GUAN ZHICHENG (*)

Change of phase with variable melting temperature (**)

1 - Introduction

Mathematical problem describing change of phase in materials in which the temperature $\bar{\theta}$ at which the phase transition occurs is variable have been considered e.g.[1], [2], [3]. Here, we assume that $\bar{\theta}$ depends on space and on time. Referring to a model problem in one space dimension, we will discriminate between cases in which a *mushy region* (i.e. a region where the temperature θ is exactly equal to $\bar{\theta}$) appears and cases in which the domain under consideration is divided in two regions S and M, where $\theta < \bar{\theta}$ and $\theta = \bar{\theta}$ respectively.

We assume that thermal capacity is constant and that the conductivity is k_L for $\theta > \overline{\theta}$ and k_S for $\theta < \overline{\theta}$.

Defining

(1.1)
$$E = \int_{\overline{\theta}(x,t)}^{\theta(x,t)} c dz + \lambda sgn^{+}(\theta - \overline{\theta}),$$

the thermal balance equation can be written formally as

$$(1.2) \qquad \qquad \frac{\partial E}{\partial t} + c \frac{\partial \overline{\theta}}{\partial t} - \frac{\partial}{\partial x} (k \frac{\partial \theta}{\partial x}) = 0$$

and the definition of a weak solution can be given in standard way. It has to be noted, as in [2], that the values of the conductivity are to be assigned as function

^(*) Indirizzo: Department of Mathematics, Zhejiang University Hangzhou, China. (**) This paper was written during a visit to the Istituto Matematico «U. Dini», Università di Firenze. — Ricevuto: 4-XII-1984.

of E; otherwise uniqueness can not be guaranteed (if there exists a mushy region). Here, we assume $k = k_L$ for $E > \lambda$, $k = k_S$ for E < 0 (as already stated) and in addition $k = k_S + \alpha E$ ($\alpha = (k_L - k_S)/\lambda$, $E \in [0, \lambda]$).

We will consider a problem in the region $(0, 1) \times \mathbb{R}^+$ with the following initial and boundary conditions

(1.3)
$$\theta(x, 0) = h(x)$$
 (1.4) $\theta_x(0, t) = 0$ (1.5) $\theta(1, t) = g(t)$

and assume that it admits a classical solution in the sense of [2]. Namely we assume that three smooth regions can be defined (which will be called liquid, solid and mushy region, respectively)

$$L = \{(x, t) : \theta(x, t) > \overline{\theta}(x, t)\}$$

$$S = \{(x, t) : \theta(x, t) < \overline{\theta}(x, t)\}$$

$$M = \{(x, t) : \theta(x, t) = \overline{\theta}(x, t)\}$$

such that

$$\theta_t(x,t) - k_S \theta_{xx}(x,t) = 0 \qquad (x,t) \in S$$

(1.7)
$$\theta_t(x,t) - k_L \theta_{xx}(x,t) = 0 \qquad (x,t) \in L$$

$$(1.8) E_t(x,t) + c\overline{\theta}_t(x,t) - [k\overline{\theta}_x(x,t)]_x = 0 (x,t) \in M.$$

Furthermore, the interphase conditions are:

(1.9)
$$\lambda \dot{s}(t) = -k_L \theta_x^L + k_S \theta_S^S$$

if x = s(t) is the interpalse between S and L;

(1.10)
$$E(s(t) - t)[s(t) + \alpha \overline{\theta}_x(s(t), t)] + k_s[\overline{\theta}_x(s(t), t) - \theta_x(s(t) + t)] = 0$$

if x = s(t) is the interphase between S and M (say, S lies on the right);

$$(1.11) \quad [E(s(t) +, t) - \lambda][s(t) + \alpha \overline{\theta}_x(s(t), t)] + k_L[\overline{\theta}_x(s(t), t) - \theta_x(s(t) -, t)] = 0$$

if x = s(t) is the interphase between M and L (say, L lies on the left).

We note that if meas M=0, then the problem is of Stefan type. In the next section we will investigate whether this situation appears or not depending on the data.

2 - Appearance of a mushy region

We will assume

$$(2.1) h(x) < \overline{\theta}(x,0) 0 < x \le 1,$$

$$(2.2) g(t) < \overline{\theta}(1, t) 0 \le t,$$

$$(2.3) \overline{\theta}_x(0,t) = 0 0 \le t.$$

We have

Proposition 2.1. Assume either $h(0) < \overline{\theta}(0, 0)$ or

$$k_S \overline{\theta}_{xx}(x,t) - \overline{\theta}_t(x,t) \leq 0$$
 $x \in (0,\delta_1)$ $t \in (0,t_1)$ (1).

Then there exists $t_2 > 0$ such that $(0, 1) \times (0, t_2) \subset S$.

Proof. The proposition follows at once by the continuity of the solution in the problem corresponding to data (1.3)-(1.5) and by straightforward application of the maximum principle.

Since, in cases above, the problem is trivial (up to t_2), we will assume henceforth

$$(2.4) h(0) = \overline{\theta}(0,0)$$

$$(2.5) k_{\overline{b}} \overline{\theta}_{xx} - \overline{\theta}_{t} \ge 0 0 \le x \le 1 \quad t \ge 0.$$

Inequality (2.5) was assumed to hold in the whole strip $(0,1) \times \mathbb{R}^+$ for sake of simplicity. Actually the assumption we do really need is that $k_S \overline{\theta}_{xx} - \overline{\theta}_t$ (and $k_L \overline{\theta}_{xx} - \overline{\theta}_t$) has a definite sign in a neighborhood of the origin (0,0). Indeed our analysis is only local.

Without loss of generality, we will set $h(0) = \overline{\theta}(0,0) = 0$.

We have the following

Theorem 2.2. Assume (2.1)-(2.5) and either

⁽¹⁾ Henceforth, we denote by $t_1, t_2, ..., \delta_1, \delta_2, ...$ as appropriate positive constants and θ, h, g will be assumed to be as smooth as we will need.

$$(C)_1 h'(0) < 0, or$$

(C)₂
$$h'(0) = 0$$
 $k_S h''(0) < \overline{\theta}_t(0, 0)$, or

(C)₃
$$h'(0) = 0$$
 $k_S h''(0) = \overline{\theta}_t(0, 0)$ $k_S h'''(0) < 0$.

Then, there exists a function $\theta(x,t)$ and time $t_3 > 0$ such that $(0,1) \times (0,t_3) \in S$, i.e. the solution of

$$k_S \theta_{xx} - \theta_t = 0 \qquad 0 < x < 1 \qquad 0 < t$$
 (P)'
$$\theta(x, 0) = h(x) \quad 0 \le x \le 1 \,, \quad \theta_x(0, t) = 0 \quad 0 < t \,, \quad \theta(1, t) = g(t) \quad 0 < t$$

satisfies the inequality

(2.6)
$$\theta(x,t) < \overline{\theta}(x,t) \qquad 0 \le x \le 1 \qquad 0 < t < t_3.$$

Proof. Case (C)₁. There exists a smooth function $\tilde{h}(x)$ such that

$$h(x) \leq \tilde{h}(x) \leq \overline{\theta}(x, 0) \qquad 0 \leq x \leq 1$$

$$\tilde{h}'(0) = \overline{\theta}_x(0, 0) = 0 \qquad \tilde{h}''(0) < \theta_t(0, 0)/k_S.$$

Then we consider the problem

$$\begin{split} k_S \tilde{\theta}_{xx} - \tilde{\theta}_t &= 0 \qquad 0 < x < 1 \qquad 0 < t \\ (\tilde{\mathbf{P}})' \\ \tilde{\theta}(x,\,0) &= \tilde{h}(x) \quad 0 \leqslant x \leqslant 1 \;, \quad \tilde{\theta}_x(0,\,t) = 0 \quad 0 < t \;, \quad \tilde{\theta}(1,\,t) = g(t) \quad 0 < t \;. \end{split}$$

Obviously, we get

$$\theta(x, t) \leq \bar{\theta}(x, t)$$
 $0 \leq x \leq 1$ $0 \leq t$.

Since $\tilde{\theta}$ satisfies assumptions (C)₂. We reduce to the case below.

Case (C)₂. We set

$$(2.7) U(x,t) = \theta(x,t) - \overline{\theta}_t(0,0) t + \varepsilon t - h(x),$$

and have

$$\begin{split} k_S U_{xx} - U_t &= \overline{\theta}_t(0, 0) - k_S h''(0) - \varepsilon + O(x) > 0 & 0 < x < \delta_1 & 0 < t < t_1 \\ U(x, 0) &= 0 & U_x(0, t) = 0 & U_t(\delta, t) = k_S \theta_{xx}(\delta, t) - \overline{\theta}_t(0, 0) + \varepsilon. \end{split}$$

By means of the continuity of h(x) and $\theta(x,t)$ there exists $\partial_4, t_4 > 0$ such that $U(\partial_4, t) < 0$ $0 \le t \le t_4$, and hence

$$U(x,t) < 0 \qquad 0 \le x \le \hat{c}_4, \quad 0 < t < t_4,$$
 i.e.
$$\theta(x,t) < \overline{\theta}_t(0,0)t - \varepsilon t + h(x) = \overline{\theta}(x,t) - \overline{\theta}(x,0) + h(x) - \varepsilon t - \theta(t^2 + tx) < \overline{\theta}(x,t)$$
$$0 \le x \le \hat{c}_4 \qquad 0 < t < t_4.$$

Case (C)₃. We set

(2.8)
$$U(x,t) = \theta(x,t) - \overline{\theta}_t(0,0)t + \varepsilon xt - h(x)$$

and can prove $\theta(x,t) < \overline{\theta}(x,t)$ $0 \le x \le \delta_5$ $0 < t < t_5$ in the same way.

Remark 2.3. According to our proof, we can discuss the case in which $k_S h'''(0) = \bar{\theta}_{xt}(0,0) = 0$ in the same way.

Remark 2.4. If the assumption (2.3) does not hold and $\overline{\theta}_x(0,t) \leq 0$, Theorem 2.2 can be still proved as $-\overline{\theta}_{xt}(0,0)xt$ is added to the right hand of (2.8). But if $\overline{\theta}_x(0,t) < 0$, we need the condition $h'(0) \leq 0$ in case (C)₂ or h'(0) < 0 or h'(0) = 0 and $\overline{\theta}_{xt}(0,0) \leq 0$ in case (C)₃.

Essentially, Theorem 2.2 states that under conditions $(C)_1$, $(C)_2$ or $(C)_3$, the phase-change does not begin at t=0. Thus the heat conduction problem is trivially solvable until these conditions are violated. Thus we assume now, besides (2.1)-(2.5), that either

(d)₁
$$h'(0) = 0$$
 $k_S h''(0) > \overline{\theta}_t(0, 0)$, or (d)₂ $h'(0) = 0$ $k_S h''(0) = \overline{\theta}_t(0, 0)$ $k_S h'''(0) > 0$,

and we have

Theorem 2.5. Under the assumptions above, for any $t_1 \in \mathbb{R}^+$, we have $(0, t_1) \times (0, 1) \notin S$.

Proof. The proof follows essentially the same lines of the proof of Theorem 2.2.

Thus, in the assumptions (d)₁ or (d)₂, another phase develops from the very beginning of the process. According to our assumptions on the existence of a classical solution to the phase-change problem, we have that there exists a function $s(t) \in C'(\mathbb{R}^+)$, $0 \le s(t) \le 1$, $s(t) \ne 0$ in any neighborood of t = 0. This is an easy consequence of Theorem 2.5 and of the maximum principle.

Now we prove

Theorem 2.6. In the assumptions of Theorem 2.5 there exist $t_2 > 0$ and a function $\sigma(t)$ satisfying $0 \le \sigma(t) \le s(t)$ and $\sigma(t) \ne s(t)$ in any neighborhood of t = 0 such that

$$\theta(x, t) \equiv \overline{\theta}(x, t)$$
 $\sigma(t) \le x \le s(t)$ $0 < t < t_2$.

Proof. Suppose that there exist $\rho(t) \ge 0$, $\rho(0) = 0$ and a time t_3 , such that in the region

$$R = \{(x, t) : \rho(t) < x < s(t), \quad 0 < t < t_3\}$$

it is $\theta(x,t) > \overline{\theta}(x,t)$. This is impossible, because of the maximum principle if

$$(2.9) k_L \overline{\theta}_{xx} - \overline{\theta}_t \leq 0$$

in a neighborhood of origin (0,0). So if (2.9) holds, the theorem is proved. Therefore, we will assume

$$(2.10) k_L \overline{\theta}_{xx} - \overline{\theta}_t \geqslant 0$$

and we will assume (2.10) holds in the whole strip $(0, 1) \times \mathbb{R}^+$ as we did for (2.5). Next, we note that the region

$$R^* = \{(x, t) : 0 < x < \rho(t), \quad 0 < t < t_2\}$$

should belong to M. In fact, no other components of S can exist because of the maximum principle.

Now, we show that $\rho(t) \equiv 0$. As a matter of fact, from (1.11) and (2.10), using Vyborny-Friedman theorem, we obtain $\dot{\rho}(t) + \alpha \bar{\theta}_x(\sigma(t), t) < 0$, $0 < t < t_3$ and note $\bar{\theta}_x(0, t) = 0$; therefore $\dot{\rho}(t) < k_1 \rho(t)$, $0 < t < t_3$ where k_1 is dependent on α and max

 $|\overline{\theta}_{xx}(x,t)|$. So $\rho(t) < 0$, $0 < t < t_3$. This contradicts $\rho(t) \ge 0$, $0 < t < t_3$. Thus $R^* = \phi$ and we have

$$R = \{(x, t) : 0 < x < s(t), \quad 0 < t < t_3\}.$$

To complete the proof, we show that assuming $R \in L$ leads to a contradiction again.

Using Green's identity in the region

$$R_t = \{(x, t) : 0 < x < s(\tau), \quad 0 < \tau < t\} \qquad t < t_3$$

we obtain

$$\begin{split} 0 &= \int\limits_{R_t} (k_L \theta_{xx} - \theta_t) \mathrm{d}x \mathrm{d}t \\ &= \int\limits_0^t k_L \theta_x(s(\tau) - , \tau) \mathrm{d}\tau + \int\limits_0^{s(t)} (\overline{\theta}(x, s^{-1}(x)) - \theta(x, t)) \mathrm{d}x \,. \end{split}$$

Owing to (2.3) and (1.9), we have

$$\lambda s(t) \leq k_1 \int_0^t s(\tau) d\tau + \int_0^{s(t)} \overline{\theta}(x, s^{-1}(x)) - \overline{\theta}(x, t) dx$$

$$\leq k_1 \int_0^t s(\tau) d\tau + k_2 \int_0^{s(t)} (t - s^{-1}(x)) dx$$

$$\leq (k_1 + k_2) \int_0^t s(\tau) d\tau$$

where $0 < t < t_3$, $k_2 = \max |\overline{\theta}_t(x, t)|$.

Consequently, $s(t) \equiv 0$ $0 < t < t_3$ which is a contradiction to Theorem 2.5.

Finally, we prove that there exists $t_4>0$, such that $L\cap\{t\leqslant t_4\}=\phi$ i.e. we have

Theorem 2.7. In the assumptions of Theorem 2.5 there exists $t_4 > 0$ such that $\sigma(t) \equiv 0$, $0 < t < t_4$.

Proof. Suppose that this theorem is not true, as the proof of Theorem 2.6, the region

$$\{(x,t): 0 < x < \sigma(t), \quad 0 < t < t_4\}$$

can not be the other region, except for mushy region.

References

- [1] DING ZHENG-ZHONG, A phase-change problem with a time-dependent melting temperature, to appear in Proceed. Conference "Free boundary Problems: Theory & Applications" Maubuisson, 1984.
- [2] A. Fasano and M. Primicerio, Mushy regions with variable temperature in melting processes, Boll. Un. Mat. Ital. (to appear).
- [3] D. QUILGHINI, Su di un nuovo problema del tipo di Stefan, Ann. Mat. Pura Appl. 52 (1963), 59-98.

Sommario

Nel problema unidimensionale di cambiamento di fase con temperatura dipendente dallo spazio e dal tempo, si individua quando la «mushy region» si presenta e quando non si presenta.

* * *