...+p, 70 (n=0).
Then the transformation

1.2) b= P S P
m=0

where (s,) is the sequence of partial sums of the series > ¢, of real numbers,

n=40
are called the Riesz means (R, p,) or simply (R,p,) means of (s,).
A function fe Lipa («>0) if

1.3) Sl + k) — fle) = O(|r|) (h—0)
and fe Lip(a,p) (@>0, p=1) if (see [2], p. 612)

(1.4) & 1w + 1) — flw) | dey = O(RJ) .

(*) Indirizzo: School of Studies in Mathematics, Vikram University, Ujjain-456010,
India. .
(**) Ricevuto: 7-1-1986.
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Further, if feL, (p=1), the expression

2=
wp(&,f)= sup {—21; Of |l + ) — f)P dw} P
is called integral modulus of continuity of f.

Throughout the paper, R, (f; x) will denote (R, p,) means of (s,(x)), the partial
sum of (1.1). All norms, to be considered in this paper, will be L, (p = 1) norms
with respect to the variable x. We also use 4 (or } ) for non-decreasing (or non-
increasing). Some time, for the convenience, we write P(k) for P. We also write

(L.5) 0ult) = 2 {flw + 1)+ flo = ) — 2f@)

1.6) &=[x/t] the integral part of (=/f) in 0<t<=.

2 - Introduction

Hardy and Littlewood [2] have stated without proof that the class of
functions Lip(a,p) is identical with the class of functions approximable in the
L,-norm with an error O(n~*) by trigonometrical polynomials of degree n. With a
view to examining the range of values of « and p for which the statement of
Hardy and Littlewood holds. Quade [5] has obtained the following amongst other
results:

Theorem A. In the function f{z) can be approximated for eachn =1, by a
trigonometrical polynomial, t,(x), of degree m at most, such that |f—t.[,
=0n %) p=1, then

@) if 0<a<l fla) e Liple, p); () if a=1 w,3f)=0{¢logs™'}.

Moreover there exist functions for which ||f —t,|l, = O(n~?) which do not belong
to Lip (1, p).

Theorem B. If flx)eLip(a,p), p=1, 0<a=1, then, for any integer
n, flz) may be approximated in L, by a trigonometrie polynomial ¢,(x) of order »
such that

If = tull = O™

With a view to obtaining the degree of approximation of the Riesz-means
R, p.) to feLipa(0<a=<1), we [1] proved the following
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Theorem C. If feLipa 0<a=<1, then

V4 O{(pn/pn)z} O<a<l

<2z O{(pn/P") log (P./, n)} a=1
where 0<(p,) { .
The object of this paper is to obtain the degree of convergence of B, (f; %) to

f(z) in the L,-norm whenever either fe L,(p>1) or fe Lip(x, p). Precisely, we
prove the following

Theorem 1. Let feL, (p>1) and let 0<(p,) 1 . Then

@.1) IR.(F) = Fllp = 0L z k™ Py ooy (el )} -

Theorem 2. LetfeL,(p>1) andlet 0<(p,) & . Suppose wy(t;f) satisfies
the following as t— 0+

2.2) [ w2y f) du = O{H(®)}

where H=0 and that

2.3) @ tHE) =o0() (i) fLH (u)du=O{tH®)} .
Then
2.9 | R(f) = fllp = O{(p/P) H(p/P,)} -

Theorem 3. Let f and (p,) be as defined in Theorem 2 and let wy(;f)
satisfy (2.2) and (2.3) (ii). Then

2.5) IR.H) = fllp = O{(pu/P,) H(zim)} .

Theorem 4. FIffe Liple,p) 0<a<1, p>1 and if (p,) =0, then

2.6) 1R.F) —fl|p=0{<Pn>-1§k-l—“Pk} () 1)
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and, whenever (p,) ¥,

O{(p/P.)} 0<a<l
@ IR = fllp = <
O{(pn/Pn) 10g (Pn/pn)} a=1.

Theorem 5. Let feLip(a,p) 0<a<1, p>1, ap>1 and let (p,) be non-
negative. Then, uniformly in x almost everywhere, the following hold

n

/O{(Pn)_l 2 kl/p—l—apk} (pn) T
2.8) R, (fix)—f(x)= N .
O{(p./P,) =%} (p) ¥ -

3 - Lemmas

We require the following lemmas in the proof of the theorems.

Lemma 1. If h(z,t) is a function of two wvariables defined for
O0<t<=n 0sx<2r then

I § hte, ) atl < J I, Bl dtp>1).

For its proof, see[3] (p. 148, 6.13.9).

Lemma 2. Suppose that fe Lip (z,p) where p=1, 0<a<1, ap>1. Then
f 18 equal to a function g € Lip(a— 1/p) almost everywhere.

For its proof, see[2} (Theorem 5(ii), p. 627).

Lemma 3. Let 0=<(p,) 4 . Then uniformly in 0<t<=
Sy sin (k +4) ¢ = OPy).
k=0 2

This may be obtained by using arguments similar to that of [4] (p. 182).

4 - Proof of the theorems
Proof of Theorem 1. We have

@1  Rfzm)—f@)=GP) [ {:pm(t)/siné—t}{ kz Py sin (& + -;-) tydt="I+1,.
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Then, by Minkowski’s inequality,

4.2) IR =l <Ll + 1 Ll -

However, sin—;-t =t~ (0<t<=x) and since sin(k + %) t<(k+1)t we have by
Lemma 1

I, < @ T ol | 3 pisinGe+5)tat< e+ 1 § ol dt
0 k=0 0

where, by Minkowski inequality and the periodicity of f,

ool = (= I ey

2z

s—;—{—— [ If@+0—f@Pdayr+ 3 G- 1f@ = f@ - o dep”
< w,(t:f).

Hence, since w,(t;f) is non-decreasing with ¢, we get

I, < 2roy i ) < @riPy) S, k1 Py eyl f)
k=1
since (p,) 4. Also, by Lemma 3, we have

2]l = 0(1/P,,) It' w(t; ) P([=/t]) dt = O(L/P,) z f V() P(/) dt

k=1 aik+1)

= 0P, S k' Pyuylk;f).
k=1

Using the estimates of ||[}], and ||[3], in (4.2), we get (2.1).
Proof of Theorem 2. We have

43)  Rufiw)—f@)=(UsP,) (f S s+ Dnar=si+ 2,

PPy Sll’lzt k=0

Then, by Minkowski’s inequality,

IR =l < Wl + V2l
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where
PalPy . P PPy =

Milo< § oG dt=1—1 [ w 2o, duly” "+ [ dt [ u 2wu;f)du
0 t [i] t

Pn/Py

=O0(p,P,) H(p,/P,) +0) [ H®) dt=0{(p./P.) H(p./P.)}

by (2.2) and (2.3). And since 0=<(p,) &, we obtain, by Lemma 1 and Abel’s
Lemma and by (2.2)

Wello = O{@a/P) [ 72w (t5) dt} = O{(p/P) H(p,JP)} -

PPy

Using the estimates ||[/,]}, and |/3],, we may get (2.4).

Proof of Theorem 3. Proceeding as in Theorem 1, we have

W<+ 1) | o) dt

where integration by parts yields that

] "ty dt =~ £ o) duls" +2 "y T 0y 0) d
= O{n~2H(x/n)}
by (2.2) and (2.3) (i), and hence
ILll, = O{(p/P) H(z/m)}

since (n+ 1)p,=P,. Also by Abel’s lemma

"12”1) = O{(pn/Pn) J‘:tmzwp(t;f) dt} = O{(pn/Pn) H(?T/’)’L)}

=/n

by (2.2). Hence the proof of (2.5) may be completed.

Proof of Theorem 4. Since fe Lip(e,p), 0<a<1, p>1, implies that

4.4) wp(t;f) = 09,
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we get (2.6) by 'using (4.4) in (2.1). Further, by using (4.4) in (2.2), we get
o1 I<a<l

(4.5) H@) = é
O(log %) a=1.

Finally, by using (4.5) in (2.4) with t=1p,/P,, we get (2.7).

Proof of Theorem 5. By Lemma 2 the hypothesis feLip(a, p), where
p>1, 0<a=<1, ap>1, implies that there exists a function g € Lip(« — 1/p) such
that

f=g almost every where.
Hence we can conclude that
(4.6) o.(t) = O(t=~ 1) almost every where.
We first consider the case when () 1. Using the notation of (4.1), we have
L<@+ 1)0f" 201t = 0P~ = OWP,) S, 9=+,

by (4.6) and the fact that (P,/n) 4. By Lemma 3 and (4.6)

o

L=0/P,) [ t-¥=1+<P(x/t])dt = O/P,) S h¥»=1-=P,.
k=1

Combining 7, and I, we get (2.8) in the case when (p,) 1.
Now, we consider the case (p,) & . Using the notation of (4.3), we get by (4.6)

PulPy

J1=0Q) [ tg,0)] dt = O{(p/P,y~ ¥}
0
and by Abel's Lemma and (4.6)

J2 = O(pn/P'n) f—' =2 ]?x(t)l di = 0{(pn/Pn)“"1/P} .

PulPy

Combining J, and J;, we get (2.8).
This completes the proof of Theorem 5.
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Summary

The object of this paper is to obtain the degree of convergence of R.(f; %) to f(x) in the
L,norm whenever either fe L, (p>1) or fe Lip(«, p).



