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A direct proof
that all Hall planes of the same finite order

are isomorphic (*¥%)

Introduction

The usual proof ([2], p. 215) that all Hall planes of the same finite order are
isomorphic uses Ostrom’s concept of derivation and related results ([3] or [2],
Chapter X). In this paper we present an elementary proof of this result, showing
actual isomorphisms between planes. To do so, we show how to obtain one Hall
quasifield from another by changing the multiplication, but consider separately

- quasifields which are defined over fields of characteristic 2 or #2.

1 - Definition of Hall quasifields and Hall planes

Let K be a finite field and f(x) = «® — px — ¢ an irreducible quadi'atic over K.
Let H be a 2-dimensional right vector-space over K with basis elements 1 and ).
Addition in H is ordinary vector addition, but multiplication in H is defined by

(2¢ + d)-(xa + b) = Alch — da + pa) + db — ¢ af(d) if e#0
D
d(aa + b) = Mda) + db.

Then H is a quasifield ([2], pp. 183-185) called a Hall quasifield. If K is
GF(h), H is clearly of order h%

(*) Indirizzo degli AA.: S. B. NESBITT-STOBERT, National Health and Welfare,
Ottawa, Ontario, Canada; C. W. L. GARNER, Department of Mathematics and Statistics, .
Carleton University, Ottawa, Ontario K1S 5B6, Canada.

(**) Ricevuto: 11-VII-1985.



242 S. B. NESBITT-STOBERT and C. W. L. GARNER [2]

Lemma 1.1. If h=p" for a prime p and positive integer v, then there are
$h(h — 1) non-isomorphic Hall quasifields of order h*.

Proof. In K=GF(h), there are h* quadratic polynomials of the form
x*—px —q-3h(h+ 1) of these are reducible since they can be factored into
(x—a)x—b) with a,beK. This leaves #(h—1) irreducible quadratic
polynomials, and each one determines (by (1)), a unique Hall quasifield.

If H is any Hall quasifield, then the Hall plane »(H) is the projective plane
coordinatized by H in the usual way ([2], p. 126; [5], p. 98). A point (x, ) and line
[m, k] are defined to be incident if and only if y =mx+k.

2 - Classes of Hall quasifields

Let H be a Hall quasifield of order 7* defined over K= GF(h), with
irreducible polynomial f{x) = 22 — px — ¢q. For any a € K, let H, be the algebraic
system consisting of the same elements as H, addition as in H and multiplication
. defined by

2 x,y=@+a)-y—a-y
where - denotes multiplication in H. Note that x;y=2z-y if ye K.
Lemma 2.1. For any a€K, H, is a quasifield.

The proof of this lemma consists in a straightforward checking of the
properties of a quasifield.

Lemma 2.2. Let H be a Hall quasifield over K = GF(h) with associated
polynomial flx)=x?— px — q. Then the Hall quasifield H, as constructed above
has associated polynomial :

3) gx)=2t—(p—2a)x — (g +ap—a? .

Proof. Let xeH —K so that fix)=x?—px—q=0.
Now by definition of multiplication ; in H,,
x—-—a),x=@—a+a)-r—a-x=2-c—a-T
and so, by (3),

x—a),@—a+a)=pr+qg—a-x.
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Then by right distributivity of ,,
(x—a), -a)+@—a),a=pr+qg—a-x.
Using (2) again, we have

and so
@—a), @—a)y=pr—(a-x+z-a)+a-a+q.

But a-x=2-a (from (1) since a =230+ a e K) and so, since p,2a e K,

—a),—a)=@p~2a)-x+a-a+q.
Thus
—-a)y,@—a)=(p—2a)-@—a)+a-a+q+(p—2a)a
=(p-2a)-@—-a)+(g+a-p—dad
so that x — a satisfies the equation

g)y=at—pr—qg=0 ~ for all elements x~aeH,— K

where #* =2 ; .

Hence all elements in H, — K satisfy the quadratic equation g(x) = 0, which
must now be shown to be irreducible. Suppose ¢g(z) =0 for some ze€ K. Then
Z—(p—2a)2—(q+ap—a®=0, which implies z°—pz+2az—q¢—ap+a?=0
since ze K, and so (z—a)—pz—a)—q¢=0. But then flx)=a®>—px—q is
reducible in K which yields a contradiction.

Let Cy={H,ae K} be the class of all Hall quasifields constructed from a
given Hall quasifield H. We wish to show that all quasifields in a class Cy
coordinatize isomorphic planes.

Lemma 2.3. For all Hye Cy, =(H,) = =(H).
Proof. Consider the mapping ¢:=(H)— =(H,) given by

i, y)— (@, y — ax) m,kl—[m—a,k]
(X)— (x—a) [k]— k]
(0)— () (0] [o] .
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Since ¢ is clearly one-to-one and onto, we need only check incidence
preservation. Omitting the trivial incidences, (&, y) incident with [m, k] implies
y=m-x+k and so y—a-x=m-x—a-c+k Then using (2), we have
y—a-x=m—a);x+k and so (&, ¥y —a-x) is incident with [m —«, k]. Thus
Wz, ¥), Llm, k] are incident and the two planes =(H), =(H,) are isomorphic.

Lemma 2.4. If H is Hall quasifield defined over a field K and o, be K,
then (Hp)p= H,.p.

Proof. Using (2) to first change multiplication to ,;, we obtain

Tapy=@+a+b)-y—(a+b)-y
=(:v+b+a)-y——a~y~(b+a)~y+a-y
=@+0);y—by

and we see that multiplication ,;, is accomplished by first changing to
multiplication and then to ; multiplication. Since the sets of elements H,
H,(a € K) are identical and the same addition is involved, the lemma is proved.

As an immediate corollary we obtain
Corollary 2.5. Cy=Cy, for all a € K.

By this corollary, we have that any class of Hall quasifields is determined by
any quasifield in it and thus by its irreducible polynomial. Thus in view of
Lemma 2.3, to accomplish the main goal of showing that all Hall planes of the
same finite order are isomorphic, we need only consider planes from distinect
classes. For this purpose, it is necessary to distinguish between planes whose
coordinatizing quasifields are defined over fields of characteristic 2 or character-
istic #2.

3 - Hall quasifields defined over a field of characteristic #2

Lemma 3.1. Let K be a field of characteristic #2. The Hall quasifields
over K= GF(h) can be partitioned into 3(h — 1) classes of cardinality h, where
each class is characterized by an irreducible polynomial of the type x?—q.

Proof. In K=GF(h) there are i(h—1) non-squares and so (h—1)
irreducible polynomials of the form 22— q. If H is a Hall quasifield over K with
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associated polynomial a®— ¢, then by Lemma 2.2, the irreducible polynomials
determining the Hall quasifields in Cy will have the form

g(x) = 2* + 20x — (¢ — a?)

for all @ € K. Since the characteristic of K is not 2, these polynomials are all
distinet and so there are & of them. Thus the class Cy has cardinality h.

Theorem 38.2. Hall quasifields over a finite field K of characteristic # 2
coordinatize isomorphic planes.

Proof. Let H,, H, be two Hall quasifields defined over K which are in
distinct classes. By the previous lemma, we may assume that their associated
polynomials are a*—¢q, and «®—g¢, respectively. Consider the mapping
9:=(H)— =(H,) given by

6:(x, y)— (rx, )  [m, kl—=[r"tm, k]
()— (') [m]— [rm]
(0} — () [eo]—[e]
where r= (g5 gL
Since both ¢, and g, are non-squares, ¢;'¢; is a square, as the squares form a
subgroup of index 2 in the multiplicative group of K. Thus = (¢5'¢;)! exists.
Since 6 is clearly 1-1 and onto, it is sufficient to show that 6 preserves the
(non-trivial) incidences.
(%, y) is incident with [m, k] if and only if y=m;x+k. Let y =2y, + v,
=2+ oy, M=o+ My, k=2ki+ ke (y,x,mykieK (i=1,2). Then
y=mj x +k becomes

Y+ Y2 = 0my + mp) ; Oy + ) + Oky + k)
=2y Ty — M2 1) + Ma 2o — My @1 f(ma) + (W, + ko)
= (1 Ty — M 1) + Mo e — M (M3 — q) + Oky + k)
= A 7 1y — M T ) + M iy — (M T rry) (md — q) + Oy + ko)
=20my 77 1y — M T rey) + M vy — (my ) T ey (e 1Y = o) + Oy + k)

=(rtm);(re) +k .

Thus y=mjx +k if and only if y = (r"'m);(rx) + k, that is, (x, ) is incident
with {m, k] if and only if 6(x, ¥) is incident with 6[m, k].
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"4 - Hall quasifields defined over a field of characteristic =2

Lemma 4.1. Let K be a field of characteristic =2. The Hall quasifields
over K= GF(h) can be partitioned into h— 1 classes of cardinality hi2, where
each class is characterized by the middle term of its associated irreducible
polynomials.

Proof. If H is a Hall quasifield over K= GF(h) where h=2" for some
positive integer » with associated polynomial fla)=a*—px—gq, then by
Lemma 2.2, the other Hall quasifields in Cy have associated polynomials
fn=0"—(p—2a)-2—(g+ap—a®) for ac K. Since K has characteristic 2,
Jfuox) = 2% —px — (g + ap — a?). Thus each Hall quasifield in Cy has the identical
middle term in its associated polynomial.

In a field of characteristic 2, a quadratic a* + bx + ¢ with b # 0 is irreducible if
and only if ¢/b% is not in P, the set of all elements expressible in the form a®+ «
for x € K ([1], p. 934). The cardinality of P is 3h. Since there are no irreducible
polynomials of the type fla) = &% + ¢ in GF(2"), there are precisely & — 1 classes of
Hall quasifields, each of cardinality %/2, and each class is characterized by the
middle term of the associated polynomials.

Theorem 4.2 Hall quasifields over a finite field K of characteristic =2
coordinatize isomorphic planes.

Proof. First note that a%—px —p*q is irreducible over K if and only if
p?q/p® ¢ P, and this is equivalent to @ — x — ¢ being irreducible over K ([1], p.
934). Thus, without loss of generality, let H, and H, be two Hall quasifields
over K with associated irreducible polynomials fi(x)=2*—x—q and
fow)=a®—px—p*q respectively. Let ; and ; denote their respective
multiplications. We shall show that the mapping ¢:=(H,)— =(H,) defined by

(@, P—@la,y [m, kl-[pm, k]
(@) — (px) [m]—> [p~im]
() — () (0] — [e0]
is an isomorphism.
Clearly, ¢ is 1-1 and onto.

Letting y =y, + ¥, & =22+ %y, k=2 + ks, we have

7~?/1 -+ Yo = ()\'ml -+ 7)'1/2) i ()\.’L'] -+ .',Ug) + ()\kl + kg)
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and so, using (1) with flz) =f(z),

X1+ Yo = 2 Tz — Me 0 + 1) + Moy — My &y (ME — My — @) + Ok, + k)

= X(mypp~t s — meppay) + App Tt ey + mepp Tl w,

= (pmy)~H (p~ @) (PP M — plpme) — p*q) + Ok, + k)

= (Qpmy +pme) s Op~tay + p  ag) + Ak + k)

=pmsple+k.

Thus y =m;x + k if and only if y = (pm) ; (p™ ) + k, and so (x, y) is incident

with [m, k] if and only if ¢(x, ¥) is incident with ¢[m, k].

Since by Lemma 2.3 planes coordinatized by Hall quasifields in the same class

are isomorphic, we now have a complete proof that all Hall planes of the same
finite order are isomorphie.
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Die Zusammenfassung

Der gewidhnliche Beweis, dass alle Hall-Ebenen derselben endlichen Ordnung

isomorph sind, hingt von dem von Ostrom eingefiihrten Begriff “derivation” ab. In dieser
Arbett geben wir einen direkte Beweis, in dem wir die explicite Isomorphismen zwischen
den Ebenen beschreiben.






