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PAOLO TERENZI (¥)

On the Banach spaces of large density character (%)

Introduction

In what follows B is a Banach space and dens (B) is the density character of
B, that is the smallest cardinal number & for which B has a dense subset of
cardinality R.

We say that a sequence (x,)7-; of B (1sm< ) is orthogonal if, for every
finite sequence (a,)%.; of numbers,

(1) I i a, @, )|= max {| ¥ a,x,| F subset of (n)2.,}.

n=1 neF
Usually these sequences are called unconditional basic, with unconditional basis
constant equal to one.

Moreover we say that two subspaces X and Y of B are orthogonal if (x, y) is
orthogonal, for every x of X and y of Y.

The existence of unconditional basic sequences and the existence of infinite
dimensional orthogonal subspaces are two famous open problems of the
Functional Analysis.

The only tool of the constructions of this Note is the Hahn-Banach theorem;
moreover the idea is that the large density character helps the construction of
«nice» sequences.

1 concerns the orthogonal subspaces and there is proved the following
theorem.

I. Let 8 be a transfinite cardinal number and let U, V be subspaces of B
with |
dens(U)=2%  dens(V)>2%),
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Then there exist two orthogonal subspaces X and Y of U and V respectively, so
that ‘
dens(X)=2%  dens(Y)=R.

2 concerns orthogonal sequences and there is proved the following theorem

II.  There exists a cardinal number R* so that every B, with dens(B)= R¥,
has finite arbitrarily long orthogonal sequences.

The following question is open.

Problem 1. Does there exist a cardinal number 8* so that every B, with
dens (B) = R*, has an infinite orthogonal sequence?

3 concerns monotone basic sequences and there is proved the following
theorem.

III. If dens(B) > 2%, where & is a transfinite cardinal number, there exists
m B a transfinite basic monotone sequence of type (R%).

Where type (R) is the first ordinal of cardinality .

This theorem is connected with preceding results in the literature (see the
end of 3).

We point out that

Corollary. Every B with dens (B)>8, contains an infinite basic
monotone sequence.

Where &, is the cardinality of continuum.
The following question is still open

Problem 2. Does there exist in every separable infinite dimensional B an
infinite monotone basic sequence?

Notations and definitions. If I is a set card (I) is the cardinality of I;
moreover if I ¢ B we use [I] for Span (/). If X is a linear subspace of B, DIM (X) is
the algebraical dimension of X (that is the cardinality of an Hamel basis) and
COD (X) is the codimension of X in B.

Moreover S(B) is the unit sphere of B (= {x € B; ||| = 1}) and if F ¢ B* (the
dual of B) we set

F,={xeB; fla)=0 for every f of F}.
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The following standard definitions can be found in [4] and [6];.
A sequence (x,,) of B is said to be basic if it is basis of [x,], that is if
x= 3 a,x, with (a,) unique for every x of [,]; is the same as saying that

n=1

there exists 1< K< = (the basis constant) so that

m L+ p
1> a,z,||<K| nz a,%,|  for every (a,)r}F of numbers.
1

n= n=1

A basic sequence (x,,) is said to be monotone if the basis constant is equal to
one; (&) is said to be unconditional basic if every permutation of (x,,) is basic.
We use the following consequence of the Hahn-Banach theorem.

I*  There exists a map G:B— B* so that, for every x of B, (G (x)) (x) = [lx]],
IG @)= 1.

We fix now a map G which will be unique in what follows.
We use «subspace» for «closed linear subspace», otherwise we say «linear
subspace».

1 - Orthogonal subspaces
In what follows 8, is the cardinality of numerable.

Lemma 1. If 8 1is a transfinite cardinal nwumber, FcB* with
card (F)=8 and dens (B)>2%, it follows that dens (F,)=dens (B) and
cop (F,,B)<2%,

Proof. F| is closed subspace of B, since intersection of closed sets. Let W
be a linear subspace of B such that
@) B=F +W F,nW=/{0}.
If C is the complex field, call = the map B— C¥ so defined
(@) = {f(®); feF} for every x of B.
Obviously r is linear hence, if 0 is the null element of C¥ (that is 0 (f) = 0 for

every f of F) and if x;, @3 € B with «(x;) = (x), it follows that (; — %o) = 0.
On the other hand = (x) =0 implies x € F_; hence, by (2),

T,x2eW with ©(x))=rc(xy) implies T1—wp e, "nW={0}.
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That is =| w is injective, hence card (W) < card (CF), therefore
DIM (W) < card (W) <(card (C))™d) = (R )N = (Q%)" = 28,

That is, by (2), cop(F,, B) = DM(W) <2,
By (2) it also follows that

)] dens (B) < dens (F,) + dens (W) < dens (F ) + 2%,

indeed if DM (W) is finite dens(W)=1, while if pmm (W) is infinite
dens (W) <DiM (W) (see [3] Corollary 2.4).

By hypothesis dens(B)>2%, hence by (3) it follows dens(¥,) = dens(B);
which completes the proof of LLemma 1.

Now we prove an algebraical lemma.

Lemma 2. Let U, V, W be linear subspaces of & linear space L such that

L=U+V, UnV=/{0}; pim (L) > max {&,, DM (1))}, b (V) = pim (W). Then
it follows that DIM (W N V)= DiM (L).

Proof. Firstly we notice that
4) card (U) = max {DIM (U); R.};
indeed if (x)!-;cL, card(span(z)-;) =R,; moreover the cardinality of the

finite subsets of an infinite Hamel basis of U is pim (U).
By hypothesis there exists (w;, u;,v;) In L so that

(wy);c; is Hamel basis of W;

®

w;=u;+v; with ;€U and v;eV, for iel.
By hypothesis piM (V) = DIM (L), hence
6) card () > card (U);
indeed by (4), (6) and by hypothesis it follows that

card (I) = 1M (W) = piM (L) > max {DIM (U); R} = card (U) .
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By (5) and (6) there exists a subset I of I and w, @, ¥ in L, so that
WU (W)ier C (Wie 1‘ with card (I) = card ;
(N w=a+7 with wnelU, 7€V,
w;=4 thatis wy=ua+v, for iel.

By (5) and (7) there follow two facts: (i) (w; — W;);c; is linearly independent in
W; (i) wi—w=v;—7, that is w;—weWnV for iel.

Hence V n W has a linearly indepedent subset of cardinality equal to pim (L);
which completes the proof of Lemma 2.

Proof of Th. I. Let U, be a subspace of U with
(8) dens (Uy) = 2.

By Theorem I* we set
€) Fi=GUy.

Then we have that
(10) card (Fy) <2%;
indeed by (8), (9) and by [3] (Lemma 2) we have that

card (F'y) < card (Uy) = (dens (Uy))" = (2&7)% = 229
By Lemma 1 and by (10) it follows that
coD(Bon (Fy),, B)<22°"  where By=T,+ V.
Hence by [3], by Lemma 2 and by hypothesis,
DIM(V n (F1),) =DM (V).

Since V n (F), is a Banach space, by hypothesis there exists a subspace ¥
with dens(Y) =K.

Call Fy =G (Y) and proceed as for F';, as regards U, instead of V, then by

Lemma 1 we get that

dens (X) = dens (U,) = 2@ where X =U,n(Fy),
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Hence both for X ad Y the density character is as required, moreover by
construction it is

XcG@),  YcGU@)),.

Therefore by Theorem I* and by (1) X and Y are orthogonal; which completes
the proof of Theorem I.

2 - Orthogonal sequences

The assertion that the large density character helps the construction of
sequences with good properties, follows from the following facts: (i) for every
positive integer n there exists a Banach space X, with piM(X) = 2n, so that
every basis of X has basis constant = W[7]; (ii) in every infinite dimensional
Banach space there exists an asymptotically monotone basic sequence (x,,) (that
is there exists a sequence (K,,) with K,,— 1 so that, for every m and for every
(@2

m m+p
” E Ay wnHSKm” z A &y, ”7
n=1 n=1

see [4] or [6],).

Lemma 3. Let (x,)h-, 1 <p<w) be a sequence of B such that for every
Sfinite subsequence (x,)"-,

rp € (Gwali=rne))  for 1Ssksm.
Then (x,)b-, is orthogonal.
Proof. It is obvious by (1), indeed for every (a.)y-1= (@,)f-1U (@i, of

numbers, we have

m q g 9
” E Ay xn“ = ” z a'nk xnk + Z a’n'k xn'k” Z..= “ 2 a'"k w"};” M
k=1 k=2 k=1

n=1

Proof of Theorem II. Set

1) RE= S R, where Ry = 2@ for 1=0.
i=0
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Suppose dens (B) = &* and fix a positive integer p; it is sufficient to pick up the
sequence of Lemma 3.
By the proof of Theorem I there exist «; of B and a subspace B; of B so that
dens(B)=¥,., &, eS(GBI).).

Fix m with 1 <m <p —1 and suppose to have (x,)., of B and a subspace B,,,
of B so that

12) dens(B,)=8,_, 2, eS(G[xJiti 2t Br))y) for 1sn=sm.
Then there exists B,., so that
B..+1 is subspace of B, dens (B4 1) = Rp—m+1y-
Hence by [3] by (11)' and (12) and by Lemma 1 we have that
card (B,,.1) = (dens (B, ) = dens (B, +1)
dens (B,, N (G (B s1+ [ 7= )) =8y,
that is, if we pick up @,,+1 €SB 0 (GB, 51 + [,]7- 1)), we have (12) for m + 1
instead of m.
Suppose to have (12) for m =p — 1, since dens(B,-,)=R8;, we pick up an

arbitrary x, of S(B,-1) n(G(x,};=1), and we are done; which completes the
proof of Theorem II. ‘

3 - Monotone basic sequences

We already pointed out ((i) of 2) that in general a finite dimensional Banach
space does not admit a monotone basis.

Proof of Theorem ITI. Fix x; in S(B). Suppose to have a monotone basic
sequence (x,),<gC S (B) where g is an ordinal < type (R).

Suppose card (8) finite or numerable, let (¥)7-; be a dense numerable subset
of [%.].<s, then by Lemmas 1 and 2,

COD ((G (Wpi=1)., By <2%
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for every subspace B; of B with dens(B;) >N, therefore we can pick up
€ S(B) N (G Wi-1),.

Suppose now card (8) >R, then (by [3] Lemma 2) card (8) = card ([x,],<2)
hence by Lemma 1 and by hypothesis

CoD (G ([%,],1<2)). , B) < 2@

therefore we can pick up again x,€S(B)n (G N M)
This completes the proof of Theorem III.

We point out that preceding construction is not valid in general for the
separable case, as it appears from the following Proposition. If X and Y are
subspaces of B we say that X is orthogonal to.Y if |z + y|| = |jo|| for every = of X
and y of Y.

Proposition. There are two elements y and z in Coryy, S0 that [y, 2] is never
orthogonal to [x] for every x#0 of Comy.

Proof. Set
(13) y=Vt =1-t for O0<t<l.
Let @ eCori with
ERA()) el =1=|z@|=2(F) with 0<T<l.
If =0 it is easy to see that there exists ¢> O so that
e —52l<1 for every O<n<e.

If £=1 in the same way we check that [y] is not ortogonal to [x]. Suppose
O<i<1 and set

T=y+(12VD)z.

By (13 #@=0 only for t=7, with %@ <0, moreover (% (L)
= (1/4) (\/%4— 1/\/%)2 =12+ @+170)/4>1 for 0<T<1, while %w(1)=1 and
(@ (0))* = 1/(4%) < (w ())?; therefore % (f) has only one maximum for t=%. Hence
again it is easy to see that there exists >0 so that

@ —n2|<1 for every 0<n<e.
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This completes the proof of the Proposition.

Remark. In preceding Proposition, for every definition of G in
TheoremI*, G ([y, z]) is always total on Cou1 (that is (G [y, 2, = {0}).
In particular we can use the following definition of G for every # of (14)

G@)@)y=2@) for every x of Copy.
In this case G ([y, z]) becomes 1-norming on C,.; (that is, for every x of C,uy

llell = sup {[f@|/|Ifl; feGUly,=D}).

Finally we notice that Theorem III is connected with a results of Bessaga ([1]
Prop. 2, see also [6]z, p. 599 Th. 17.10), moreover with results of Reif ([5]; Th. 1
and [5]; Prop. 5) and of John-Zizler ([2]; Prop. 2 and [2], Prop. 9).

All these results concern Theorem III for every infinite density character,
but only for weakly compacted generated (in particular reflexive) Banach spaces.
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Sommario

Se B & uno spazio di Banach, con dimensione infinita sufficientemente grande,
mediante il teorema di Hahn-Banach si possono ottenere in B sottospazi ortogonali con
dimensione infinita, successioni basiche monotone infinite e successioni ortogonali finite
di lunghezza arbitraria.



