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Propagation and interference of waves

in oscillatory heat conduction in composite media (*%)

1 - Formulation and solution

The linear equation of heat conduction is used to study the propagation and
interference of dispersive thermal waves in composite media by an oscillatory
thermal forcing effect which is realized by imposing a time-dependent boundary
condition of the form exp [(Giw — 22) t] with the attenuation coefficient ). The effect
of the attenuation factor exp[— 2%{] is to decay the amplitude of the waves
exponentially with time, the decay time being 22 The wave structure thus
generated is analyzed in regard to a composite flat plate made up of two regions,
each of finite thickness. Thus, let the composite media be —h=<z=h, of which
the region — h =2z =0 is of one medium with K, ¢, ¢,, «; and T, for conductivity,
density, specific heat, diffusivity and temperature; 0 <z =<k is of other medium
with the corresponding quantities as K, g, €2, « and Tb.

After reducing the equations for linear heat conduction [2] and the boundary
conditions in dimensionless form, we shall solve the following boundary-value
problem: Determine the temperature fields T 2(z, t) such that

82 T1,2 8T1,2 _
= 32* 5% O
oT, T, B B
(2) __a?_a—éz_, Tl-—Tz at z=0
3) Ti(—1, t) =exp (v — 21Dt T:(1,)=0 t>0

where ¢ = Ky/K,.

(*) Indirizzo: Department of Mathematics, University of New Orleans, New
Orleans, LA 70148, U.S.A.
(**) Ricevuto: 2-VII-1985.
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Using the Laplace transform method the solution to the problem (1)-(3) gives
the temperature fields T'.(z,1) as

4) T,= T a + 5 Re exp (—ub) nzo [(cos mx + o)(uy + ug)
+ (cosnm —o)(up + uy)] —1=2=<0
5) Tg—ﬁ‘— Re exp (—ut)z(vl——v2+v3 Uy) 0=<z=1
where:
w= 22— 1w
u1=exp(—i(2’n+1+z)\/;)erfc(2n+l+z 1Vub)
2Vt
Up = exp (= i@n+ 1~ 2) Vi) erfe G212 i\/up)
2Vt
(6)

v = exp (—i(dn+1+2) V) erfe (ﬂi_\—i_ﬂ—i Vut)
2Vt

vp=exp (—idn +1 ——z)\/_) erfe (4n+ 1- z\/—)
2Vi

and us, u, are like %, u,, while vs, v, are like v, v, except that — 7 is replaced by
i. For ) = w =0 this solution coincides with those given in [2] for the case when
Ty(—~1, {)=H(t), t>0, where H(t) is the Heaviside unit function.

The wave patterns generated by the temperature fields T, and T, are
analyzed in 2 (a) and (b) respectively. The case ¢ = 1 reduces the problem to that
of an infinite plate occupying the region — 1=z =1; the analysis of waveforms
for this case is carried out in 2 (¢). The problem for the semi-infinite composite
region —1=<z< o is solved in 2 (d) and its wave structure is discussed there.
The technique of [4] is used to analyze the wave structure in all these cases.

2 - Structure of waves

In order to analyze the propagation of waves determined by the temperature
fields T, T as defined by (4)-(6), we shall use the approximation for the function
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erfe (p + ig) as given in [1]. Then each term u,, s, us, uy and v, v,, s, v, contains
factors of the form F(z £1q) and G(z,t). We shall therefore analyze the wave
motions as represented by waveforms of the type G(z, {) F(z £ ct). Even though
certain terms will be found to contain more than one waveform, only one of them
is found to yield a real wave-front in each of the u; and v; profiles inside the
region under consideration (i= 1,2,3,4).

(a) Temperature field T. In the u,-profile the only real wave-front exists at
2= —(2n+1) + wt/a, where \//— =q) =10y, Q= [0*+ AY2 £

This is a dispersive diffuse progressive (transverse) cosinusoidal wave with
attenuation factor exp(— A%t), wavenumber q,, velocity /e, and amplitude

4(z, t) = |(cos nx + o) g(p1)/2(1 + o—)] expl— a@n + 1 + 2)]

where

4py exp (= p})

I k

= exp(—k¥4) exp(—pd
= erfep, — —
9(p,) = erfep, 20 i, o

p1=2n+1+z—a2\/t_
2Vt

and it propagates in the time intervals 2na,/o <t=<(2n + 1) a,/w) for each n=0.
For a given n, this wave attains antinodes at the points
z=—(2n+ 1)+ (mr + wt)a, at any time ¢, where m =0, +1, +2, ...; thus, the
wave attains maxima or crests when a;@2n + 1+ 2) — ot =2m= and minima or
troughs when a,(2n + 1 + 2) — wt = (2 + 1)=, which yields wavelength [ = 2=/a,.
For a given n, all the points on the wu,-profile at a given time, whose abscissae
differ by an integral multiple of /, have the same phase. Since the wavelength
varies only gradually, by a small fraction of itself from one wave to the next, we
can define a local phase ¢(z,t) = wl —a,(2n + 1+ 2) which gives 984/0z = — a;,
33/3t = .

Thus, using the argument of [3], we find that the group velocity U for this
cosinusoidal wave is given by U =4a, \/2* + o?/w. It should be noted that the heat
energy of this cosinusoidal wave is dispersed at the group velocity U and not at
the wave speed s, = w/a,.

The u,-profile has only one real wave-front which exists at z =2n + 1 — wt/a,.
This is again a progressive (transverse) cosinusoidal wave with the same
attenuation factor, wavenumber, wavelength, wave speed and group velocity as
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for the u;-profile, but it has velocity — w/a; and its amplitude is given by

(cos nx —

“’g("f;)—g(pl) lexp[—as(2n+1—2)]

52(2, t) = l

for a given n, where

= 2n+l-2z 2\/—
2Vt

It attains crests when @,2n+1-2)—owt=2mx and troughs when
a;2n+1—2) — wt = (2m + 1) =. Although the two cosinusoidal waves, given by
uy- and wus-profile, differ in antinodes and amplitudes and ¢(z, ) > %z, £) for
—1=2<0 with 40,0 =2%(0,%) (in fact, more precisely Z(—z*, £) = L(z*, 1)
where 0=z%*=<1), they move in opposite directions. Thus their superposition
exhibits the following interference pattern: The wave, described by u,-profile,
which emanates at ¢ = 0 from the surface z = — 1, reaches the surface z = 0 in the
time interval a,/w and a portion of it is then reflected while the remaining portion
is refracted through the surface z = 0 in the time interval a,/w and a portion of it
is then reflected while the remaining portion is refracted through the surface
z=01n the region 0 <z = 1. This reflected wave is represented by the uy-profile,
which travels in the opposite direction in the complementary time intervals
@n+ 1) a/o <t <(2n+2)a/w for each n=0. The amount of refraction depends
on the value of ¢ and the structure of the refracted wave is deseribed below for
the temperature fields 7. Since the amplitudes ¢(z,%) and &(z, %) for the
cosinusoidal waves and their reflections are different, the disturbance in the
region —1=2z=0 does not have the character of standing waves of any kind.

The uyprofile shows only one real wave-front which exists at z=—(2n
+ 1)+ X%t/a;. It represents a dispersive diffusive progressive (transverse)
nonsinusoidal wave (henceforth called a Az-wave) with wavenumber a,, velocity
»*as, and amplitude

Lz, 8) =] %ﬁzg(pz) cos (wt + a;(2n + 1 + 2))|

where

=2n+1+z+a2\/t—_
2Vt

The group velocity of this wave is V =4a,\/2* + «*w. This wave occurs in the
time intervals 2na./2*=<t=<(2n+ 1) ax/2% It may be noted that this wave decays
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exponentially and exists because of the presence of the attenuation factor 2 in the
boundary condition at z= — 1; it vanishes for 1 =0.

The wusprofile possesses only one real wave-front which exists at
z=2n+ 1~ )*t/a,. It again represents a x-wave with the same wavenumber and
wave speed s, = 2%/a, as that given by the us-profile, but it moves in the opposite
direction with velocity —2%a, and has amplitude

(cosnr — o)

mg(pé) cos (wt + a;(2n + 1 — 2))|

Z.é(zy t) = I

: where

pé___2n+1—z+a2\/z.
2Vt

It may be noted that Z(z,1)> ¢z, t) for 0<z=<1, with %(0, 1) = £, (0, f) (more
precisely, &(—2%t) = (2%, 1), where 0=<z¥=<1). Both & and {y possess
oscillatory character. ~

The u; and u, profiles on superposition show the following interference
pattern: The A-wave given by the us-profile, which starts at the surface z= — 1 at
the time ¢ = 0 reaches the surface z =0 in the time interval a»/3% and a portion of
it (depending on the value of ¢) is then reflected, while the remaining portion is
refracted through the surface z = 0 in the region 0 <z < 1. This reflected wave is
represented by the w,-profile; it has the same characteristics as those given by
the u-profile, except that it propagates and disperses in the opposite direction in
the complementary time intervals for (n=0) @n+ 1) a/22<t<(2n + 2) a/H%

Since the amplitudes & and ¢, are different in — 1 <2z <0, the disturbance in
this region does not have the character of standing waves of any kind. The
refracted waves are discussed below. For given values of 2 and w, Table I
represents the behavior of s;, s,, U, V,  and U/s,.

(b) Temperature field T,. The structure of waves represented by T’ contains
portions of refracted waves from T through the separation surface z=0 and
their reflections at the surface z = 1. Since the heat energy is conducted faster
from regions of lower conductivity to those of higher conductivity, the amount of
refraction of thermal waves through the surface z = 0 depends on the value of o.
If o>1, then refraction is larger than that for c<1; in fact, if +<<1, then
refraction is negligibly small and the direct refracted waves through z =0 and
their subsequent reflections at z=1 attenuate exceedingly rapidly.

The v,-profile has only one real wave-front in the region 0 <z <1 and it exists
at 2= —(4n + 1) + wt/a,. This is a dispersive diffusive progressive (transverse)
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cosinusoidal wave, refracted through the surface z=0 from the direct
cosinusoidal wave, given by the u;-profile, which started at the surfacez= —1at
time t=0. It has the same attenuation factor, wavenumber, velocity, group
velocity, wavelength as the direct cosinusoidal wave given by the u,-profile, but
its amplitude is

g( )

Loz, ) = ] [ exp[— ay(dn + 1+ 2)]

where

bl=4n+1+z—a2\/t—;
2Vt

it propagates in the time intervals (dn + 1) a)/o <t = (4n + 2) ay/o for each n=0.

The v,-profile also has one real wave-front in the region 0 =z =<1 and it exists
at 2 =4n + 3 — wt/a,. This is again a progressive (transverse) cosinusoidal wave
with the same attenuation factor, wavelength, wave speed and group velocity as
given by the v-profile, but it has velocity —w/a; and its amplitude is

9( 3

Loz, t) = ] | exp[— ay(dn + 3 —2)]

where

b, = dn+3—2 a\/_
2Vt

It attains its crests when a,(dn+3—2)—wt=2mr and troughs when
a:(4n + 3 — 2) — wt = (2m + 1) =. Although the two cosinusoidal waves, given by
v- and ve-profile, differ in antinodes and amplitudes and &(z, 1) > (2, 1) for
0<z=<1, they move in opposite directions. Their superposition exhibits the
following interference pattern: The wave described by the v-profile which was
the refracted portion of the wave described by the u;-profile at the surface z=0
and which started at 2z = 0 at the time ¢t = a,/w (counted from the initial time { =0
when the direct wave described by the wu;-profile emanated at the surface
2= — 1) reaches the surface z =1 in the additional time interval a,/w and is then
reflected at the surface z=1. This reflected wave is represented by the v,
profile, which travels in the opposite direction in the complementary time
intervals (4n + 2) a/o <t =< (4n + 8) ai/w for each n=0 and reaches the surface
z=0 where a portion of it is reflected and the remaining portion refracted,
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depending on the value of &. Since the amplitudes G, 1), &z, 1), Gz, t), and
%z, 1) are different, the interference of these waves and their reflections and
refractions at the surface z =0 do not give rise to any kind of standing waves in
the regions 0<z=<1 and —~1<z<0.

The ws-profile shows only one real wave-front which exists at z = — n+1)
+ 2%t/as. This is a A-wave which is refracted through the surface z =0 from the
direct x-wave given by the ug-profile. This wave has the same wavenumber,
velocity, group velocity as the direct i-wave given by the wug-profile, but its
amplitude is

g(b2)

C7(zyt)=ll+,_

cos (wt + ay(4n + 1 + 2))]

where

b _dn+1+2
=T lTZ

2Vt

and it travels in the region 0=<z<1 in the time intervals An + 1) a,/»®
=t=(dn+2)ay/2? for each n=0. ‘

The v,-profile also has one real wave-front which exists-at z =4n + 3 — X2 t/a,.
This is again a A-wave with the same wavenumber, wave speed and group
velocity as that given by the vg-profile, but it has velocity —A%#a, and its
amplitude is given by

+a Vi

Lz, T) =| i](ﬁi cos (vt + a;(4n + 3 — 2))|

where

b’z.:m_*..azvz.
2Vt

Although the two A-waves, given by the v;- and v-profile, differ in amplitudes
and &z, 6)>(z,t) for 0<z< 1, they move in opposite directions. Their
superposition shows the following interference pattern: The x-wave, described
by the vs-profile which was the refracted portion of the A-wave described by the
ug-profile at the surface z = 0 and which started at z = 0 at time ¢ = a,/2 (counted
from the initial time ¢ =0 when the direct A-wave described by the ug-profile
emanated at 2z = — 1) reaches the surface z=1 in the additional time intervals
Xfa; and is then reflected at the surface z=1. This reflected A-wave is
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represented by the v,-profile, which travels in the opposite direction in the
complementary time intervals (dn + 2) al/2* <t =<(4n +3) as/2* for each n=0 and
reaches the surface z =0 where a portion of it is reflected and the remaining
portion refracted, depending on the value of s. Again, since the amplitudes
%, &, & and ¢ are different, the interference of these waves and their
reflections and refractions at the surface z =0 does not yield standing waves of
any kind in the region 0<sz=1or —1=2=0.

(¢) The case c = 1. The case when o = 1 reduces the problem to that of a single
infinite plate occupying the region —1=<z=1. In this case the solution of the
temperature field T is

T=%Reexp(—yt)i(v1~v2+v3~v4) —-1=sz=1.

n=0

The structure of waves generated in this case is as follows: The v;-profile has
only one real wave-front in the region —1<z=<1landitexistsat z=—(4n+1)
+ wt/a,. It represents a dispersive diffusive progressive (transverse) cosinusoidal
wave similar to the one in the v;-profile of 2 (b), except that this wave propagates
in the time intervals 4na/o <t<@dn+2)a/w for each n=0. For n=20 this
represents a direct wave starting at the surface z= —1, which reaches the
surface z=1 in time w/a; and is then reflected there. This reflected wave is
represented by the ve-profile which exists at z = (4n + 3) — wt/a,. This is again a
dispersive diffusive progressive (transverse) cosinusoidal wave with the same
characteristics as those given by the v-profile of this section, except that its
velocity is — w/a,, its amplitude is (2, ), and it travels in the opposite direction.
It represents the above-mentioned reflected wave which propagates in the
complementary time intervals (for each n=0) dn + 2) /o =t = (4n +4) a)/o.

The vy-profile gives only one real wave-front in the region — 1=z =1, which
exists at z= — (4n + 1) + X®t/a,. It represents a dispersive diffusive progressive
(transverse) A-wave of 2(b), except that it travels in the time intervals
dna22=t=(dn + 2) ay/3* for each n=0. For n =0 it represents the direct 2-
wave which starts at the surface z=—1 at¢=0 and reaches the surfacez=1in
the time interval 2¥a, when it is reflected there. This reflected wave is
represented by the vs-profile which exists at z = 4n + 3 — 3*t/a,. This is again a
transverse A-wave with the same characteristics as those given by the vs-profile
of this section, except that its velocity is — 2%a,, its amplitude is (2, t), and it
travels in the opposite direction. It represents the above-mentioned reflected -
wave which progresses in the complementary time intervals (for each n=0)
An + 2 aN?<t<(n + 4)ax/2%. The i-waves, represented by the vy and vy
profile, vanish for 2 =0.
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(d) Semi-infinite composite region. The solution for the semi-infinite
composite region —1=z<o, with separation surface at 2=0, such that
T(—1,8) = exp[(iw—291t], Ty, t)=0,t>0, is given by

1

Ty=% Re exp(—u) 3 B+t~ Bl +u))  —1=2=0
n=0

Ty= —;— Re exp (—ut) i BMuy + ug) z2>0
n=0
where u;, us, us, 44 are defined by (6) and B=(c— DNc+1).

The wave structure for this composite media is analogous to that described in
2 (a).

Table 1
A w 83 So U ! U/Sl 14
10.0 0.0 0.0 oo = 0.6283 o0 o
2.0 0.19 1000.06 2000.50 0.6282 | 10003.0 20.002
4.0 0.39 500.09 1000.99 0.6281 2502.99 20.012
10.0 0.99 200.25 402.49 0.6275 402.99 20.074
5.0 0.0 0.0 £ @ 1.256 o0 o
2.0 0.39 125.09 250.99 1.255 627.99 10.02
4.0 0.79 62.69 126.99 1.252 159.24 10.09
10.0 1.96 25.47 54.87 1.233 27.96 10.56
1.0 0.0 0.0 0 o 6.28 o o0
2.0 1.57 1.27 5.69 4.94 3.62 3.52
4.0 2.49 0.80 6.59 3.92 2.64 5.15
10.0 4.25 0.47 9.45 2.67 2.22 . 8.55
0.5 0.0 0.0 o0 0o 12.57 o ]
2.0 1.87 0.26 4.29 5.90 3.61 3.51
4.0 2.74 0.18 5.84 4.31 2.13 5.49
10.0 4.42 0.11 9.06 2.77 2.05 8.84
0.1 0.0 0.0 o0 o 62.83 o ®
2.0 1.99 0.010 4.01 6.26 2.010 3.99
4.0 2.82 0.007 5.66 4.43 2.005 5.64
10.0 4.47 0.004 8.95 2.81 2.002 8.93
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Conclusion

In view of the linear theory, the above analysis is valid for small » only.
It should be noted that although the two types of waves, one cosinusoidal and
the other nonsinusoidal, are disperse waves, they are not at all resulting from
the presence of any hyperbolic equations; they propagate because of the
oscillatory foreing effect in the boundary conditions.
The case of the composite region —h<z=<a, a#h, deserves a separate

discussion.

The authors thank Professor G. B. Rizza and the referee for some valuable
suggestions. ‘
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Summary

Exact solutions are obtained for temperature fields in composite media of two regions
of finite as well as semi-infinite width when one surface is subjected to an oscillatory
thermal forcing effect exp [(iw — 23)t], £ >0, while the other is kept at zero temperature.
Two kinds of transverse dispersive waves, one cosinusoidal and the other nonsinusoidal,
are generated; their reflections, refractions and interference are studied.



