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REMIGIO RUSSO (%)

Uniqueness theorems in linear elastodynamics

without strain-energy function (**)

1 - Introduction and mathematical preliminaries

In this paper we are concerned with the uniqueness issue associated with the
mixed boundary-initial-value problem of linear elastodinamycs in unbounded
domains. The special feature of our results consists of the absence of any
assumption of symmetry on the elasticity tensor, with the obvious exception of
those implied by the theory (minor symmetries).

Assume () that an unbounded elastic body B occupies at instant ¢t=0 the
region B of R" (n =2, 3) with smooth boundary 8B = 8,8 U 3.8 (8,8 n 3.B = —).
As is known, the mixed boundary-initial-value problem associated with the
motion of B in the time interval [0, + o) consists of finding the solution u(x, ¢) to
the system [2]

clt=V -ClVu]+ b on @ =B x(0, + )

u=u* on 8;B % (0, + )
M ClVuln = s* on 8;B X (0, + =)
u=0 u=u, on Bx{0}.

In D g, C, b, u*, s*, v, and n are respectively the mass density, the fourth-
order elasticity tensor, the body force, the surface displacement, the surface

(*) Indirizzo: Dipartimento di Matematica e Applicazioni, Universita di Napoli, Via
Mezzocannone 8, 80134 Napoli, Italy.
(**) Ricevuto: 12-1X-1984.
(") Light-face letters indicate scalars; bold face case letters indicate tensors.
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traction, the initial velocity field and the outward unit normal to dB. Moreover,
the dot denotes partial differentiation with respect to time and, denoting by Cy,
w1, 5, h, k=1, ..., %) the components of C and u in a fixed orthonormal reference
frame {0, e;} of R", V- C{Vu]= 3;{C Or un}e;, where 8, = 9/0x; and summation
on repeated indexes is implied. Recall that Cyy = Cji = Cyw. Thus, letting A
and B denote two second-order tensors, A-C[B]=symA -C[symB], where
sym A, sym B stand for the symmetric parts of A and B.

Here we wish to find sufficient conditions on data C and ¢, and suitable rate of
decay at infinity on the relevant fields in order that system (1) admits at most
one solution. To prove this it is sufficient to consider the system

@) cit=V-C[Vu] on @

u=0 on 3;Bx(0, +»), ClVuln=0 on 3Bx(0, +»), u=u=0 on Bx{0}
and to show that (2) has only the identically null solution. Set
Z={ue[CAQ)]: u has a Laplace-transform on B} .

Let us recall that a tensor function ¢ defined on @ has a Laplace transform on

B if 35,=0:VE=%, the integral ';b(x, O= [ exp[— &]y(x, t)dt converges for
any x belonging to B. 0

Throughout the paper we shall assume that 1/ is positive and bounded on B.
Also we shall require that C is bounded on B and satisfies one of the following
well-known conditions

positive definiteness Ju>0: A-C[A]=u(sym A)?

) strong ellipticity F%>0: a-Cla® b]b=xa*b*

the former for any second-order tensor A, the latter for any couple of vectors a,
b.
As far as the regularity assumptions are concerned, we suppose that C and o
are continuous on B and that C is once continuously differentiable on B.
The following symbols will be used

VxeR" r=[x—-0|, e=7rx-0), Sp={xeR":r<R},

B]ezBﬁSR, 2R=BmaSR.
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2 - Uniqueness theorems

It is well known that, if u is a solution to system (2) belonging to =, its

Laplace transform @ satisfies the system

t=V-C[Vi] on B

N

3
=0 on & B CiVialn=20 on 9,8

V&= &. Thus, if we show that Jv,=0: Vv=v, &#=0 on B, by the properties of
the Laplace transform we can certainly conclude that =0 on Q. We shall
always follow this procedure in proving our uniqueness theorems.

Theorem 1. Let C be positive definite and let u be a solution to system (2)
belonging to =. If

4) AmeN  3AM,R>0: o, (Vul=Mr" VYr>R,
then u=0 on Q.

Proof. Multiply both sides of (3); by #@ and integrate over Bg. Then an
integration by parts gives

5) [ {82+ V- C(Vil}dv= [ &-C[Vile,da Viz£,>0.

r

Since, by virtue of the arithmetic-geometric mean inequality,

it- C[Vii] = ‘CI {q' oU= + ,u(sym Vu)g} ,
25 Ve
C
setting C= sup 4 Bott®+u(symVuy=n, (5) yields
25 Ve
(6) Jndv=C [ yda.
Bp g

Now, since d/dR f ndv = f nda, setting f ndv = f(R), (6) takes the form f< Cf’

on (0, + o), Whlch by virtue of a simple integration, leads to
f(R)=f(R)exp[CR] YR=R >0. Hence the desired result follows by a
comparison with (4).
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Theorem 2. Let C be positive definite and let u be a solution to system (2)
belonging to . Further, let p be a smooth, increasing and positive function on
[0, + ) such that llnl pF)=+c. If AM, By>0:Vr=R, either

(M p' (Vu)* < Mr' or ) P o< My
then u=0 on Q.
Proof. Assume that (7) holds. By virtue of the Schwartz inequality

9) [a-ClVile.da<C {# [ s0?da [ (sym V) da}

p o *p

where C = sup -I—C—‘I— Thus, setting £ [a2dv=f(R), (5) gives

2\/s Bg
SVPe

10) PRARP=CF(R) VR>E,.

(10) implies that f(+ ) =I;ig1cf(R) =(0. Indeed, if fl+x)>0, then
AR >R,:f(R)>0 VR >R. Thus, by integrating (10) on (R, R), one has A

1 > 1 1 op®m)—p@®)=p®).

f(R)y fBR) fR)

But this contradicts the hypothesis lim p(7) = + «. Hence f(+ o) =0 and since
it = 0, uniqueness is completely proved.
Let now (8) be verified. From (5)-(9) it follows

11) w [ (symVu)Pdv=Ce{ [ ¢t?da [ (symVu)*da}t.
B : *p

R

Setting [ (sym Vu)?dv =f(R), (11) takes the form (10). Hence the desired result
B,

immedia‘:ely follows.

Theorem 3. Let 3,B=0 and assume that C is strongly elliptic and
uniformly continuous on B. If u is a solution to system (2) belonging to £ and
satisfying (4), then u=0 on Q.
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Proof. By multiplying both sides of (81, by git with g = e~" and integrating
over Bp, a simple computation yields

(12) [ g{Za2+Va- ClValydv= [ gi-C[Vile,dv + fgtr- ClVile,da .
By ;

Br *r

Since llr}l Jgtt-C[Virle.da =0, by letting R— + % in (12), one has
*p
13 Bf g{&et? + Vit - C[Vir]) dv = Bf git-ClVale,dv .
A lemma of [4]; implies that 356> 0:
Ef gVir- C[Vildv = an 9(Vir? dv — o‘Bf ghtdv .
Thus (13) leads to
(14) Bf G{Z W+ o(Vu)?} dv < o‘Bf grdv + Bf git- C[Vule,dv .

Now, since

ae

( cE o,
git- C[Vule, < go(Vir)? + ’—4—‘ gotii? |

195k

setting C = sup , lz=s%p7°\, (14) yields

Ge

F-C—-h) [gttdv=0,
B

whence the desired result follows, since &t =0 V&> v,=(C + h)-.

3 - Concluding remarks

As far as we are aware, the present paper is to first one concerning
uniqueness of solutions to system (1) in unbounded regions, under hypothesis (x)
without any simmetry assumption on C. A previous uniqueness theorem not
requiring symmetry of C is given in [3].

If C satisfies the major symmetry condition 4-C[B]=B:C[A], for any
couple of second-order tensors A and B, strong uniqueness theorems are
available [1];, [4],, [5], [6], [7]. For example, in [1], it is proved that uniqueness
holds for solutions to system (1) if the elasticity tensor is positive definite, the
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density is positive and the acoustic tensor obeys a suitable condition at large
distance (3. Further, in [4], it is shown that the displacement problem for
system (1) (3 B = —) has at most one solution under the same assumption on the
acoustic tensor as in [1];, by requiring that C is strongly elliptic. It is worth
remarking that in [1];, [4)s, [5], [6], [7] the uniqueness is achieved by not
assuming any restriction at infinity on the solutions.
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Abstract

We prove three uniqueness theorems for the boundary-initial-value problem of linear

elastodynamics, by not requiring that the elasticity tensor by symmetric.

) In [1], it is proved that uniqueness fails to hold if such a hypothesis is dropped.



